

madrid institute for advanced studies

Station Assignment with Applications to Sensing

Antonio Fernández Anta

Dariusz R. Kowalski (U. of Liverpool)

Miguel A. Mosteiro (Kean U. & U. Rey Juan Carlos)

Prudence W. H. Wong (U. of Liverpool)

Developing the

Science of Networks

Motivation: Sample Scenarios • Health monitoring system: - Patients with sensors of physiological data

- Data periodically uploaded via one of a set of base stations
- The set of base stations changes as the patient moves around
- Participatory sensing: Mobile users that periodically sense their environment and send the data

- We model these systems as dynamic clients that transmit periodically via base stations
- Time is assumed to be slotted
- Each base station s has a bandwidth B
- A client c has
 - A life interval T_c (when the client is active)
 - A stations group S_c (the stations in range)
 - A laxity w (transmission periodicity)
 - A bandwidth b_c (requested to the station)

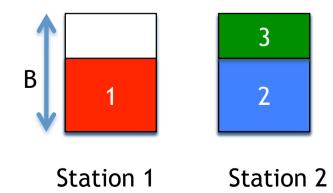
Station Assignment Problem

- The problem is how to assign to every client c
 - Slots in which c transmits
 - For each such slot, a station in S_c to which transmit
- Such that
 - -Client c transmits at least once every w slots in T_c
 - -No station is overloaded in any slot. I.e., for each s and every slot, the bandwidth of all the clients that send to s in the slot is at most B

- Client churn is controlled by an adversary
- The problem has no solution unless restricted:
 - No client has bandwidth $b_c > B$
 - -For every set C' of clients and all time intervals T, the bandwidth required by the clients in the interval is at most a fraction $\rho>0$ of the capacity of the stations of C' (allowing some burstiness $B\geq 0$):

$$\sum_{c \in C'} b_c \frac{|T_c \cap T|}{w} \le |T||S(C')|\rho B + \beta$$

– We call this (ρ, \mathcal{B}) -admissibility.


Admissibility

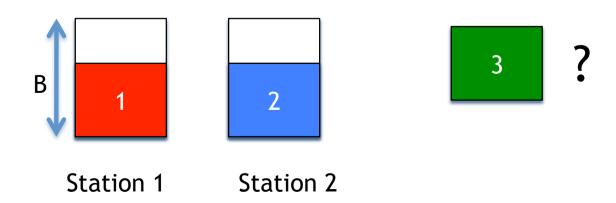
$$\sum_{c \in C'} b_c \frac{|T_c \cap T|}{w} \le |T||S(C')|\rho B + \beta$$

• Permanent clients, B=0, w=1

$$\sum_{c \in C'} b_c \le |S(C')| \rho B$$

Ex.: 3 clients, 2 stations, $b_1 = b_2 = 2B/3$, $b_3 = B/3$; and $S_1 = \{1\}$, $S_2 = S_3 = \{1,2\}$, admissible if $\rho = 1$

Admissibility and Solvability


Admissibility different from solvability!!

Permanent clients, B=0, w=1

$$\sum_{c \in C'} b_c \le |S(C')| \rho B$$

Ex.: 3 clients, 2 stations, $b_1 = b_2 = b_3 = 2B/3$; and $S_1 = \{1\}$, $S_2 = S_3 = \{1,2\}$, admissible if $\rho = 1$

But has no solution!!

- Similar work explores load balancing problem, minimizing largest station load:
 - [Alon et al, 1997] for offline problem: approximation
 - [Azar et al, 1994] for online problem: *competitive* analysis
- We are not aware of work the explores this problem with a restricted adversary
- Similar adversarial model used is scheduling in wired [Borodin et al, 2001] and wireless networks [Andrews Zhang, 2005] [Chlebus et al, 2006]

- Definition of the Station Assignment Problem
- Threshold of B for solvability of offline versions
 - All clients have same bandwidth, station group and life interval:

$$\beta \le mwB \left(\frac{n/(mw)}{\lceil n/(mw) \rceil} - \rho \right)$$

- All clients have same station group and life interval:

