Deterministic Recurrent Communication and Synchronization in Restricted Sensor Networks

A. Fernández Anta M. A. Mosteiro Christopher Thraves

ASAP Research team IRISA/INRIA Rennes

ALGOSENSORS 2010



Introduction

2 Model and Problem Definition

3 Our Solution

4 Open Problems

Introduction

Capabilities

- processing
- sensing
- communication

University of California, Berkeley and Intel Berkeley Research Lab.

- range
- memory
- life cycle

PicoBeacon
Berkeley Wireless Research Center

Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Capabilities

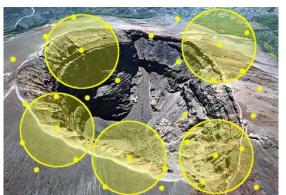
- processing
- sensing
- communication

- range
- memory
- life cycle

Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle



Capabilities

- \bullet processing
- sensing
- communication

- range
- memory
- ullet life cycle

Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Model and Problem Definition

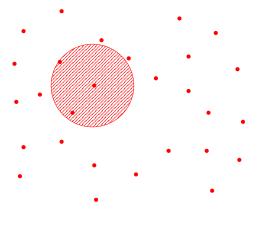
Model and Problem Definition

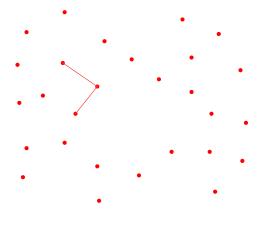
- Deployed at random in the area of interest.
- Unique identification number (ID) in $\{0, 1, 2, \dots, n-1\}$.
- Limited communication range (transmission = reception)
 - \Rightarrow nodes can duplicate their communication range.
- \bullet n, k and D are known by all the nodes in the system.

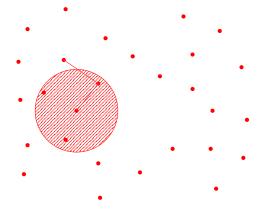
- Deployed at random in the area of interest.
- Unique identification number (ID) in $\{0, 1, 2, \dots, n-1\}$.
- Limited communication range (transmission = reception)
 - \Rightarrow nodes can duplicate their communication range.
- \bullet n, k and D are known by all the nodes in the system.

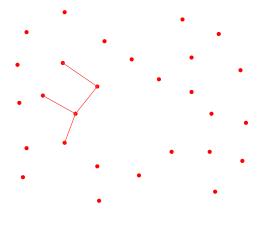
- Deployed at random in the area of interest.
- Unique identification number (ID) in $\{0, 1, 2, \dots, n-1\}$.
- Limited communication range (transmission = reception)
 - \Rightarrow nodes can duplicate their communication range.
- \bullet n, k and D are known by all the nodes in the system.

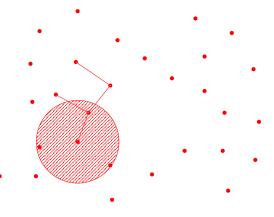
- Deployed at random in the area of interest.
- Unique identification number (ID) in $\{0, 1, 2, \dots, n-1\}$.
- Limited communication range (transmission = reception)
 - \Rightarrow nodes can duplicate their communication range.
- \bullet n, k and D are known by all the nodes in the system.

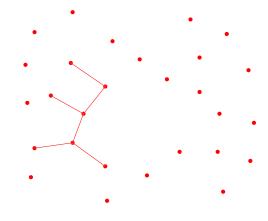


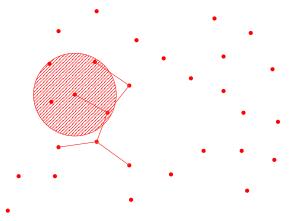


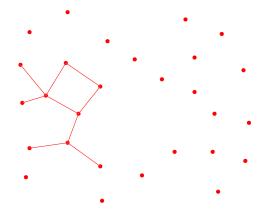


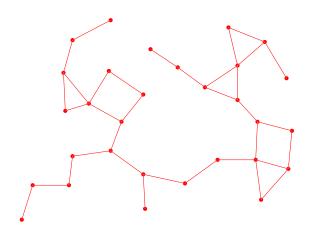












- Time is assumed to be slotted (steps).
- Each transmission occurs in a given slot.
- The slots of all nodes are in phase.
- Availability of a hardware clock mechanism: LOCAL-CLOCK.

