
COVER FE ATURE

47OCTOBER 2011Published by the IEEE Computer Society0018-9162/11/$26.00 © 2011 IEEE

computing. In SOSE, a service-oriented architecture (SOA)
provides the architectural style, standard protocols, and
interfaces required for application development, and cloud
computing delivers the needed services to users through
virtualization and resource pooling. Combining services
and cloud computing in a software engineering framework
can help application developers and service providers meet
the individual challenges of each paradigm.

Although SOSE is conceptually promising, its realization
will require additional research in software engineering
to address the challenges, such as security and quality-of-
service (QoS) management, that arise in services or cloud
computing.

SERVICES COMPUTING
Service developers follow SOA, an architectural model

for creating and sharing computing processes, packaged
as services.2 Each service is an independent software entity
with a well-defined standard interface that provides cer-
tain functions over networks. Developers can dynamically
compose services as a workflow, which forms the basis of
an application. In this context, software itself can be a ser-
vice—a self-contained, stateless, and platform-independent
entity with a URL, an interface, and functions that can be
described and discovered as XML data.

Different organizations with different policies develop,
manage, and govern services. Service-level agreements
specify runtime requirements that govern a service’s in-
teractions with a user or with other services. A service’s
SLA describes that service and sets forth the terms, in es-

S ervices and cloud computing have garnered
much attention from both industry and academia
because they enable the rapid development of
large-scale distributed applications in areas such

as collaborative research and development, e-business,
healthcare, grid-enabled applications, enterprise comput-
ing infrastructures, military applications, and homeland
security. These computing paradigms have made it
easier and more economical to create everything from
simple commercial software to complex mission-critical
applications.

The two paradigms share concepts, such as resource
outsourcing and transfer of IT management to service
providers, but their emphasis on software engineering
differs. Services computing focuses on architectural design
that enables application development through service dis-
covery and composition. Cloud computing focuses on the
effective delivery of services to users through flexible and
scalable resource virtualization and load balancing.

Service-oriented software engineering1 incorporates
the best of these two paradigms. Initially, SOSE was based
on services computing, but it evolved to include cloud

Service-oriented software engineering in-
corporates the best features of both the
services and cloud computing paradigms,
offering many advantages for software
development and applications, but also
exacerbating old concerns.

Stephen S. Yau and Ho G. An, Arizona State University

Software
Engineering Meets
Services and
Cloud Computing

COVER FE ATURE

COMPUTER 48

sence becoming a service contract that service providers
must fulfill.

Using standard protocols and interfaces, application
developers can dynamically search, discover, compose,
test, verify, and execute services in their applications at
runtime. SOA-based application development is through
service discovery and composition, which involves three
stakeholders:

 • A service provider (or developer) is the party who de-
velops and hosts the service.

 • A service consumer is a person or program that uses
a service to build an application.

 • A service broker helps service providers publish and
market their services and helps service consumers
discover and use the available services.

Application developers need not integrate service code
into applications because the service runs at its provider’s
site and is loosely coupled with applications through stan-
dard messaging protocols. Consequently, services and
applications do not have to be in the same programming
language or run on the same platform. Unlike an applica-
tion, which provides a user interface, a service typically
provides an application programming interface (API)
so that an application or other services can invoke that
service.

As this description implies, services have several attrac-
tive characteristics. They are

 • loosely coupled—there are no direct dependencies
among individual services;

 • abstract—beyond the SLA description, a service hides
its logic from the outside world;

 • reusable—services aim to support potential reuse;
 • composable—a service can comprise other services,

and developers can coordinate and assemble services
to form a composite;

 • stateless —to remain loosely coupled, services do not
maintain state information specific to an activity, such
as a service request; and

 • discoverable—services let a service consumer use
mechanisms to discover and understand their
descriptions.

When taken together, these characteristics empower the
rapid development of applications in services computing.

Standards bodies, such as the Organization for the Ad-
vancement of Structured Information Standards (OASIS)
and the World Wide Web Consortium (W3C) have estab-
lished a variety of protocols and service interfaces that
enable application development using SOA. Table 1 gives
a sampling of these protocols and interfaces.

