

Power-efficient Assignment of Virtual Machines to Physical Machines

Antonio Fernández Anta

Joint work with Jordi Arjona Aroca, Miguel A. Mosteiro, Christoper Thraves, Lin Wang

Developing the

Science of Networks

Virtual Machines and Physical Machines

- We consider a data center with m physical machines (PM)
- Virtual machines (VM) are executed in the PMs
- All PM are similar and have a capacity C
- The power consumed by a PM is a function of its load
- Each VM is permanently assigned to a PM
- Each VM d_i has a load $l(d_i)$
- No PM can be overloaded

Virtual Machine Assignment Problem (VMA)

 Where to assign an incoming VM in a powerefficient way?

Power Consumption Model

Power consumption of a PM

$$f(x) = \begin{cases} 0 & x = 0\\ \mu x^{\alpha} + b & x > 0 \end{cases}$$

Objective Function

Given the cost function

$$f(x) = \begin{cases} 0 & x = 0\\ \mu x^{\alpha} + b & x > 0 \end{cases}$$

 We want to find a partition of the set of VMs that minimizes

$$P(\pi) = \sum_{i \in [1,m]} f(L_i(\pi))$$

- $L_i(\pi)$ is the aggregated load in the *i*th PM imposed by π
- $P(\pi)$ denotes the power consumed by the partition

Virtual Machine Assignment Problem (VMA)

Variants of VMA:

(C,m)-VMA

Limited Capacity Finite number of servers Finite number of servers

 (\cdot,m) -VMA

Unlimited Capacity

 (C,\cdot) -VMA

Limited Capacity Unbounded number of servers

 (\cdot,\cdot) -VMA

Unlimited Capacity Unbounded number of servers

Each variant can be offline or online

Related Work

- Large body of work on consolidation, usually using different power consumption model or not considering energy at all.
- [Alon97, Alon98]: PTAS for the L_p norm problem with p≥1 and for other more general functions.
- [Epstein04]: Extension of [Alon97, Alon98] for the uniformly related machines case.
- [Srik08]: Energy efficient VMA is not a mere packing problem.

Optimal Load and Power

 There is an optimal load per PM and a corresponding optimal power

$$x^* = (b/(\alpha - 1))^{1/\alpha} \to \rho^* = f(x^*)/x^*$$

Lemma 1 Given an instance of the VMA problem with a set of VMs $D = \{d_1, \ldots, d_n\}$, any solution $\pi = \{A_1, \ldots, A_m\}$ where $\sum_{d \in A_i} d \neq x^*$ for some $i \in [1, m]$, satisfies

$$P(\pi) > \rho^* l(D) = \rho^* \sum_{d \in D} l(d).$$

i**M**dea networks

Understanding the Optimal Load

Observation 1 The optimal load is $x^* = (b/(\alpha - 1))^{1/\alpha}$. Additionally, for any $x \neq x^*$, $f(x)/x > \varphi^*$.

Contributions

		(C,m)-VMA	(C,·)-VMA	(·,m)-VMA	(·,·)-VMA	(·,2)-VMA
NP-Completeness (decision prob.)		X				
NP-Hardness			X	X	X	
Offline UB	x*≥C		X	PTAS	PTAS	
	x* <c< td=""><td></td><td>X</td><td></td></c<>		X			
Offline LB	x*≥C		X			
	x* <c< td=""><td></td><td>X</td><td></td></c<>		X			
Online UB	x*≥C		X	N/A	N/A	N/A
	x* <c< td=""><td></td><td>X</td><td>X</td><td>X</td><td>X</td></c<>		X	X	X	X
Online LB	x*≥C	X	X	N/A	N/A	N/A
	x* <c< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td></c<>	X	X	X	X	X