- Time is assumed to be slotted (steps).
- Each transmission occurs in a given slot.
- The slots of all nodes are in phase.
- Availability of a hardware clock mechanism: LOCAL-CLOCK.

- Time is assumed to be slotted (steps).
- Each transmission occurs in a given slot.
- The slots of all nodes are in phase.
- Availability of a hardware clock mechanism: LOCAL-CLOCK.

- Time is assumed to be slotted (steps).
- Each transmission occurs in a given slot.
- The slots of all nodes are in phase.
- Availability of a hardware clock mechanism: LOCAL-CLOCK.

Node Reliability

Nodes may fail, **BUT**:

- \Rightarrow the network stays connected (one connected component) at all times
 - \Rightarrow the first node awakened is always awake
- \Rightarrow each period when a node runs without failures lasts at least the length of the stabilization time.

Node Reliability

Nodes may fail, BUT:

- \Rightarrow the network stays connected (one connected component) at all times
 - \Rightarrow the first node awakened is always awake
- \Rightarrow each period when a node runs without failures lasts at least the length of the stabilization time.

Node Reliability

Nodes may fail, BUT:

 \Rightarrow the network stays connected (one connected component) at all times

 \Rightarrow the first node awakened is always awake

 \Rightarrow each period when a node runs without failures lasts at least the length of the stabilization time.

Node Awakening

Definition

A τ -adversary is an adversary that awakens all the nodes of the network within a window time of size τ , i.e., no node is awakened at a time $t \geq \tau$. Additionally, a τ -adversary does not recover crashed nodes. The parameter τ is assumed known by the nodes.

Definition

An ∞ -adversary is an adversary that has no restriction on when nodes are awakened.

DRC Problem

Definition

A distributed protocol solves the deterministic recurrent communication (DRC) problem if it guarantees that, for every step t and every pair $(u, v) \in E$, there is some step $t' \ge t$ such that, in step t', v receives an application message from u.

Why Deterministic Communication?

- Only one channel of communication
 - ⇒ must deal with collision of transmissions!

Popular solution \rightarrow random protocols.

- BUT scarcest resource is energy and
 - random protocols \Rightarrow redundant transmissions!.
 - \Rightarrow deterministic protocols may help.

Why Deterministic Communication?

- Only one channel of communication
 - ⇒ must deal with collision of transmissions!

Popular solution \rightarrow random protocols.

- BUT scarcest resource is energy and
 - random protocols \Rightarrow redundant transmissions!
 - \Rightarrow deterministic protocols may help.

Why Deterministic Communication?

- Only one channel of communication
 - ⇒ must deal with collision of transmissions!

Popular solution \rightarrow random protocols.

• BUT scarcest resource is energy and

random protocols \Rightarrow redundant transmissions!.

 \Rightarrow deterministic protocols may help.

Why Deterministic Communication?

- Only one channel of communication
 - ⇒ must deal with collision of transmissions!

Popular solution \rightarrow random protocols.

• BUT scarcest resource is energy and

random protocols \Rightarrow redundant transmissions!.

 \Rightarrow deterministic protocols may help.

- Sensor Networks application: monitor physical phenomena.
 - \Rightarrow protocols must guarantee communication infinitely many times.
- Optimization criteria:
 - 1) low energy cost.
 - 2) short delay between transmissions

- Sensor Networks application: monitor physical phenomena.
 - \Rightarrow protocols must guarantee communication infinitely many times.
- Optimization criteria:
 - 1) low energy cost.
 - 2) short delay between transmissions.

