# Probabilistic Bounds on the Length of a Longest Edge in Delaunay Graphs of Random Points in d-Dimensions

Esther M. Arkin<sup>1</sup> Antonio Fernández Anta<sup>2</sup>

Joseph S. B. Mitchell<sup>1</sup> Miguel A. Mosteiro<sup>3</sup>

 $^{1}\mathrm{Department}$  of Applied Math and Statistics, Stony Brook University

<sup>2</sup>Institute IMDEA Networks

<sup>3</sup>Department of Computer Science, Rutgers University

CCCG 2011



## The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it.
- Motivation:
  - Length of longest edge: bound communication cost in wireless nets.
  - Points deployment: RGG's.
- Length of longest Delaunay edge strongly influenced by boundaries
  - ⇒ we study enclosing bodies
    - (i) with boundary (e.g. disk)
    - (ii) without boundary (e.g. sphere (ball surface)).



## The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it.
- Motivation:
  - Length of longest edge: bound communication cost in wireless nets.
  - Points deployment: RGG's.
- Length of longest Delaunay edge strongly influenced by boundaries
  - $\Rightarrow$  we study enclosing bodies
    - (i) with boundary (e.g. disk).
    - (ii) without boundary (e.g. sphere (ball surface)).



## The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it.
- Motivation:
  - Length of longest edge: bound communication cost in wireless nets.
  - Points deployment: RGG's.
- Length of longest Delaunay edge strongly influenced by boundaries
  - $\Rightarrow$  we study enclosing bodies
    - (i) with boundary (e.g. disk).
    - (ii) without boundary (e.g. sphere (ball surface)).



# Previous Work

- Longest Delaunay edge
  - $\bullet$  inside a hypercube of size n (infinite Poisson point set)
    - Bern, Eppstein, Yao (JCGA 1991): observe  $\Theta\left(\sqrt[d]{\log n}\right)$  in expectation. asymptotic only, expectation.
  - RGG:
    - Kozma, Lotker, Sharir, Stupp (PODC 2004):
      - $O\left(\sqrt[3]{(\log n)/n}\right)$  w.h.p. for points "close" to boundary.
      - $O\left(\sqrt{(\log n)/n}\right)$  w.h.p. for points "away" from boundary.
      - d=2 only, asymptotic only, fixed error probability.
- Longest Gabriel edge :
  - Wan, Yi (TPDS 2007): show  $\leq 2\sqrt{(\ln n)/(\pi n)}$  a.a.s. for d=2.
  - Devroye, Gudmundsson, Morin (arXiv 2009): observe  $O(\sqrt[d]{(\log n)/n})$  a.a.s.
- Multidimensional Delaunay tessellations: (construction algorithms)
  - Devijver, Dekesel (PRL 1983)
  - Lemaire, Moreau (CG 2000)



#### Our results

Upper and lower bounds  $\text{for $d$-dimensional bodies,} \\ \text{with and without boundaries,} \\ \text{with parametric error probability $\varepsilon$,} \\ \text{and up to constants.}$ 

- Tight for  $e^{-cn} \le \varepsilon \le n^{-c}$  and  $d \in O(1)$ .
- For d=2 and  $\varepsilon=1/n$ , UB matches [KLSS 04].
- First comprehensive study of this problem. (LBs with boundary for  $d \in \{2, 3\}$ .)

## Our results

Upper and lower bounds  $\mbox{for $d$-dimensional bodies,} \\ \mbox{with and without boundaries,} \\ \mbox{with parametric error probability $\varepsilon$,} \\ \mbox{and up to constants.}$ 

- Tight for  $e^{-cn} \le \varepsilon \le n^{-c}$  and  $d \in O(1)$ .
- For d=2 and  $\varepsilon=1/n$ , UB matches [KLSS 04].
- First comprehensive study of this problem. (LBs with boundary for  $d \in \{2, 3\}$ .)

#### Definition

Let P be a set of points in a d-sphere, two points  $a, b \in P$  form an arc of D(P), if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the cap, it contains a and b on the boundary and does not contain any other point of P.



#### Definition

Let P be a set of points in a d-sphere, two points  $a, b \in P$  form an arc of D(P), if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the cap, it contains a and b on the boundary and does not contain any other point of P.



