
Prototyping Connected Devices for the Internet of Things

Keywords

Internet of Things, connected devices, rapid prototyping, representational state transfer (REST),
machine-to-machine, web services, cloud computing, Microsoft .NET Gadgeteer.

Abstract

The vision of the “Internet of Things” is one where the explosion in connectivity we have seen over
the last decade increasingly extends right down to the simplest of electronic devices – to the point
where pretty-much any thing may connect to the internet. There is tremendous potential in this
vision but there are of course also a great many complex technical, social and economic questions
which are yet to be addressed. We firmly believe that the ability to quickly prototype, test and
deploy real devices will be a key element in accelerating our understanding of these challenges and
of the benefits of networked things.

In this paper we outline some of the hardware and software tools and platforms currently available
which can be used to facilitate the creation of networked embedded devices. In particular we
illustrate the possibilities these afford by focussing on a specific platform – Microsoft .NET
Gadgeteer – which we describe in some detail and illustrate using a series of examples. Key elements
of tools like Gadgeteer include: rapid construction and reconfiguration of electronic device
hardware; ease of programming and debugging; and the ability to leverage online web services for
additional storage, communication and processing capabilities. We hope that practitioners in this
exciting field will be able to build on the experiences and examples reported here as the Internet of
Things becomes ever-closer to reality.

Introduction

Today, devices such as personal computers and smartphones form a significant fraction of internet-
connected devices globally [4]. In the coming decade, analysts predict that simpler embedded
devices will increasingly complement these established platforms as peers on the internet in a
growing machine-to-machine communication paradigm [3], [4], [9]. In addition to networked
versions of devices which are commonplace today – things like washing machines, alarm clocks,
doorbells and light switches – pundits are predicting completely new applications. They imagine
devices around us that continuously communicate with each other and improve our productivity at
work, help us manage our daily activities, let us keep in touch with others more easily, provide
information in a timely and convenient fashion, and enhance our leisure time. Some estimates
predict that this “Internet of Things” will constitute 100 billion devices as soon as 2020 [3], [9].

One particular shift we expect to see is that the software running on the processors of embedded
devices will increasingly be complemented by cloud-based web services, made accessible via built-in
network interfaces which leverage established web-based protocols such as HTTP and XML. Web
services will dramatically extend the effective processing and storage abilities of the connected
devices which comprise the Internet of Things, enabling relatively cheap embedded processors to
leverage sophisticated data processing and gain access to large datasets. Ultimately a new class of

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

applications may emerge, where groups of devices act as the input and output elements of
potentially global-scale distributed services and applications.

With so many possibilities across the broad realm of the Internet of Things, tools which expedite the
reduction of ideas to working prototypes may have an important role to play. By prototyping and
deploying live systems early on in the concept development cycle it is possible to understand the
strengths and weaknesses of a particular application, design or specific implementation sooner and
feed this information back into an iterative development process. Many tools also make it possible
for individuals with little experience of connected device development to realise working prototypes
thereby extending accessibility to a great many developers, designers, researchers and enthusiasts.
We believe that the combined engagement of this spectrum of creative users is likely to accelerate
the speed with which networked devices are adopted simply because of the number of application
scenarios which can be explored, developed and deployed.

In this paper we describe some of the tools and services which are currently available to support the
rapid development of networked devices and we drill down on one particular system, Microsoft .NET
Gadgeteer (http://netmf.com/gadgeteer, hereafter simply ‘Gadgeteer’). Gadgeteer is a general-
purpose device development platform which has been reported previously in the literature [11]. In
this paper we recap its main features and for the first time present details relating to the networking
support which enables the platform to be used for the rapid prototyping of connected devices for
the Internet of Things. We also introduce Gadgeteer’s ability to leverage online storage and
processing by way of complete examples which we hope other practitioners will be able to replicate
and build upon. The paper ends by summarising some of the pros and cons of different connected
device prototyping tools and the possibilities these afford for scaling up to larger numbers of
devices.