- Sensor Networks application: monitor physical phenomena.
 - \Rightarrow protocols must guarantee communication infinitely many times.
- Optimization criteria:
 - 1) low energy cost.
 - 2) short delay between transmissions.

- Sensor Networks application: monitor physical phenomena.
 - \Rightarrow protocols must guarantee communication infinitely many times.
- Optimization criteria:
 - 1) low energy cost.
 - 2) short delay between transmissions.

Related Work

Message passing:

[ABLP'92] Each node receives from all neighbors in $O(k^2 \log^2 n / \log(k \log n))$. \rightarrow synchronous start. $\omega(1)$ -degree bipartite-graphs requiring $\Omega(k \log k)$. \rightarrow not embeddable in GG.

• Broadcast & gossiping:

 $[{\rm CGR'00,\ CGOR'00,\ CR'03,\ CGGPR'02}] \to {\rm synchronous\ start,\ global\ clock,\ etc.}$

• Selection

[Kowalski'05] Static, $\exists O(k \log(n/k)), +[I'02]: O(k \text{ polylog } n). \rightarrow$ synchronous start. Dynamic $O(k^2 \log n). \rightarrow$ nodes turn off upon succ. transmission.

• Selective families:

```
[I'02] \exists (k,n)-selective families of size O(k \text{ polylog } n).

[DR'83] (m,k,n)-selectors must be \Omega(\min\{n,k^2\log_k n\}) when m=k.

[DBGV'03] (k,k,n)-selectors must be \geq (k-1)^2\log n/(4\log(k-1)+O(1)) and \exists (k,k,n)-selectors of size O(k^2\ln(n/k)).

All \rightarrow synchronous start.
```

Our Solution

- Synchronization phase.
- Coloring phase.
- Aplication phase.

- Synchronization phase.
- Coloring phase.
- Aplication phase.

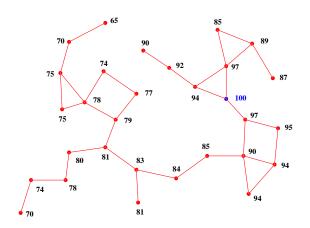
- Synchronization phase.
- Coloring phase.
- Aplication phase.

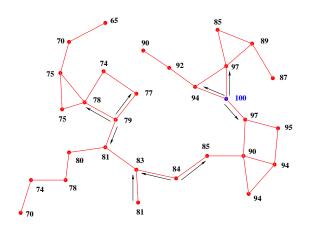
- Synchronization phase.
- Coloring phase.
- Aplication phase.

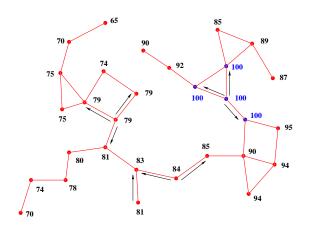
The Synchronization Problem

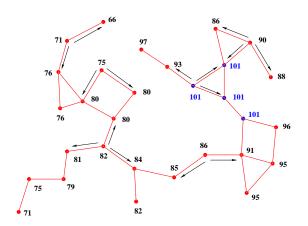
Definition

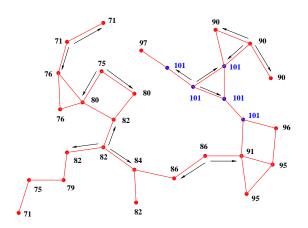
We say that a protocol solves the $synchronization\ problem$ if there exists a time t from which the protocol guarantees that the network is synchronized at all times after t, and every node that awakes eventually gets synchronized. The maximum time between a node awaking and getting synchronized is the $synchronization\ time$ of the protocol.