#### Definition

Let P be a set of points in a d-sphere, two points  $a, b \in P$  form an arc of D(P), if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the cap, it contains a and b on the boundary and does not contain any other point of P.



#### Definition

Let P be a set of points in a d-ball, two points  $a, b \in P$  form an edge of D(P), if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.



#### Definition

Let P be a set of points in a d-ball, two points  $a, b \in P$  form an edge of D(P), if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.



#### Definition

Let P be a set of points in a d-ball, two points  $a, b \in P$  form an edge of D(P), if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.



#### Proof techniques

- Upper bounds: thanks to uniform density, a "large" empty area/volume is "unlikely".
- Lower bounds: show configuration such that "long" Delaunay edge is "not very unlikely".

#### Proof techniques

- Upper bounds: thanks to uniform density, a "large" empty area/volume is "unlikely".
- Lower bounds: show configuration such that "long" Delaunay edge is "not very unlikely".

For enclosing bodies with boundaries...





 $\dots$  witness d-ball may be huge!

#### Without boundary

$$w.p. \ge 1 - \varepsilon, \nexists \widehat{ab} \in D(P)$$

$$d \qquad A_d(\delta(a,b)) \ge \frac{\ln\left(\binom{n}{2}\binom{n-2}{d-1}/\varepsilon\right)}{n-d-1}$$

$$1 \qquad \delta(a,b) \ge \frac{\ln\left(\binom{n}{2}/\varepsilon\right)}{n-2}$$

$$2 \qquad \delta(a,b) \ge \frac{\cos^{-1}\left(1 - \frac{2\ln\left(\binom{n}{2}(n-2)/\varepsilon\right)}{n-3}\right)}{\sqrt{\pi}}$$

$$\begin{aligned} \text{w.p.} &\geq \varepsilon, \ \exists \ \widehat{ab} \in D(P) \\ A_d(\delta(a,b)) &\geq \frac{\ln\left((e-1)/(e^2\varepsilon)\right)}{n-2+\ln\left((e-1)/(e^2\varepsilon)\right)} \\ \delta(a,b) &\geq \frac{\ln\left((e-1)/(e^2\varepsilon)\right)}{n-2+\ln\left((e-1)/(e^2\varepsilon)\right)} \\ \delta(a,b) &\geq \frac{\cos^{-1}\left(1 - \frac{2\ln\left((e-1)/(e^2\varepsilon)\right)}{n-2+\ln\left((e-1)/(e^2\varepsilon)\right)}\right)}{\sqrt{\pi}} \end{aligned}$$



#### Without boundary

$$w.p. \ge 1 - \varepsilon, \nexists \widehat{ab} \in D(P)$$

$$d \qquad A_d(\delta(a,b)) \ge \frac{\ln\left(\binom{n}{2}\binom{n-2}{d-1}/\varepsilon\right)}{n-d-1}$$

$$1 \qquad \delta(a,b) \ge \frac{\ln\left(\binom{n}{2}/\varepsilon\right)}{n-2}$$

$$2 \qquad \delta(a,b) \ge \frac{\cos^{-1}\left(1 - \frac{2\ln\left(\binom{n}{2}(n-2)/\varepsilon\right)}{n-3}\right)}{\sqrt{\pi}}$$

$$\begin{aligned} \text{w.p.} & \geq \varepsilon, \ \exists \ \widehat{ab} \in D(P) \\ A_d(\delta(a,b)) & \geq \frac{\ln\left((e-1)/(e^2\varepsilon)\right)}{n-2+\ln\left((e-1)/(e^2\varepsilon)\right)} \\ \delta(a,b) & \geq \frac{\ln\left((e-1)/(e^2\varepsilon)\right)}{n-2+\ln\left((e-1)/(e^2\varepsilon)\right)} \\ \delta(a,b) & \geq \frac{\cos^{-1}\left(1-\frac{2\ln\left((e-1)/(e^2\varepsilon)\right)}{n-2+\ln\left((e-1)/(e^2\varepsilon)\right)}\right)}{\sqrt{\pi}} \end{aligned}$$

UB for 
$$d = 2 \in \Theta\left(\sqrt{\ln\left(n/\varepsilon\right)/n}\right)$$
 ... matching KLSS'04 for  $\varepsilon = 1/n$ .