CLOUD COMPUTING
Cloud computing enables convenient, on-demand net-

work access to a shared pool of configurable computing
resources, such as networks, servers, storage, applica-
tions, and services, which the cloud system can rapidly
provision and release automatically. Cloud computing lets
a consumer (user or program) request computing capa-
bilities as needed, across networks anytime, anywhere.
Some researchers envision the future Internet as a kind of
supercomputer that will depend heavily on cloud comput-
ing features, such as resource pooling and virtualization,
on-demand service, and ubiquitous access.

There are four cloud types. A public cloud provides ser-
vices to the public. A private cloud provides services to
only users within one organization. A community cloud
provides services to a specific community of organizations
and individuals. A hybrid cloud is any combination of the
first three types.

As Figure 1 shows, the cloud computing architecture
has three layers: software as a service (SaaS), platform
as a service (PaaS), and infrastructure as a service (IaaS).
Developers can implement and use each layer as a service.

Table 1. Protocols and interfaces that enable SOSE.

Protocol or interface Standards body (if applicable) Purpose

XML W3C Represent data in SOA

Simple Object Access Protocol (SOAP) OASIS Invoke services remotely across networks
and platforms

Representational State Transfer (REST) Architectural style, not a standard (attributed to
Roy Fielding)

Invoke services remotely across networks
and platforms

Web Services Description Language (WSDL) W3C Describe interfaces and service functions

Universal description, discovery, and
integration (UDDI)

OASIS Automatically publish and discover
services

Electronic Business XML (ebXML) OASIS and United Nations Center for Trade
Facilitation and Electronic Business (UN/CEFACT)

Automatically publish and discover

Business Process Execution Language (BPEL) OASIS Orchestrate services in a workflow

49OCTOBER 2011

Software as a service
Software that performs various tasks is not on the client

machine. Instead, third-party service providers host and
manage the software services in the cloud. SaaS includes
both software components (for application developers)
and applications (for users). An SaaS application is often a
service-oriented program so that it is easy to integrate with
other SaaS applications.

Platform as a service
PaaS provides a development platform with services to

assist application design, implementation, testing, deploy-
ment, monitoring, and hosting in the cloud. It requires no
software download or installation and supports geographi-
cally distributed collaborative work.

Infrastructure as a service
IaaS virtualizes the data centers’ computing power,

storage, and network connectivity. Users can scale these
computing resources up and down on demand.

APPLICATION DEVELOPMENT WITH
COMBINED PARADIGMS

Services computing and cloud computing are two sep-
arate paradigms, and each provides many advantages
for software development and application. Application
developers can use services computing alone, cloud com-
puting alone, or a combination of the two. We believe that
combining these two paradigms in a software engineer-
ing framework will help alleviate some of the software
engineering challenges that services and cloud computing
have individually. For example, a major challenge of ser-
vices computing is to manage the runtime QoS of loosely
coupled services involving distributed service providers.
Cloud computing can help meet that challenge through
resource allocation and virtualization.

On the other hand, cloud computing struggles both with
providing interoperability across different clouds and with
the rapid development of, and adaptation to, ever-changing
business environments and requirements. SOA’s standard
interfaces and protocols could help address this interop-
erability challenge, while its dynamic service discovery
and composition can provide the capabilities needed for
dynamic adaptation in cloud computing environments.

Figure 2 shows the concept of developing applica-
tions using SOA and delivery through the cloud. Service
providers could publish SaaS, PaaS, IaaS, and software

Networking

Infrastructure as a service

MemoryCPU

Storage

Middleware Database

Platform as a service

Web 2.0
application runtime

Java
runtime

Development
tool

Software as a service

Business
processes

Web
applicationsCollaboration

Industry
applications

Figure 1. Cloud computing architecture. The top layer allows
users and application developers to access services that
third parties host and manage. The second layer consists of
computing platforms and development services, and the
third layer provides the computing resources that users can
tap on demand.