Tools for prototyping connected devices and systems

A number of tools for developing machine-to-machine communication concepts into working
systems are becoming well established. One popular tool is the Arduino platform (http://arduino.cc),
a family of embedded processors that can be programmed using the C language via an accessible
and minimalist integrated development environment (IDE). Debugging with Arduino is typically
supported via simple communications over a serial line interface. In terms of electronic hardware,
Arduino processors are complemented by an ecosystem of ‘shields’ – add-on circuit boards that
extend the basic capabilities of Arduino (http://shieldlist.org/).

From a hardware perspective, the use of Arduino for connected device development is enabled by
the availability of shields that provide Ethernet, WiFi or GPRS connectivity, see Figure 1 for example.
On the software side, a technique known as representational state transfer (REST) [8] is commonly
used as a lightweight and easy-to-debug mechanism for communication between connected devices
such as those built with Arduino. REST inter-device communication is enabled via services which are
exposed and accessed using HTTP and is readily supported by Arduino libraries that implement the
relevant networking protocols and enable simple webserver operation. The widespread use of
Arduino means that there is also a vibrant community of users who create, share and support their
own libraries and examples online, further facilitating the development of new applications.

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

The mbed programmable microcontroller platform (http://mbed.org) is another embedded
electronics development platform which is growing in popularity. There are currently two different
mbed microcontroller products which take the form of small rectangular modules with protruding
pins which allow the device to be inserted into a breadboard during prototyping, see Figure 1. This
form factor also allows the module to be integrated into a custom printed circuit board (PCB) should
that subsequently be necessary. A key difference from Arduino is the mbed online IDE, which is
accessible via a web browser without the need to install any software. Extensive documentation and
libraries are available through the IDE which also supports the sharing of user-generated code
samples and libraries. In support of connected device development, one of the mbed variants
includes built-in Ethernet connectivity and the mbed code repository includes a comprehensive set
of networking libraries and examples. Support for debugging code running on the mbed has been
the limited to date, but it is possible to transition to a more traditional PC-based IDE if necessary and
an upcoming version of mbed aims to provide better support for debugging via the online IDE.

In addition to microcontroller-based platforms such as Arduino and mbed, there are also a large
number of small-form factor devices that run Linux. These bring with them the opportunity to
leverage an extensive set of pre-existing tools and to reuse existing software components such as
Node.js (http://nodejs.org/) which simplifies the implementation of REST-like asynchronous web-
based APIs. These platforms are powerful and flexible but as a result they can expose more
complexity to the user and they are typically less cost effective than Arduino for lightweight device
development. However, new products with very low price points such as Raspberry Pi
(http://www.raspberrypi.org/) and the BeagleBone (http://beagleboard.org/bone) are becoming
extremely popular and as a result have active and growing online communities.

One final system we want to highlight and which we will use in the rest of this paper to illustrate
how simple it can be to prototype connected devices is Microsoft .NET Gadgeteer. This is a modular
platform designed to facilitate the construction of prototype digital devices [11]. A central
‘mainboard’ containing a CPU and a number of sockets may be connected to a growing number of
commercially available ‘modules’ – different sensors, actuators, displays, communication and
storage elements. The solder-less composability of hardware components allows prototypes to be
constructed, re-configured and extended very quickly. The Gadgeteer system is tightly integrated
with the Microsoft Visual Studio IDE which provides a great deal of support throughout the
prototyping process. The Intellisense system performs dynamic syntax checking and continually
provides hints and prompts to ease coding. The IDE also aids debugging via breakpoints, single
stepping, variable watches and execution traces.

Figure 1. The
Arduino device
prototyping
platform with
Ethernet shield
(left) and the
mbed embedded
development
platform (right).

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

 Microsoft .NET Gadgeteer design choices

The primary design goal of Gadgeteer was to simplify the development of applications as much as
possible, even if this is at the expense of performance. Device functionality is programmed using C#
or Visual Basic; the use of managed code is unusual for embedded device development where C-like
languages are firmly established, but our experience shows that it tends to reduce the time and
expertise needed for prototyping new applications [10]. In a pre-production environment this offsets
the increased processor and memory requirements. In a similar way, Gadgeteer uses an event-based
model wherever possible which further simplifies the creation of many applications and helps
developers familiar with event-based programming on desktop and mobile platforms to transition to
embedded device development.