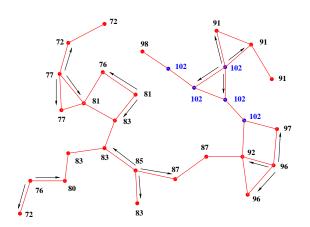


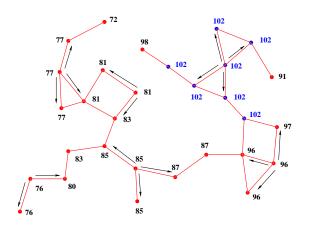


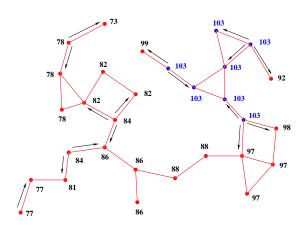


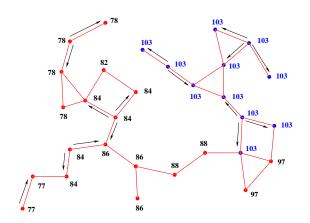


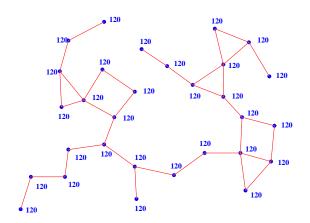








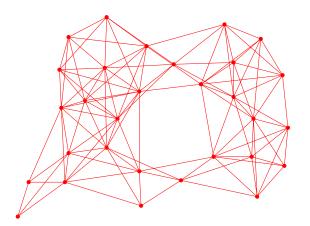


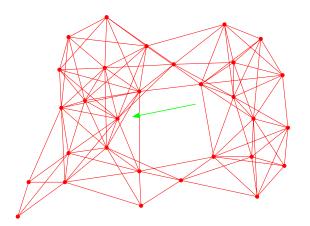


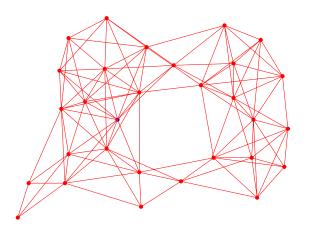
Synchronization Result

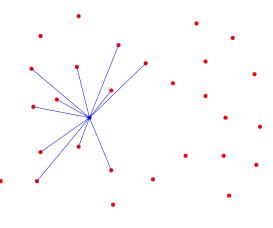
Theorem

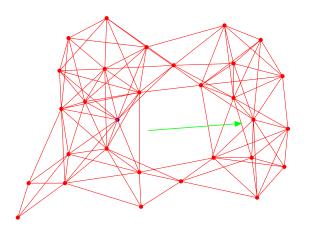
The synchronization phase solves the synchronization problem under any ∞ -adversary with synchronization time $T_1 + T_2$, where $T_1 = 3n^2 + 2nT$ and $T_2 = 2nT$.