Service
directory

SaaS
(software component)

PaaS (OS, middleware)

IaaS (virtual server)

Application template

User interface

Data schema

Policies

Testing tools

Service providersService directory cloudApplication cloud

Service
discovery

Service composition and virtualization

Service
publishingSoftware layer

Platform layer

Infrastructure layer

Int
er

fac
es

Go
ve

rn
an

ce

Users

Figure 2. The SOSE vision. Service providers publish their services to a federated cloud directory. Application developers dis-
cover and compose the services to build an application, which is delivered to users through the cloud.

COVER FE ATURE

COMPUTER 50

artifacts, such as application templates, user interfaces,
data schema, policies (including security policies), and
testing tools in a service directory cloud. This federated
service directory cloud could enable application develop-
ers to dynamically discover services in multiple distributed
servers and compose these services using SOA and virtu-
alization technologies.

Development with a
service-oriented architecture

SOSE applies SOA to software development life-cycle
stages, producing a cycle that includes not only the tradi-
tional requirements specification, design, and test phases,
but also service implementation, discovery, and composi-
tion. Application development in SOA is different from
software development approaches such as object-oriented
programming, component-based software development,
and aspect-oriented programming. The construction of
an application from smaller software components in
other software development methodologies is static and
manual and depends on the components’ technology and
platform. In contrast, service composition in SOA is au-
tomated through standard protocols and interfaces, and
thus does not depend on a specific technology or platform.
In addition, service development, service publishing, and
service composition (or application building) are parallel
processes in SOA.

The challenge for developing applications using SOA is
in addressing its distributed nature. Not only are the ser-

vices under development distributed
among different machines in various
locations, but the development process
is also distributed because the applica-
tion developers, service brokers, and
service providers work independently
in different locations. Hence, these three
stakeholders must collaborate through
well-defined standards and interfaces.
Figure 3 shows some key tasks and inter-
actions among these individuals.

As in other software development
methodologies, SOSE starts with re-
quirements engineering. During this
phase, the application developer devel-
ops a business model; works with the
customer to analyze, clarify, and refine
requirements; designs a workflow for
the business model; and decomposes
requirements.

The application developer then sends
each decomposed part of the require-
ments to the service broker to find
available services that satisfy these
requirements parts. After successfully

discovering all the needed services to satisfy each part,
the application developer selects the needed services for
all requirements parts and composes them into an applica-
tion, essentially the business model workflow.

If no services are available for some parts, the applica-
tion developer can register them in the service broker’s
directory and wait until the needed services are available.
From the service providers’ view, service development is
similar to what happens in other software development
processes, except that services must also comply with
standard protocols and interfaces.

Software development in SOSE is highly flexible be-
cause SOA makes it possible to publish and reuse not
only software services, but also numerous application
development artifacts. Application developers can pub-
lish business models, application templates (workflow
structures), requirements, services, application interfaces,
testing tools, testing scripts, and policies in a service bro-
ker’s directory, making them available for reuse. This
flexibility facilitates the rapid development of large-scale
distributed applications.

Delivery through cloud computing
Software engineering must address not only the soft-

ware development processes, but also the effective delivery
of the developed software to users, which includes soft-
ware deployment and maintenance. However, SOA does
not address how a developed application is to be delivered
to users or how service providers will effectively manage

Service
speci�cation

Service providersService brokersApplication developer

Service
implementation

Service
testing

Service
hosting

Requirements
discovery

Service
discovery

Requirements
analysis

Requirements
decomposition

Service
composition

Application
testing

Application
deployment

Public directory
or repository

(requirements,
service

description,
test scripts)

Service
discovery

Requirements
registration

Service invocation

Service
publishing

……

Figure 3. Interactions among an application developer, service brokers, and ser-
vice providers in SOSE. The challenge for developing applications using SOA is
to cope with the distributed nature of both the stakeholders and their activities,
which can be in different organizations and locations.