The functionality of each physical Gadgeteer module is encapsulated in a software library through an
intuitive high-level application programming interface (API). The high level of abstraction often
allows modules to be used in quite sophisticated ways with just a few lines of code, enabling users
with relatively little experience to build compelling devices and applications. This approach lowers
the barrier to entry, but doesn’t limit the flexibility available to more experienced developers. If a
different abstraction or functionality is required it is possible to build on top of lower-level APIs to
encapsulate this.

The .NET Micro Framework (http://netmf.com) which underpins Gadgeteer contains extensive
provision for networking. The Gadgeteer networking API builds on top of this in a way which
supports a compact and easy to understand design pattern for responding to REST-ful web requests
with text, images or byte streams. Supporting this was prioritised above other web-related
functionality such as serving a hierarchy of content in the manner of a traditional web server in
order to simplify Internet of Things application development.

Building a simple web-connected device with Gadgeteer

To illustrate how straightforward it can be to create a connected device with a REST-ful interface,
Figure 2 presents a simple “internet webcam” built using Gadgeteer. The process of creating a
device starts with a graphical design tool, shown in Figure 2(a), which allows the developer to specify
the hardware components they want to use and how they can be connected to a mainboard. Having
‘wired these up’ graphically on-screen, it takes just a couple of minutes to construct the
corresponding physical hardware, Figure 2(b). In this example, the webcam consists of a Gadgeteer
mainboard connected to Ethernet, camera and power supply modules. The code required to
encapsulate the hardware configuration is automatically generated and the appropriate libraries are
linked in.

With Gadgeteer, a web server can be set up using a single line of code once a network connection
has been established. Gadgeteer’s event-based style lends itself to handling REST-ful requests
through the creation of event handlers for each desired HTTP request path; each handler simply
responds to the associated incoming request with the appropriate object. Strings (including
complete HTML pages), images and data streams are supported directly by the Gadgeteer API. In
terms of the webcam application, the capture of a new webcam image is triggered remotely via an
HTTP request to a web server running on the device. At the same time, the most recently captured
image is returned to the web client initiating the request. Figure 2(c) lists the C# code required to

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

implement the necessary functionality – just twelve lines of code excluding the auto-generated
function prototypes. Of course, a more robust implementation would cover a variety of potential
error conditions, such as lack of network connectivity, but the simplest implementation is shown
here for clarity. The web browser screenshot in Figure 3 shows the device in operation.

 `
(a) (b)

GT.Picture lastPicture;
GT.Networking.WebEvent cameraServer;

void ProgramStarted()
{

// associate PictureCaptured event with its handler
 camera.PictureCaptured += new Camera.PictureCapturedEventHandler(camera_PictureCaptured);

// request DHCP address and associate handler for network setup
ethernet.UseDHCP();
ethernet.NetworkUp += new GTM.Module.NetworkModule.NetworkEventHandler(ethernet_NetworkUp);

}

void ethernet_NetworkUp(GTM.Module.NetworkModule sender,

GTM.Module.NetworkModule.NetworkState state)
{

// start a webserver on port 80
WebServer.StartLocalServer(ethernet.NetworkSettings.IPAddress, 80);

// set up a handler for http '/picture' requests
cameraServer = WebServer.SetupWebEvent("picture");

 cameraServer.WebEventReceived += new
 WebEvent.ReceivedWebEventHandler(cameraServer_WebEventReceived);

// capture an initial picture
camera.TakePicture();

}

void cameraServer_WebEventReceived(string path, WebServer.HttpMethod method, Responder responder)
{

// return the last picture and initiate a new picture
responder.Respond(lastPicture);
camera.TakePicture();

}

void camera_PictureCaptured(Camera sender, GT.Picture picture)
{

lastPicture = picture;
}

(c)

Figure 2. An “internet webcam” constructed from .NET Gadgeteer. (a) The hardware configuration
which includes an RJ45 module for a wired Ethernet connection is entered graphically in Visual

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

Studio. When a module connector is selected, compatible mainboard sockets are highlighted in green
to aid the user in wiring up their design. (b) A photo of the corresponding physical hardware. (c) Just
12 lines of code are enough to create a webserver which responds to incoming requests with the
most recent image and simultaneously triggers the capture of a new image capture. Note that all the
function definitions in this example are automatically generated by the Visual Studio IDE.

Figure 3. A web request to the
network-connected camera
device returns the previous
picture and also initiates the
capture of a new image.