Contributions

VMA subprob.	$x^* < C$		$x^* \ge C$		
(C,\cdot)	$\rho \ge \frac{3}{2} \frac{\alpha - 1 + (2/3)^{\alpha}}{\alpha}$	$ \rho \ge \frac{11}{9} $	$\rho \ge \frac{3}{2} \frac{\alpha - 1 + (2/3)^{\alpha}}{\alpha}$	$ \rho \ge \frac{11}{9} $	
offline	$\rho < \frac{\overline{m}}{m^*} \left(1 + \epsilon + \frac{1}{\alpha - 1} + \frac{1}{\overline{m}} \right)$	$\rho < \frac{\overline{m}}{m^*} \left(\frac{3}{2} + \epsilon + \frac{1}{\overline{m}} \right)$	$\rho < 1 + \epsilon + \frac{C^{\alpha}}{b} + \frac{1}{\overline{m}} \qquad \qquad \rho < \frac{3}{2} + \epsilon + \frac{1}{6}$		
(C,\cdot)	$\rho \ge \frac{(3/2)2^{\alpha} - 1}{2^{\alpha} - 1}$	$ ho \geq \frac{11}{7}$	$\rho \ge \frac{C^{\alpha} + 2b}{b + \max\{C^{\alpha}, 2(C/2)^{\alpha} + b\}}$	$ ho \ge \frac{20}{17}$	
online	$\rho = 1 \text{ if } D_s = \emptyset, \text{ else}$ $\rho \le \left(1 - \frac{1}{\alpha} \left(1 - \frac{1}{2^{\alpha}}\right)\right) \left(2 + \frac{x^*}{\ell(D_s)}\right)$	$\rho \le \frac{17}{12} \left(1 + \frac{1}{2\ell(D_s)} \right)$	$\rho \le \frac{2b}{C} \left(1 + \frac{1}{(\alpha - 1)2^{\alpha}} \right) \left(2 + \frac{C}{\ell(D)} \right)$	$\rho \le \frac{17}{2} \left(1 + \frac{1}{2\ell(D)} \right)$	
(C,m) online	$\rho \ge \frac{(3/2)2^{\alpha} - 1}{2^{\alpha} - 1}$	$ \rho \ge \frac{11}{7} $	$\rho \ge \frac{C^{\alpha} + 2b}{b + \max\{C^{\alpha}, 2(C/2)^{\alpha} + b\}}$	$\rho \ge \frac{20}{17}$	
(\cdot,\cdot) online	$\rho \ge \frac{(3/2)2^{\alpha} - 1}{2^{\alpha} - 1}$	$ \rho \ge \frac{11}{7} $	not applicable		
Onnie	$\rho = 1 \text{ if } D_s = \emptyset, \text{ else}$ $\rho \le \left(1 - \frac{1}{\alpha} \left(1 - \frac{1}{2^{\alpha}}\right)\right) \left(2 + \frac{x^*}{\ell(D_s)}\right)$	$\rho \le \frac{17}{12} \left(1 + \frac{1}{2\ell(D_s)} \right)$			
(\cdot, m) online	$ \rho \ge \max\{\frac{(3/2)2^{\alpha} - 1}{2^{\alpha} - 1}, \frac{3^{\alpha}}{2^{\alpha + 2} + \epsilon}\} $	$ \rho \ge \frac{11}{7} $	not applicable		
	$ \rho \leq O(\alpha)^{\alpha} \text{ In [?]} $				
$(\cdot,2)$	$ \rho \ge \max\{\frac{3^{\alpha}}{2^{\alpha+1}}, \frac{(3/2)2^{\alpha}-1}{2^{\alpha}-1}, \frac{3^{\alpha}}{2^{\alpha+2}+\epsilon}\} $	$ \rho \ge \frac{11}{7} $	not applicable		
online	$ ho = 1 ext{ if } \ell(D) \le \sqrt[\alpha]{b/(2^{\alpha} - 2)}, ext{ else}$ $ ho \le \max\{2, \left(\frac{3}{2}\right)^{\alpha - 1}\}$	$ ho \leq \frac{9}{4}$			

Table 1: Exact values correspond to $\alpha=3,\,b=2,$ and C=2 on the left and C=1on the right.

Offline Problems

- The decision version of (C,m)-VMA is NP-complete
 - Directly from 3-partition
- (C,·)-VMA, (·,m)-VMA and (·,·)-VMA are strongly NPhard
 - Reduction from 3-partition:
 - VMA instance with m PMs, 3m VMs and $m \cdot x^*$ total load.
 - Assign 3 VMs to each PM such that the total load in each PM is x*
- (C,\cdot) -VMA, (\cdot,m) -VMA and (\cdot,\cdot) -VMA have no FPTAS (Fully Polynomial-Time Approximation Scheme)
- There exists a PTAS for (\cdot,\cdot) -VMA and (\cdot,m) -VMA
 - Directly from [Epstein2004]

Theorem 6 There exists an instance of problems (\cdot, \cdot) -VMA, (\cdot, m) -VMA, (C, \cdot) -VMA and (C, m)-VMA when $C > x^*$, such that no online algorithm can guarantee a competitive retire matter than $\frac{(3/2)2^{\alpha}-1}{2^{\alpha}-1}$.