51OCTOBER 2011

the applications during runtime. Cloud computing can help
SOSE ensure effective application delivery by providing

 • easy application deployment and maintenance for
service providers through service virtualization,

 • interfaces to facilitate users’ access to and use of ap-
plications, and

 • QoS management for service providers through dy-
namic resource virtualization and allocation.

These features illustrate the power of combining SOA-
based development with cloud computing delivery.

APPLICATION DEVELOPMENT CHALLENGES
Achieving the vision of application development that

Figure 2 depicts requires new approaches to effective vir-
tualization and interoperability among SaaS, PaaS, and
IaaS. It also requires revisiting software engineering issues,
some of which are not new, but they are more severe in the
context of services and cloud computing. We have identi-
fied seven areas that pose major challenges for application
development using SOSE.

Confidentiality and integrity
In cloud computing, users have little control over data

processing and storage, which is on remote machines
that various service providers own and operate. Because
this data is unencrypted, there is a risk that service
providers or malicious users could disclose or alter it.
Although techniques exist for confidentiality protection,
they are not applicable to services and cloud computing
systems because they are designed to protect data from
malicious parties outside the systems. Services and cloud
computing systems have many service providers inside
the systems.

Thus, existing techniques for access control, identity
management, end-to-end data confidentiality, and integrity
assurance systems are not suitable. Although research is
already addressing software engineering techniques for
data confidentiality and integrity protection for services
and cloud computing systems,3,4 more work is needed in
this area.

Service reliability and availability
Because users’ businesses rely heavily on third-party

service providers, there are serious concerns about how
threats to service reliability and availability—from a
service provider’s unstable economic status to natural
disasters and cyberattacks—could affect a service and
consequently a cloud user’s business. To alleviate these
threats, service and cloud users should check their data
backup plan, system robustness, contingency and recovery
plans, end-of-service support, and incident history before
using a particular service.

Cyberattacks are a particularly serious threat. Services
and cloud computing systems rapidly and flexibly pro-
vide massive computing resources according to users’
demands. For the users, the computing capabilities and
resources often appear to be unlimited, since they are
available for purchase at any time and in any quantity.
However, cyberattackers also can buy huge amounts
of computing resources, enabling them to launch more
powerful cyberattacks. Attackers have already used the
Amazon EC2 and Google AppEngine clouds, for example.5,6

To address this problem, services and cloud service pro-
viders need effective software engineering techniques to
monitor and detect malicious user activities, as well as
for strict user authentication and access control.

Security in a multitenant environment
In multitenancy a single software instance runs on a

server that accommodates multiple users, or tenants. In
a multitenant architecture, an application virtually parti-
tions its data and configuration, and each user works with
a customized virtual application instance.

Services and cloud computing systems have multi-
tenancy because multiple users share the application and a
set of hardware. Security vulnerabilities are a major issue.
Service providers use hypervisors that mediate access be-
tween virtual machines and hardware, but some hardware,
such as CPU caches and GPUs, is not designed to offer
strong isolation properties for a multitenancy architec-
ture. Even virtual machine hypervisors can have flaws
that allow one user’s virtual machine to gain inappropriate
control over others.7 Recently, attackers have exploited nu-
merous hypervisor vulnerabilities to influence other users’
operations or to gain unauthorized data access.

Addressing these vulnerabilities requires developing
software engineering techniques for securing multitenancy
architectures in services and cloud computing systems,
such as techniques for isolating and monitoring virtual
machines.

Unknown risk profile
In services and cloud computing systems, users have

limited access to information about the internal system
architecture, software versions, configurations, opera-
tions, and security practices of service providers. This

Because users’ businesses rely heavily
on third-party service providers, there
are serious concerns about how threats
to service reliability and availability
could affect a service and consequently
a cloud user’s business.

COVER FE ATURE

COMPUTER 52

limited access might enhance usability, but it also has
serious implications for risk management. Risk manage-
ment in software engineering ensures that the application
developers identify and analyze threats to the application
development process and that they use appropriate
strategies to mitigate and control risks, such as failing
to complete projects within the specified schedules and
budget constraints and not meeting user requirements.