A more sophisticated web-controlled camera is shown in Figure 4. In this case the camera module is
attached to a servo motor controlled arm, allowing remote panning as well as image capture, again
over a REST-ful interface. In addition to a wired Ethernet connection, this device also incorporates
wireless 802.11 and Zigbee network interfaces. The former provides an alternative way of
connecting to the internet, should a wired connection not be available or convenient. The latter was
used in our prototype to provide an onward connection to lighter-weight Gadgeteer devices such as
temperature and light-level sensors, effectively giving them a presence on the internet via additional
software running on the camera device which acted as a bridge.

(a) (b)

Figure 4. A remote-controllable networked camera with servo-controller pan mechanism. In this case
the electronic modules are housed in a 3D-printed plastic enclosure.

Storing, retrieving and sharing data

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

Whilst an embedded webserver allows a device to expose state or functionality over HTTP, the
ability to store, retrieve and share data is a key element of Internet of Things applications and for
this an embedded web client API is equally important. For this reason, the Gadgeteer libraries were
designed to ensure that making a web request is also straightforward; when the details of the HTTP
request have been specified, an event handler is created to deal with the anticipated response and
then the request itself is sent. In addition to supporting true peer-to-peer communication, in our
experience with connected device development this approach is an intuitive way of providing access
to a growing number of hosted web services that support the process of exchanging data between
connected devices. These tools, which include cosm (formerly Pachube), Thingspeak and Nimbits
(https://cosm.com/, https://thingspeak.com/ and http://www.nimbits.com/), make use of HTTP and
XML to implement REST-ful APIs and are therefore readily accessible to platforms like Gadgeteer.

To give a practical example of this, Figure 5 lists the four lines of C# code needed to upload a
barometric pressure reading to the online cosm repository. A complete connected device which
continuously records and uploads sensor readings is shown in Figure 6, along with a screenshot of
the cosm web interface for visualising the associated temperature and pressure data.

HttpRequest request = HttpHelper.CreateHttpPutRequest("http://api.pachube.com/v2/feeds/" + feedId +
 ".csv", PUTContent.CreateTextBasedContent(locationId + "temperature," +
 sensorData.Temperature.ToString() + "\n" + locationId + "pressure," +
 sensorData.Pressure.ToString()), "text/csv");
request.AddHeaderField("X-PachubeApiKey", apiKey);
request.ResponseReceived += new HttpRequest.ResponseHandler(req_ResponseReceived);
request.SendRequest();

Figure 5. A snippet showing the code required to upload a sensor reading to the cosm web service.

Figure 6. A Gadgeteer prototype which periodically stores temperature and pressure readings using
the cosm web service via WiFi (left). A screenshot showing plots of data collected over a 24 hour
period (right). Note that the prototype device is assembled using a perforated plastic baseboard
which the Gadgeteer modules are attached to using yellow plastic pop-rivets.

Cloud-based processing for connected devices

In addition to communication between devices via online repositories such as cosm, one of the key
benefits of connected operation is the potential to leverage cloud-based computation. Services such
as Amazon EC2 and Microsoft Azure provide a mechanism to deploy online compute services which
can be used to offload computation from connected devices. Project Hawaii from Microsoft
Research (http://research.microsoft.com/hawaii/) is a ready-to-use web services test bed built on
Azure which provides a variety of functionality free of charge for non-commercial applications.

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

Hawaii currently provides off-the-shelf services to support certain computationally intensive
processes in addition to basic communication between remote devices and online data storage.

(a) (b)

Figure 7. (a) The OCR device which has a camera facing down towards the worktop. (b) An image of
some printed text which was captured and which has the OCR’ed text correctly overlaid in red care-of
the Hawaii cloud-based OCR service.