- Assume we have VMs of size ϵx^*
- An adversary starts injecting VMs, which ar €X* €X* 1 the €X* PM, until the algorithm opens a second PM with the kth VM.

- If
$$k \leq \frac{1}{\epsilon} \left(\frac{\alpha - 1}{1 - 2^{1 - \alpha}} \right)^{1/\alpha}$$

- If
$$k > \frac{1}{\epsilon} \left(\frac{\alpha - 1}{1 - 2^{1 - \alpha}} \right)^{1/\alpha}$$

Online Problem: Upper Bounds

Algorithm 1: Online algorithm for (\cdot, \cdot) -VMA and (C, \cdot) -VMA problems.

for each $VM d_i$ do

if $\ell(d_i) > \frac{\min\{x^*,C\}}{2}$ then d_i is assigned to a new PM

else

 d_i is assigned to any loaded PM s_i where $\ell(A_i) \leq \frac{\min\{x^*,C\}}{2}$. If such loaded PM does not exist, d_i is assigned to a new PM

Theorem 10 There exists an online algorithm for (\cdot, \cdot) -VMA and (C, \cdot) -VMA when $x^* < C$ that achieves the following competitive ratio:

$$\rho = 1$$
, if no VM d_i has load such that $l(d_i) < x^*$,

$$\rho \leq \left(1 - \frac{1}{\alpha} \left(1 - \frac{1}{2^{\alpha}}\right)\right) \left(2 + \frac{x^*}{\ell(D_s)}\right), \text{ otherwise.}$$

Theorem 11 There exists an online algorithm for (C,\cdot) -VMA when $x^* \geq C$ that achieves competitive ratio $\rho \leq \frac{2b}{C} \left(1 + \frac{1}{(\alpha - 1)2^{\alpha}} \right) \left(2 + \frac{C}{\ell(D)} \right)$.

Assignment of Virtual

Online Problem: Upper Bounds

Intuition

- VMs of load larger than x*/2 go alone in one PM
- VMs with load < x*/2 are assigned to the most loaded PM with $load < x^*/2$
- There can be one PM with load < x*/2

The optimal assignent would have been:

Conclusions

- It is possible to obtain bounds for multiple versions of the VMA problem
- Many variants to be studied
 - Hetereogenity of servers
 - Migration of VM between PMs at a cost
 - VM that arrive and depart
 - VM that chage their load over time
 - Multi-resource scheduling, where the load is not only given by CPU load

Thank you!! Questions?

Preliminary Claims

Lemma 1 Consider two solutions $\pi = \{A_1, \ldots, A_m\}$ and $\pi' = \{A'_1, \ldots, A'_m\}$ of an instance of the VMA problem, such that for some $x, y \in [1, m]$ it holds that: $A_x \neq \emptyset$ and $A_y \neq \emptyset$; $A'_x = A_x \cup A_y$, $A'_y = \emptyset$, and $A_i = A'_i$, for all $i \neq x$ and $i \neq y$; and $l(A_x) + l(A_y) \leq \min\{x^*, C\}$. Then, $P(\pi') < P(\pi)$.

Intuition:

Depending on their load, it might be better to put VMs in the same (different) PM rather than combining (dissociating) them.

Lemma 2 Consider two solutions $\pi = \{A_1, \ldots, A_m\}$ and $\pi' = \{A'_1, \ldots, A'_m\}$ of an instance of the VMA problem, such that for some $x, y \in [1, m]$ it holds that: $A_x \cup A_y = A'_x \cup A'_y$, while $A_i = A'_i$, for all $x \neq i \neq y$; none of A_x , A_y , A'_x , and A'_y is empty; and $|\ell(A_x) - \ell(A_y)| < |\ell(A'_x) - \ell(A'_y)|$. Then, $P(\pi) < P(\pi')$.

Intuition

 PMs with unbalanced load consume more energy than PMs with the same aggregated load evenly distributed among them.

Corollary 1 (short)"... power consumption is lower bounded by the power of the (maybe unfeasible) solution that balances the load evenly, i.e., $P(\pi) \ge kb + k(L/k)^{\alpha} \dots$ "

Offline Problem

Bounds on the approximability of (C, \cdot) -VMA

Theorem 3 No algorithm achieves an approximation ratio smaller than $\frac{3}{2} \cdot \frac{\alpha - 1 + (\frac{2}{3})^{\alpha}}{\alpha}$ for the (C, \cdot) -VMA problem unless P = NP.