• No
$$\beta > mB(1/m+1/2-\rho)$$

• Yes
$$\beta < mB(1/2-\rho)$$

-General case:

$$\beta \leq mwB(1/(mw) - \rho)$$

- Threshold of B for solvability of online versions when client assignments are irrevocable
 - -All clients permanent and same $b_c \ge \rho B$, and w=1

$$\rho \le 1/(1+\sqrt{2m}) \land \beta < \rho B$$

- Life interval of client is known upon arrival and b_c =1 $\beta > mB(1/\ln m - \rho)$

-General case $(b_c=1)$

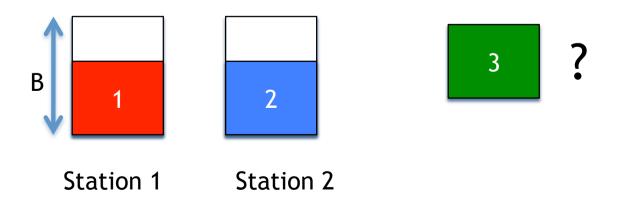
• Deterministic
$$\beta > mB \left(1/\sqrt{2m} - \rho \right)$$
• Randomized
$$\beta > mB \left(3/\sqrt{2m} - \rho \right)$$

• Randomized
$$\beta > mB\left(3/\sqrt{2m} - \rho\right)$$

(Bounds for β yield bounds for ρ)

Same Bandwidth, Stations, Life Interval

- Thm: If $\beta>mwB\left((n/(mw))/\lceil n/(mw)\rceil-\rho\right)$ for $n=\lceil(mwB\rho+\beta)/B\rceil$ no algorithm can solve the Station Assignment Problem
- Proof: Assume all clients have life interval w. Hence each must transmit once. Setting their bandwidth to $b=(mwB\rho + B)/n$, the set of clients is admissible.


By pigeonhole, some slot and station needs bandwidth $\lceil n/(mw) \rceil b > B$

Example

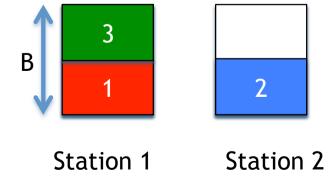
• Let
$$m$$
=2, w =1, ρ =1, β = ϵ . Then
$$n = \lceil (mwB\rho + \beta)/B \rceil = 3$$

- The 3 clients have $b=(mwB\rho + B)/n = (2B+\varepsilon)/3$ and $S_c=\{1,2\}$
- Admissible: $\sum_{c \in C'} b \leq |S(C')| \rho B + \beta = 2B + \varepsilon$ But has no solution!!

Same Bandwidth, Stations, Life Interval

- Thm: If $\beta \leq mwB\left((n/(mw))/\lceil n/(mw)\rceil \rho\right)$
 - the algorithm that spreads clients evenly over stations in each interval of w slots solves the Station Assignment Problem
- Proof: The most loaded station in the most loaded slot requires bandwidth $\lceil n/(mw) \rceil b$ By admissibility with |T|=w, we have $nb \le mwB\rho + B$.

Using this and the bound on \mathcal{B} , the largest load is at most B



• Let m=2, w=1, n=3. Then, to have

$$\beta \leq mwB\left((n/(mw))/\lceil n/(mw)\rceil - \rho\right)$$

we must have $\rho \le 3/4$ and, e.g., $\beta = 0$

- The 3 clients can have $b=(mwB\rho + B)/n=B/2$ and $S_c=\{1,2\}$ and still be admissible
- Solvable

- The Station Assignment Problem is a new challenging problem
- Seems to be useful in environments where access to transmission wants to be guaranteed
- Some results for offline and online versions

Open Problems

- Many open problems!!
- Distributed protocols?
- Migration of clients?
- Handover?
- Room for generalization of the model (e.g., stations with different bandwidth, clients with different laxity)