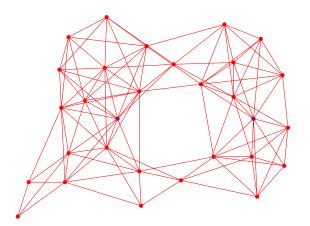


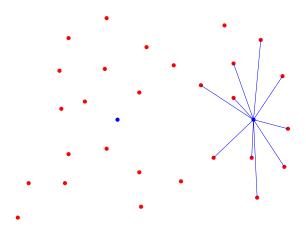


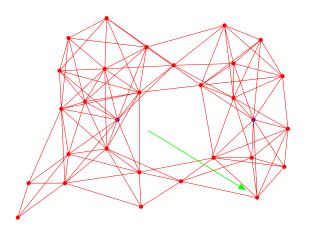


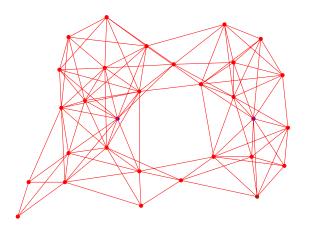


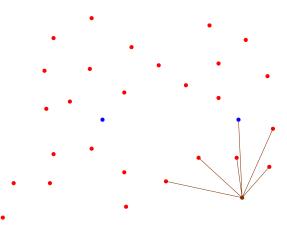


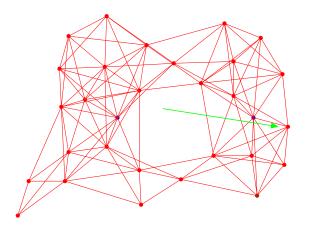


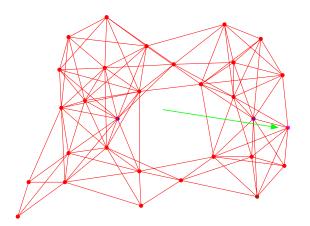


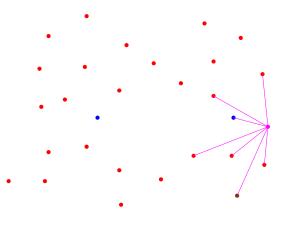




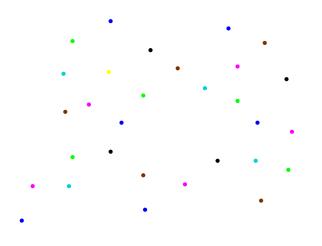


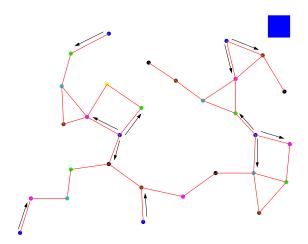


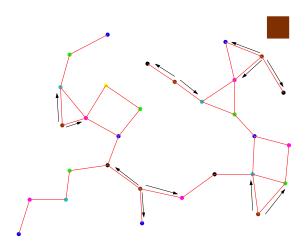


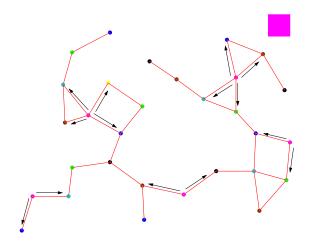


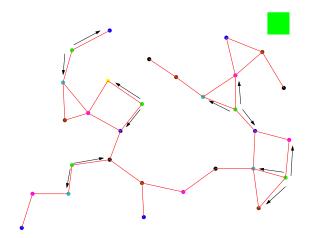
Coloring Phase

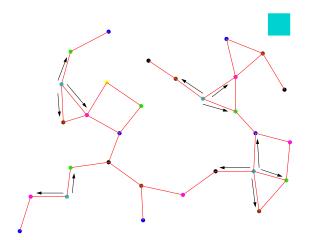


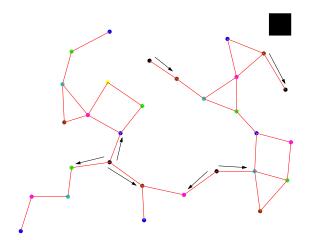


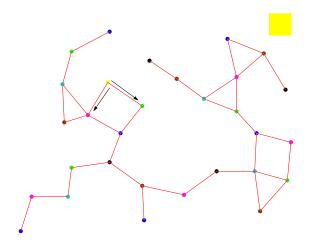












Our Results

Theorem

Given a Sensor Network of n nodes, the protocol presented solves the DRC problem under a τ -adversary with stabilization time at most $D \cdot T + \tau + n$, where T is the delay of the ORC protocol. The delay of this DRC protocol is 19(k+1) which is asymptotically optimal, and the message complexity is 0 which is optimal.

Theorem

Given a Sensor Network of n nodes, upon being woken up by a ∞ -adversary, the protocol presented solves the DRC problem under an ∞ -adversary with stabilization time at most $6n^2 + 4nT + 4n$, where T is the delay of the ORC protocol. The delay of this DRC protocol is 38(k+1) and the message complexity is 19(k+1)/n, which are both asymptotically optimal.

pen Problems

Open Problems

Open Problems

- Reduce the stabilization time.
- How to merge disconnected components
 - \Rightarrow extend the failure model.

Open Problems

- Reduce the stabilization time.
- How to merge disconnected components
 - \Rightarrow extend the failure model.

Thank you