To demonstrate how Hawaii can be used to extend the capabilities of Gadgeteer, Figure 7 shows
another camera device we have prototyped. As with a traditional digital stills camera, an image is
captured when the “shutter” button is pressed. At this point, rather than simply displaying the image
and storing a copy locally, the image is sent to the Hawaii optical character recognition (OCR) service
whereupon it is processed and any text detected is returned for display. Figure 8 shows the C# code
which forms the basis of this example. When the picture to be sent to Hawaii for OCR processing has
been captured and displayed, an HTTP request is created. This request incorporates the image, the
appropriate authentication information and the necessary HTTP header fields. The resulting
response from Hawaii triggers an event handler which needs to process the XML-enabled results. For
simplicity, the code presented in Figure 8 simply selects the first word returned by the OCR service
and includes no error handling. A more complete implementation would process all the text and
associated meta-data as well as dealing with error conditions. The .NET Micro Framework includes
native XML parsing and exception handling capabilities which make more complete and robust
decoding simple to implement.

 void ProgramStarted()
 {
 ethernet.UseDHCP();
 button.ButtonPressed += new Button.ButtonEventHandler(button_ButtonPressed);
 camera.PictureCaptured += new Camera.PictureCapturedEventHandler(camera_PictureCaptured);
 }

 void button_ButtonPressed(Button sender, Button.ButtonState state)
 {
 camera.TakePicture();
 }

 void camera_PictureCaptured(Camera sender, GT.Picture picture)
 {
 // Show the picture on the display
 display.SimpleGraphics.DisplayImage(picture.MakeBitmap(), 0, 0);

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

 // create and send an HTTP request which will send the picture to the Hawaii OCR service
 HttpRequest request = HttpHelper.CreateHttpPostRequest("http://157.55.188.73/OCR",
 POSTContent.CreateBinaryBasedContent(picture.PictureData), "image/jpeg");
 request.AddHeaderField("Authorization", "Basic " +
 ConvertBase64.ToBase64String(Encoding.UTF8.GetBytes("<insert your appID here>"));
 request.AddHeaderField("Cache-Control", "no-cache");
 request.ResponseReceived += new HttpRequest.ResponseHandler(request_ResponseReceived);
 request.SendRequest();
 }

 void request_ResponseReceived(HttpRequest sender, HttpResponse response)
 {
 // for this example we just display the first OCR'ed word returned by Hawaii
 // by looking between the "<Text>" and "</Text>" tags
 int start = response.Text.IndexOf("<Text>", 0) + 6;
 int end = response.Text.IndexOf("</Text>", 0);
 display.SimpleGraphics.DisplayText(response.Text.Substring(start, end - start),
 Resources.GetFont(Resources.FontResources.NinaB), GT.Color.Red, 0, 0);
 }

Figure 8. Using Gadgeteer to build an embedded device which leverages the Hawaii web services.

To further illustrate how Gadgeteer may be used to explore applications which leverage the
ubiquitous connectivity which underpins the Internet of Things, we have built and deployed another
camera-based application. The motivation behind this project was to replicate the work of Kuzuoka
and Greenberg [5] who explored the use of telepresence proxies. These are devices which
incorporate cameras and displays and are configured to share images between different physical
locations. We built a number of networked Gadgeteer devices, each incorporating a display and
camera, and developed a simple application which would periodically take a photo and upload it to
an Azure-based web service such as the Hawaii Key-Value Store. The web service was configured to
make the most recent photo from each device available to all the other telepresence devices. By
displaying the latest photos from other devices in a round-robin sequence, a level of mutual
awareness between users at different physical locations was maintained. By deploying these devices
we were able to experience this lightweight form of telepresence and at the same time we explored
different device form factors by creating a range of enclosures for the necessary electronics. Figure 9
shows some of the prototypes.

Figure 9. Using the flexible nature of the Gadgeteer hardware, we explored several different form
factors for a network-connected telepresence device. An integrated unit containing all the modules is
shown on the left, whilst the centre and right-hand prototypes have separate units for the display
and camera. In the case of the right-hand design, the two units operate independently – each has its
own Gadgeteer mainboard with a separate wired Ethernet connection.

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

Selecting a platform for Internet of Things development

We have used Gadgeteer to illustrate how to build connected devices, but there are of course a
great many factors to consider when choosing a development tool. For example, community support
is a key element of any development platform and this is very much true of tools like Arduino, mbed
and Gadgeteer. In each case online forums provide a mechanism for both new and experienced
users to pose questions, exchange experiences and share code.