Theorem 4 For every $\epsilon > 0$, there exists an approximation algorithm for the (C, \cdot) -VMA problem when $x^* \geq C$ that achieves an approximation ratio of $\rho < 1 + \epsilon + \frac{C^{\alpha}}{h} + \frac{1}{m}$, where \overline{m} is the minimum number of PMs required to allocate all the VMs.

Theorem 5 For every $\epsilon > 0$, there exists an approximation algorithm for the (C, \cdot) -VMA problem when $x^* < C$ that achieves an approximation ratio of $\rho < \frac{\overline{m}}{m^*} \left((1+\epsilon) + \frac{1}{\alpha-1} \right) + \frac{1}{m^*}$, where m^* is the number of PMs used by the optimal solution of (C,\cdot) -VMA, and \overline{m} is the minimum number of PMs required to allocate all the VMs without exceeding load x^* (i.e., the optimal solution of the bin packing problem). Intuitions

- LB: Based on the partition problem
- UB when x*≥C: Optimal solution is lower bounded by a evenly balanced load among the optimal number of PMs (optimal bin packing solution)
- UB when x*<C: Optimal number of PMs considering Bin Packing with bins of size x*

Theorem 7 There exists an instance of problems (C, \cdot) -VMA and (C, m)-VMA when $C \le x^*$ such that no online algorithm can guarantee a competitive ratio smaller than $(C^{\alpha} + 2b)/(b + \max(C^{\alpha}, 2(C/2)^{\alpha} + b))$.

Intuition

- Consider the same adversarial injection strategy with VMs of size εC
- This time, the thresholds for k and the resulting ratios are:

$$k \le \frac{1}{\epsilon} \to \rho(k) \ge \frac{C^{\alpha} + 2b}{C^{\alpha} + b} \ge 2 - \frac{1}{\alpha}$$
$$k > \frac{1}{\epsilon} \to \rho(k) = \frac{C^{\alpha} + 2b}{2(\frac{C}{2})^{\alpha} + 2b}$$

- Which, combined, throw the result from Theorem 7.

Theorem 8 There exists an instance of problem (\cdot, m) -VMA such that no online algorithm can guarantee a competitive ratio smaller than $3^{\alpha}/(2^{\alpha+2}+\epsilon)$ for any $\epsilon>0$.

Intuition

Input m VMs of load βx^*

If $\frac{3m}{4}$ of the areuse that $\epsilon 2^{\underline{\alpha}} - (\alpha + \frac{1}{4})/\beta^{\alpha}$

else: we input another set of $\frac{m}{2}$ VMs of size $2\beta x^*$

Theorem 9 There exists an instance of problem $(\cdot, 2)$ -VMA such that no online algorithm can guarantee a competitive ratio smaller than $3^{\alpha}/2^{\alpha+1}$.

Intuition

Input 2 VMs of size $6x^*$

If they are assigned to the same server, we stop

Else, we input a $12x^*$ load VM

Online Problem: Upper Bounds

Algorithm 2: Online algorithm for $(\cdot, 2)$ -VMA.

for each $VM d_i$ do

if
$$l(d_i) + l(A_1) \le (b/(2^{\alpha} - 2))^{1/\alpha}$$
 or $l(A_1) \le l(A_2)$ then $| d_i \text{ is assigned to } s_1 \text{ else}$

 d_i is assigned to s_2

Theorem 12 There exists an online algorithm for $(\cdot, 2)$ -VMA that achieves the following competitive ratios.

$$\rho = 1, \quad for \ l(D) \le \left(\frac{b}{2^{\alpha} - 2}\right)^{1/\alpha},$$

$$\rho \le \max\left\{2, \left(\frac{3}{2}\right)^{\alpha - 1}\right\}, \quad for \ l(D) > \left(\frac{b}{2^{\alpha} - 2}\right)^{1/\alpha}.$$

Online Problem: Upper Bounds

- Intuition
 - There are 3 phases

1)
$$L \leq \left(\frac{b}{2^{\alpha}-2}\right)^{\frac{1}{\alpha}}$$

 $L \to \text{Total Load}$

$$2) \quad \left(\frac{b}{2^{\alpha}-2}\right)^{\frac{1}{\alpha}} < L < 2\left(\frac{b}{2^{\alpha}-2}\right)^{\frac{1}{\alpha}}$$

3)
$$L \ge 2\left(\frac{b}{2^{\alpha}-2}\right)^{\frac{1}{\alpha}}$$