Because application developers lack information about
the internal systems beneath the virtualized abstraction
layer, they might not be able to conduct appropriate risk
management. To address this problem, developers should
ask service providers for three items:8

 • partial or full disclosure of software design or infra-
structure details;

 • disclosure of applicable logs and data, such as net-
work intrusion logs, anomaly detection logs, and
security events logs; and

 • disclosure of details of security policies and enforce-
ment mechanisms.

Having these items will not eliminate risk, but the informa-
tion should lead to much more effective risk management.

Quality-of-service monitoring
In services and cloud computing systems, managing

a variety of QoS requirements is extremely difficult be-
cause numerous application developers are dynamically
composing services over networks to form multiple work-
flows, and various providers with different techniques and
policies are managing the services. Consequently, the QoS
features of all services are tightly interrelated, and there
are tradeoffs among them.

Features like throughput and service delay rely on
system resource allocation at the applications’ runtime.
Often, the same server hosts multiple services, which
compete for the server’s CPU time, memory, and network
bandwidth. In addition, service compositions, server re-
source status, workflow priorities, and QoS requirements
are usually changing dynamically at runtime.

For these reasons, satisfying the QoS requirements of
multiple workflows requires having effective techniques
to adaptively allocate system resources to each service. To
manage multiple QoS properties for such systems, services
and cloud computing systems need situational awareness,
context analysis and QoS estimation, and optimal resource
allocation.9-11

Mobile computing
Services are available over networks, and users or

programs on a range of devices—desktops, laptops, smart-
phones, tablets, and PDAs—can access the services on the
networks at any time or in any location through standard

protocols. Because identity theft and service hijacking are
major threats, mobile services and cloud computing pro-
viders need rigorous software engineering techniques to
secure ubiquitous access to services and data.

Legal issues
Those who use services and cloud computing systems

do not know their data’s exact physical locations because
data processing and storage is often at unspecified geo-
graphic locations, both domestic and foreign. Legally, each
location has a different jurisdiction. Service providers in
foreign countries might not always guarantee regulatory
compliance, such as protecting privacy, backing up data,
or providing an audit trail. They might not be willing to
assume liability for security incidents or for the failure to
meet data backup requirements or to provide audit trails.
They also might not protect intellectual property according
to compliance standards.12

Application developers who establish SLAs with service
providers need to check if the providers will commit to
storing and processing data in specific jurisdictions, and if
they will make a contractual commitment to comply with
all regulatory requirements and liabilities in publishing
and managing applications.

A lthough services computing and cloud computing
have great promise in meeting the increasingly
severe requirements of dynamic application devel-

opment and use, fully realizing this potential requires
some kinds of application development structure. Soft-
ware engineering can help combine these computing
paradigms and harness their considerable advantages
for application development. Although many challenges
remain in moving this idea from vision to implementa-
tion, the benefits of such an environment should serve to
motivate the software engineering research that can meet
those challenges.

Acknowledgments
The work described in this article was partially supported by
the National Science Foundation under grant CCF-0725340.

References
 1. Y. Chen and W.-T. Tsai, Service-Oriented Computing and

Web Data Management: From Principles to Development,
Kendall Hunt, 2010.

 2. K. Channabasavaiah, E. Tuggle, and K. Holley, “Migrat-
ing to a Service-Oriented Architecture,” 16 Dec. 2003;
www.ibm.com/developerworks/webservices/library/
ws-migratesoa.

 3. S.S. Yau and H.G. An, “Confidentiality Protection in Cloud
Computing Systems,” Int’l J. Software Informatics, vol. 4,
no. 4, 2010, pp. 351-365.

53OCTOBER 2011

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

 4. Y. Zhu et al., “Dynamic Audit Services for Outsourced
Storage in Clouds,” to be published in IEEE Trans. Services
Computing, 2011.

 5. L. Whitney, “Amazon EC2 Cloud Service Hit by Botnet,
Outage,” CNET News, 11 Dec. 2009; http://news.cnet.
com/8301-1009_3-10413951-83.html.