One of the premises behind the Gadgeteer software stack is that concise code empowers less
experienced users to create useful applications and at the same time allows seasoned developers to
build prototypes more quickly. This intuition is borne out through the anecdotal evidence we’ve
collected at various Gadgeteer events; users report a very low hurdle for creating simple projects
[10], yet have been able to build relatively sophisticated prototypes including connected devices [2].
Indeed, our experience shows that the simplicity of hardware and software development with
Gadgeteer inspires students as young as 13 to engage with the platform [5], and this may ultimately
prove valuable for educating a future generation of Internet of Things developers. Of course, other
platforms will continue to be very relevant as well. For example professionals and hobbyists alike
can leverage a growing set of samples and libraries for connecting a networked Arduino to online
services, whilst educators have access to platforms like the Open University’s SenseBoard
(http://sense.open.ac.uk/) which has already been used to teach the Internet of Things concept as
reported elsewhere in this Special Issue [6]. In the future it may even be possible to create devices
and services in the realm of the Internet of Things using code-free development environments like
Scratch (http://scratch.mit.edu/).

Key points of differentiation between the tools discussed in this paper include performance,
debugging support, cost, power consumption and form factor. In the case of Gadgeteer, a high
performance processor was chosen to support managed code and real-time debugging even though
it results in a modest price increment over tools like Arduino and mbed. Power consumption was not
an area of focus during the initial development of Gadgeteer but is a topic that we are currently
exploring. Flexibility over form factor was a central design consideration for Gadgeteer and
influenced the decision to use cables for interconnecting modules as opposed to a ‘stacking’
approach. This allows a variety of physical prototyping approaches, some of which have been
illustrated in this paper.

No matter which tool or tools are used for prototyping, at some point it becomes necessary to build
and deploy a greater number of devices, either for larger scale deployments or ultimately for mass-
production. In our work so far we have used Gadgeteer for deployments of up to around 50 devices.
This is relatively straightforward because of the ease of replication of a proven Gadgeteer design and
the robustness of the assembled units. At some point it becomes more cost-effective to move to a
custom PCB, which can be made more cheaply through circuit integration. Like several of the open
hardware platforms, with Gadgeteer this process is facilitated by freely available hardware designs
from many manufacturers.

More recently, tools specifically designed to facilitate the mass production of connected devices
have started to emerge such as the ioBridge (http://www.iobridge.com/) and the Electric Imp
(http://electricimp.com/). The latter includes a programmable processor and WiFi radio in a small
package, which connects to applications through a hosted web service. In essence, these devices act

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

as a single physical component which provides a link between a hardware interface and HTTP-based
web APIs.

Conclusions

In this paper we demonstrated how rapid development tools can be used to prototype connected
devices in the context of the growing Internet of Things. By combining rapid electronic hardware
development with high-level software libraries and good debugging support, it is possible to build
and iterate network-connected devices remarkably quickly, as illustrated by the Gadgeteer-based
examples presented in this paper. We have also shown how web services like cosm and Hawaii can
provide storage, communication and computation, enabling further application scenarios.

As the number of network-connected devices in the world continues to grow, it is clear that no
single technology will prevail – the success of the Internet of Things is inherently tied to a
heterogeneity of devices, protocols, services and applications. There are still many open questions
within this broad scope and the tools presented here can’t necessarily resolve these issues directly.
However, as the Internet of Things vision gradually becomes a reality we believe that it will be
important to explore the design space by way of working prototypes. We imagine these prototypes
will be conceived and built by a diverse set of developers, researchers, designers and hobbyists and
that tools like Gadgeteer will be valuable in this regard. We acknowledge that some applications will
always be outside the scope of a rapid-prototyping toolkit but we nonetheless hope that others
working in this exciting field will find these tools useful for exploring relevant issues and for quickly
prototyping new ideas and applications, as we have done.