#### With boundary

$$w.p. \ge 1 - \varepsilon, \nexists \widehat{ab} \in D(P)$$

$$d \qquad V_d(d(a,b)) \ge \frac{\ln\left(\binom{n}{2}\binom{n-2}{d-1}/\varepsilon\right)}{n-d-1}$$

$$2 \qquad d(a,b) \ge \sqrt[3]{\frac{16}{\sqrt{\pi}} \frac{\ln\left(\binom{n}{2}\binom{n-2}{d-1}/\varepsilon\right)}{n-3}}$$

$$3 \qquad d(a,b) \ge \sqrt[4]{\frac{96}{\pi^{3/2}} \frac{\ln\left(\binom{n}{2}\binom{n-2}{2}/\varepsilon\right)}{n-4}}$$

$$\text{w.p. } \geq \varepsilon, \ \exists \ \widehat{ab} \in D(P)$$

$$?$$

$$d(a,b) \geq \rho_2/2 : V_2(\rho_2) = \frac{\ln(\alpha_2/\varepsilon)}{(n-2+\ln(\alpha_2/\varepsilon))}$$

$$\implies d(a,b) \geq \sqrt[3]{\frac{\ln(\alpha_2/\varepsilon)}{2\sqrt{\pi}(n-2+\ln(\alpha_2/\varepsilon))}}$$

$$d(a,b) \geq \rho_3/2 : V_3(\rho_3) = \frac{\ln(\alpha_3/\varepsilon)}{(n-2+\ln(\alpha_3/\varepsilon))}$$

$$\implies d(a,b) \geq \sqrt[4]{\sqrt[3]{\frac{48}{\pi^4}} \frac{\ln(\alpha_3/\varepsilon)}{(n-2+\ln(\alpha_3/\varepsilon))}}$$



#### With boundary

$$w.p. \ge 1 - \varepsilon, \not\equiv \widehat{ab} \in D(P)$$

$$d \quad V_d(d(a,b)) \ge \frac{\ln\left(\binom{n}{2}\binom{n-2}{d-1}/\varepsilon\right)}{n-d-1}$$

$$2 \quad d(a,b) \ge \sqrt[3]{\frac{16}{\sqrt{\pi}} \frac{\ln\left(\binom{n}{2}\binom{n-2}{d-2}/\varepsilon\right)}{n-3}}$$

$$3 \quad d(a,b) \ge \sqrt[4]{\frac{96}{\pi^{3/2}} \frac{\ln\left(\binom{n}{2}\binom{n-2}{2}/\varepsilon\right)}{n-4}}$$

$$\begin{aligned} \text{w.p.} & \geq \varepsilon, \ \exists \ \widehat{ab} \in D(P) \\ & ? \\ & d(a,b) \geq \rho_2/2 : V_2(\rho_2) = \frac{\ln(\alpha_2/\varepsilon)}{(n-2+\ln(\alpha_2/\varepsilon))} \\ & \Longrightarrow d(a,b) \geq \sqrt[3]{\frac{\ln(\alpha_2/\varepsilon)}{2\sqrt{\pi}(n-2+\ln(\alpha_2/\varepsilon))}} \\ & d(a,b) \geq \rho_3/2 : V_3(\rho_3) = \frac{\ln(\alpha_3/\varepsilon)}{(n-2+\ln(\alpha_3/\varepsilon))} \\ & \Longrightarrow d(a,b) \geq \sqrt[4]{\sqrt[3]{\frac{48}{\pi^4}} \frac{\ln(\alpha_3/\varepsilon)}{(n-2+\ln(\alpha_3/\varepsilon))}} \end{aligned}$$

UB for 
$$d = 2 \in \Theta\left(\sqrt[3]{\ln(n/\varepsilon)/n}\right)$$
 ... matching KLSS'04 for  $\varepsilon = 1/n$ .



#### E.g. Proof of Lower Bound in a Disk



#### E.g. Proof of Lower Bound in a Disk



#### E.g. Proof of Lower Bound in a Disk



$$Pr(\exists a) \in \Omega(1)$$

$$Pr(\exists b) \in \Omega(1)$$

$$Pr(V(\rho) + 1/n \text{ is empty}) \ge \varepsilon$$



#### E.g. Lower Bound in a Ball



# Open Problems

- Lower bound with boundary for d > 3? Conjecture: same bound modulo a constant.
- Other norms?  $(L_1, L_{\infty})$
- Other distribution of points.

Thank you!

Questions?