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Virtual Machines and Physical Machines

 We consider a data center with m physical
machines (PM)
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* Virtual machines (VM) are executed in the PMs
* All PM are similar and have a capacity C

* The power consumed by a PM is a function of its
load
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# « Each VM is permanently assigned to a PM
| - Each VM d; has a load ((d,)

Ines to

gl - No PM can be overloaded
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Virtual Machine Assignment Problem (VMA)
* Where to assign an incoming VM in a power-
efficient way?
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Power Consumption Model

* Power consumption of a PM
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Objective Function

e Given the cost function

(

15-07-2014

0 r =0

flz) =3 puxr® +6 x>0
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- We want to find a partition of the set of VMs
that minimizes
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- Ly(m) is the aggregated load in the ith PM imposed by =

- P(m) denotes the power consumed by the partition
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Virtual Machine Assignment Problem (VMA)
* Variants of VMA:
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(C.,m)-VMA (-,m)-VMA

Limited Capacity Unlimited Capacity

E : Finite number of servers Finite number of servers
s 2

= (C.)-VMA (-,1)-VMA

gng Limited Capacity Unlimited Capacity

4 2 Unbounded number of Unbounded number of
servers servers

ines to;

¥*#M - Each variant can be offline or online
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Related Work

* Large body of work on consolidation, usually
using different power consumption model or not

considering energy at all.
» [Alon97, Alon98]: PTAS for the L, norm problem
with p=1 and for other more general functions.

» [Epstein04]: Extension of [Alon97,Alon98] for
the uniformly related machines case.

| - [Srik08]: Energy efficient VMA is not a mere
packing problem.
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Optimal Load and Power

* There is an optimal load per PM and a
corresponding optimal power
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v = (b/(a — 1) = p* = f(z*)/a*

Lemma 1 Given an instance of the VMA problem with a set of VMs
D ={dy,...,dn}, any solution m = {Ay,..., Ay} where } ;4 d # z*

for some i € [1,m], satisfies

P(r) > p*l(D) = p* ) " 1(d).
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Understanding the Optimal Load

Observation 1 The optimal load is x* = (b/(a — 1))1/ “ . Additionaly, for any
x #£ ¥, f(x)/x > ¢
% x* = 07264
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Contributions

B[ T e P

NP-Completeness
(decision prob.)

<+
3
o
Qi
N
N
Ln
R

Tg NP-Hardness X X X
S Offline x*xC X
NS
S UB x*<C X
G = . PTAS PTAS
Feh  Offline  x™2C X
%”g LB x*<C X
<O
G s s Onl‘ine x*>C X N/A N/A N/A
2 UB x*<C X X X X
, x*>C X X N/A N/A N/A
Online LB
x*<C X X X X X
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Contributions

VMA r* < C >0
< subprob.
S a—1+(2/3)« a—1+(2/3)¢
A (C,) p> §o i@l p> Sa-l/3)
5 offline p—
A (1+e+—+ ) p<ltet i1
(3/2)2%—1 C*+2b
(C’.') e T P 2 max(C%.2(CT2) ]
N online Do — 0
feo] p=11 =0, else 2% 1 C
= (1-10-2) (24 ) p< % (1t aim) 2+ a5) p<
=G ps 7Ds)
SR :
v (3/2)2% -1 C*+2b
Ha o (C,m) p2 HaT— [ b+max{C%,2(C/2)*+b}
O online
-IE‘ ©
(¢B) E () p> (3/2)2% -1
E oéline = 20-1 not applicable
O
gn‘; p=1if Dy = (), else
w2 o
é’t’ & p< (1__(1__)) <2+£(Ds)>
e @ (-,m) (3/2)20-1 3@ .
Cay >
i online p > max{ 5, 55} not applicable
S q) ' N
== p<O(@) In[?]
B 6 ' (3/2)2%—1
A AN > -1 3 > U
(T) fEU (+,2) p > max{z; 2"“’ 20—-1 2“+2+6} P= not applicable
&8 online 1 o a _
5 p=1if{(D) < /b/(2> — 2), else <9
o p§max{2,(%)a_l} -4

Table 1: Exact values correspond to o« = 3, b = 2, and C = 2 on the left and C' = 1

|ﬁaea on the right.
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Offline Problems

The decision version of (C,m)-VMA is NP-complete

— Directly from 3-partition

(C,+)-VMA, (-,m)-VMA and (-,-)-VMA are strongly NP-
hard

— Reduction from 3-partition:
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* VMA instance with m PMs, 3m VMs and m-x* total load.
« Assign 3 VMs to each PM such that the total load in each PM is x*

(C,:)-VMA, (-,m)-VMA and (-, -)-VMA have no FPTAS
(Fully Polynomial-Time Approximation Scheme)

There exists a PTAS for (-,:)-VMA and (-,m)-VMA
— Directly from [Epstein2004]
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Online Problem: Lower Bounds

Theorem 6 There exists an instance of problems (-,-)-VMA, (-,m)-VMA, (C,-)-VMA
and (C,m)-VMA when C > z*, such that no online algorithm can guarantee a competitive

eV iale R

— Assume we have VMs of size ex*
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*

*
— An adversary starts injecting VMs, which ar EXTEXTH ihe [§X) PM,
until the algorithm opens a second PM with the kth VM.
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Online Problem: Upper Bounds

Algorithm 1: Online algorithm for (-, -)-VMA and (C,-)-VMA problems.
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for each VM d; do

if ((d;) > 2M22CL then

| d; is assigned to a new PM
else

d; is assigned to any loaded PM s, where £(A;) < min{‘;*’o}. If
such loaded PM does not exist, d; is assigned to a new PM