References

[1] Massimo Banzi, “Getting Started with Arduino”. O'Reilly, 2008. ISBN: 978-0-596-15551-3
[2] Pollie Barden et al., “Telematic Dinner Party: Designing for Togetherness through Play and

Performance”, In Proceedings of Designing Interactive Systems, DIS 2012, June 2012
[3] Casaleggio Associati “The Evolution of Internet of Things”, February 2011,

http://www.casaleggio.it/pubblicazioni/Focus_internet_of_things_v1.81%20-%20eng.pdf
[4] John Gantz, “The Embedded Internet: Methodology and Findings”, IDC, January 2009
[5] Steve Hodges et al., “.NET Gadgeteer: Experiences with a new platform for K-12 computer

science education”, to appear in Proceedings of the 44th SIGCSE Technical Symposium on
Computer Science Education, March 2013

[6] Gerd Korteum et al., “Educating the Internet-of-Things Generation”, IEEE Computer
[7] Hideaki Kuzuoka and Saul Greenberg. 1999. Mediating awareness and communication through

digital but physical surrogates. In CHI '99 extended abstracts. pp. 11-12.
[8] Leonard Richardson and Sam Ruby, RESTful Web Services, O’Reilly, 2007.
[9] Constantine A. Valhouli, “The Internet of things: Networked objects and smart devices”, The

Hammersmith Group Research Report, February 2010
[10] N. Villar, J. Scott and S. Hodges. Prototyping with Microsoft .NET Gadgeteer. In Proceedings of

the fifth International Conference on Tangible, Embedded and Embodied Interaction, TEI 2011.
[11] Nicolas Villar et al., “.NET Gadgeteer: A Platform for Custom Devices”, in Proceedings of

Pervasive 2012, Lecture Notes in Computer Science, June 2012

Acknowledgements

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

The authors would like to acknowledge John Helmes for the industrial design of some of our
prototypes, the Project Hawaii team behind the Hawaii web services described in this paper, and the
extensive community of people who have contributed to the development of the .NET Gadgeteer
prototyping system. We would also like to thank our reviewers for their valuable feedback.

Biographies

Steve Hodges is a Principal Hardware Engineer at Microsoft Research, Cambridge where he leads the
Sensors and Devices research group. His research interests broadly fall into two categories: novel
electronic devices, peripherals and accessories; and new technologies and techniques for input,
output and interaction. He received a PhD in computer vision and robotics from the University of
Cambridge and is a member of the IEEE and ACM. Contact him at shodges@microsoft.com.

Stuart Taylor is a Research Software Development Engineer at Microsoft Research, Cambridge. He
has extensive experience of developing new hardware and software technologies in an industrial
research environment. He received an MSc in Computing Science from the University of London.
Contact him at stuart@microsoft.com.

Nicolas Villar is a Researcher at Microsoft Research, Cambridge where he focuses on the
development of new hardware platforms and tools to enable technical innovation. He received a
PhD from the University of Lancaster in ubiquitous computing. Contact him at
nvillar@microsoft.com.

James Scott is a Researcher in the Sensors and Devices group at Microsoft Research Cambridge, UK.
His research interests span a wide range of topics in ubiquitous and pervasive computing, and
include novel sensors and devices, mobile interaction, rapid prototyping, wireless and mobile
networking, energy management, and security and privacy. He received his PhD from the University
of Cambridge in 2002, and is a senior member of ACM and a member of IEEE. Contact him at
james.scott@microsoft.com.

Dominik Bial is a research assistant and PhD student at Paluno, the Ruhr Institute for Software
Technology at the University of Duisburg-Essen in Germany where he also obtained an MSc in
Software Systems Engineering. His research interests are future appliances and systems, software
engineering and the future Internet, especially the Internet of Things. He can be reached at
dominik.bial@stud.uni-due.de.

Patrick Tobias Fischer is a PhD student in HCI at the University of Strathclyde, Glasgow, UK. His
research focuses on situated public interfaces in urban environments that have performative
aspects. He has an MSc in novel input technologies from the Cologne University of Applied Sciences.
He can be contacted at fischer@cis.strath.ac.uk.

Mailing addresses for complimentary copies

Steve Hodges, Stuart Taylor, James Scott, Nicolas Villar: Microsoft Research, 7 JJ Thomson Ave,
Cambridge, CB3 0FB, UK.

Dominik Bial: Paluno - The Ruhr Institute for Software Technology, University of Duisburg-Essen,
Gerlingstraße 16, 45127 Essen, Germany.

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

Patrick Tobias Fischer: Strathclyde University, 26 Richmond Street, Livingstone Tower Lv.11.01,
Glasgow, G1 1XH, UK.

Digital Object Indentifier 10.1109/MC.2012.394 0018-9162/$26.00 2012 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