 6. “Google Cloud Platform Used for Botnet Control,” Info Se-
curity, 10 Nov. 2009; www.infosecurity-us.com/view/5115/
google-cloud-platform-used-for-botnet-control.

 7. C. Li, A. Raghunathan, and N. Jha, “Secure Virtual Machine
Execution under an Untrusted Management OS,” Proc.
IEEE 3rd Int’l Conf. Cloud Computing (CLOUD 10), IEEE CS
Press, 2010, pp. 172-179.

 8. Cloud Security Alliance, “Top Threats to Cloud Comput-
ing V1.0,” Mar. 2010; https://cloudsecurityalliance.org/
topthreats/csathreats.v1.0.pdf.

 9. S.S. Yau et al., “Automated Situation-Aware Service Compo-
sition in Service-Oriented Computing,” Int’l J. Web Services
Research, vol. 4, no. 4, 2007, pp. 59-82.

 10. S.S. Yau et al., “Rapid Development of Adaptable Situation-
Aware Service-Based Systems,” Web Services Research for
Emerging Applications: Discoveries and Trends, L.-J. Zhang,
ed., Information Science Reference, IGI Global, 2010, pp.
104-139.

 11. S.S. Yau et al., “Toward Development of Adaptive Service-
Based Software Systems,” IEEE Trans. Services Computing,
vol. 2, no. 3, 2009, pp. 247-260.

 12. B.T. Ward and J.C. Sipior, “The Internet Jurisdiction Risk of
Cloud Computing,” Information Systems Management, vol.
27, no. 4, 2010, pp. 334-339.

Stephen S. Yau is the director of Arizona State Univer-
sity’s Information Assurance Center and a professor of
computer science. His research interests include software
engineering, cybersecurity, distributed computing systems,
service-based computing, and cloud computing systems.
Yau received a PhD in electrical engineering from the Uni-
versity of Illinois at Urbana-Champaign. He is a Life Fellow
of IEEE and a Fellow of the American Association for the
Advancement of Science. Contact him at yau@asu.edu or
at http://dpse.asu.edu/yau.

Ho G. An is a PhD student in the School of Computing,
Informatics and Decision System Engineering at Arizona
State University. His research interests include services and
cloud computing, security, and privacy. An received an MS
in computer science from Arizona State University. Contact
him at ho.an@asu.edu.

 New Software Engineering & Programming
Titles from Morgan Kaufmann

Scan this QR code to view all
MK’s Software Engineering &

Programming Titles!

Engineering a
Compiler,
2nd Edition

Keith Cooper & Linda
Torczon
ISBN: 9780120884780 | $89.95
A classic introduction to
compiler construction fully
updated with new techniques
and practical insights.

An Introduction to
Parallel Programming

Peter Pacheco
ISBN: 9780123742605 | $79.95
The first true undergraduate
text in parallel programming,
covering OpenMP, MPI, and
Pthreads.

Semantic Web for the
Working Ontologist,
2nd Edition
Effective Modeling in RDFS and OWL

Dean Allemang & James
Hendler
ISBN: 9780123859655 | $54.95
The bestselling practitioner’s
guide to the semantic web,
updated with the latest
developments in technologies
for building useful and reusable
models and applications.

CUDA Application Design
and Development

Rob Farber
ISBN: 9780123884268 | $49.95
A roadmap for developers facing
the challenge of developing
applications to effectively use
GPUs with CUDA to achieve
efficiency and performance
goals.

Tcl/Tk, 3rd Edition
A Developer’s Guide

Clif Flynt
ISBN: 9780123847171 | 69.95
Want to take your
programming to the next
level? Get Tcl/Tk: A Developer’s
Guide, Second Edition.” —
Cameron Laird, Vice President
of Phaseit, Inc.

COmInG
SOOn!

mkp.com
Prices subject to change.

20111363_AD_IEEEAD_077_1200.indd 1 9/14/11 9:06 AM