Theorem 10 There exists an online algorithm for (-,-)-VMA and (C,-)-VMA
when x* < C that achieves the following competitive ratio:

Physical Machines
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p =1, if no VM d; has load such that l[(d;) < x*,
i < (1 — é (1 — 2%)) (2 -+ e(xjﬁ) , otherwise.

ines t0

Theorem 11 There exists an online algorithm for (C,-)-VMA when x* > C

that achieves competitive ratio p < %b (1 + m> (2 + %).
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Online Problem: Upper Bounds

* |Intuition

* VMs of load larger than x*/2 go alone in one PM

* VMs with load < x*/2 are assighed to the most loaded PM with
load < x*/2

 There can be one PM with load < x*/2
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Conclusions

* It is possible to obtain bounds for multiple
versions of the VMA problem
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* Many variants to be studied
— Hetereogenity of servers
— Migration of VM between PMs at a cost

— VM that arrive and depart
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— VM that chage their load over time
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— Multi-resource scheduling, where the load is not only
given by CPU load
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Thank you!!
Questions?
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Preliminary Claims

Lemma 1 Consider two solutions m = {A1,..., Ap} and 7’ = {A},... A}
of an instance of the VMA problem, such that for some x,y € [1,m] it holds
that: Ay # 0 and Ay # 0; AL, = A, UA,, A} =0, and A; = A}, for all i #
and i #y; and [(Az) + 1(Ay) < min{z*,C}. Then, P(7") < P(r).

Intuition:

— Depending on their load, it might be better to put VMs in the same (different) PM
rather than combining (dissociating) them.

Lemma 2 Consider two solutions m = {A1,..., Apn} and 7" = {A},..., A}

of an instance of the VMA problem, such that for some x,y € [1,m] it holds

that: A, UA, = AL UA,, while A; = A3, for all x # i # y; none of Ay, Ay, A},

and A, is empty; and |[((A;) — L(Ay)| < [L(A}) — £(A;)]. Then, P(r) < P(r').
Intuition

— PMs with unbalanced load consume more energy than PMs with the same
aggregated load evenly distributed among them.

Corollary 1 (short)”...power consumption is lower bounded by the power of
the (maybe unfeasible) solution that balances the load evenly, i.e.,

P(r) > kb+ k(E/k)>...7



Offline Problem
* Bounds on the approximability of (C,-)-VMA

%
)
S Theorem 3 No algorithm achieves an approrimation ratio smaller than
i 14 (2)™

% 2 2(3) for the (C,-)-VMA problem unless P = NP.

Theorem 4 For every € > 0, there exists an approzimation algorithm for the (C )-VMA

problem when x* > C' that achieves an approzimation ratio of p < 1+¢ + & —+ = _, where m
is the minimum number of PMs required to allocate all the VMs.

Theorem 5 For every e > 0, there exists an approzimation algorithm for the (C,-)-VMA

T (4o + 7 )45,
where m* is the number of PMs used by the optimal solution of (C,-)-VMA, and m is the

minimum number of PMs required to allocate all the VMs without exceeding load x* (i.e., the

= 0 tzmal solution of the bin packing problem,).
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— LB: Based on the partition problem

— UB when x*>C: Optimal solution is lower bounded by a evenly balanced load
among the optimal number of PMs (optimal bin packing solution)

— UB when x*<C: Optimal number of PMs considering Bin Packing with bins of size x*
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Online Problem: Lower Bounds

Theorem 7 There exists an instance of problems (C,-)-VMA and (C,;m)-VMA when
C' <" such that no online algorithm can quarantee a competitive ratio smaller than

(C* +2b)/(b+ max(C*, 2(C/2)* +b)).
e |Intuition
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— Consider the same adversarial injection strategy with VMs of size
eC

; ‘:‘3 — This time, the thresholds for k and the resulting ratios are:
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s 1 . C*42b

k> = p(k) =

2(5)"+2b

— Which, combined, throw the result from Theorem 7.
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Online Problem: Lower Bounds

Theorem 8 There exists an instance of problem (-, m)-VMA such that no online algorithm

can guarantee o competitive ratio smaller than 3/ (2972 4 ¢) for any € > 0.
* Intuition

Input m VMs of load Bz* [PX®
If 2 oPrdieePRiz éré%&%@eﬁ{@F 1)/8°

I D I e B B I B BN R B B B B

U O R O O N O 1 N

[ [ (e I [ [ I
else: we input another set of & VMs of size 23x* 2px*
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Online Problem: Lower Bounds

Theorem 9 There exists an instance of problem (-,2)-VMA such that no online
algorithm can quarantee a competitive ratio smaller than 3¢ /2071,

* Intuition
Input 2 VMs of size 6x*

6Xx*

ox*

If they are assigned to the same server, we stop
i B

— 1

than
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Else, we input a 12x* load VM
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Online Problem: Upper Bounds

Algorithm 2: Online algorithm for (-,2)-VMA.

for each VM d; do
if 1(d;) + (A7) < (b/(2% = 2))Y or 1(A1) < I(A2) then

d; is assigned to s
else
d; is assigned to so
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Theorem 12 There exists an online algorithm for (-,2)-VMA that achieves the
following competitive ratios.
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Online Problem: Upper Bounds

* |Intuition

— There are 3 phases
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1) L< (QQZ’_Q) * L — Total Load

1 1
2) (355)" <L<2(35)"
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