Probabilistic Bounds on the Length of a Longest Edge in Delaunay Graphs of Random Points in d-Dimensions

Esther M. Arkin1 Antonio Fernández Anta2

Joseph S. B. Mitchell1 Miguel A. Mosteiro3

1Department of Applied Math and Statistics, Stony Brook University

2Institute IMDEA Networks

3Department of Computer Science, Rutgers University

CCCG 2011
The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it.

Motivation:
- Length of longest edge: bound communication cost in wireless nets.
- Points deployment: RGG’s.

Length of longest Delaunay edge strongly influenced by boundaries
⇒ we study enclosing bodies
 (i) with boundary (e.g. disk).
 (ii) without boundary (e.g. sphere (ball surface)).
The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it.

Motivation:
- Length of longest edge: bound communication cost in wireless nets.
- Points deployment: RGG’s.

Length of longest Delaunay edge strongly influenced by boundaries
⇒ we study enclosing bodies

(i) with boundary (e.g. disk).
(ii) without boundary (e.g. sphere (ball surface)).
The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it.

Motivation:
- Length of longest edge: bound communication cost in wireless nets.
- Points deployment: RGG’s.

Length of longest Delaunay edge strongly influenced by boundaries
 ⇒ we study enclosing bodies
 (i) with boundary (e.g. disk).
 (ii) without boundary (e.g. sphere (ball surface)).
Previous Work

- **Longest Delaunay edge**
 - inside a hypercube of size n (infinite Poisson point set)
 - Bern, Eppstein, Yao (JCGA 1991): observe $\Theta\left(\sqrt[3]{\log n}\right)$ in expectation. asymptotic only, expectation.
 - RGG:
 - Kozma, Lotker, Sharir, Stupp (PODC 2004):
 $O\left(\frac{3}{\sqrt[3]{\log n}}\right)$ w.h.p. for points “close” to boundary.
 $O\left(\frac{1}{\sqrt{\log n}}\right)$ w.h.p. for points “away” from boundary.
 $d = 2$ only, asymptotic only, fixed error probability.

- **Longest Gabriel edge**:
 - Wan, Yi (TPDS 2007): show $\leq 2\sqrt{(\ln n)/(\pi n)}$ a.a.s. for $d = 2$.
 - Devroye, Gudmundsson, Morin (arXiv 2009): observe $O\left(\frac{d}{\sqrt{\log n}}\right)$ a.a.s.

- **Multidimensional Delaunay tessellations**: (construction algorithms)
 - Devijver, Dekesel (PRL 1983)
 - Lemaire, Moreau (CG 2000)
Our results

Upper and lower bounds
for d-dimensional bodies,
with and without boundaries,
with parametric error probability ε,
and up to constants.

- Tight for $e^{-cn} \leq \varepsilon \leq n^{-c}$ and $d \in O(1)$.
- For $d = 2$ and $\varepsilon = 1/n$, UB matches [KLSS 04].
- First comprehensive study of this problem.
 (LBs with boundary for $d \in \{2, 3\}$.)
Our results

Upper and lower bounds
for d-dimensional bodies,
with and without boundaries,
with parametric error probability ε,
and up to constants.

- Tight for $e^{-cn} \leq \varepsilon \leq n^{-c}$ and $d \in O(1)$.
- For $d = 2$ and $\varepsilon = 1/n$, UB matches [KLSS 04].
- First comprehensive study of this problem.
 (LBs with boundary for $d \in \{2, 3\}$.)
Preliminaries

Definition
Let P be a set of points in a d-sphere, two points $a, b \in P$ form an arc of $D(P)$, if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the cap, it contains a and b on the boundary and does not contain any other point of P.
Preliminaries

Definition

Let P be a set of points in a d-sphere, two points $a, b \in P$ form an arc of $D(P)$, if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the cap, it contains a and b on the boundary and does not contain any other point of P.
Preliminaries

Definition

Let P be a set of points in a d-sphere, two points $a, b \in P$ form an arc of $D(P)$, if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the cap, it contains a and b on the boundary and does not contain any other point of P.
Preliminaries

Definition

Let P be a set of points in a d-ball, two points $a, b \in P$ form an edge of $D(P)$, if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.
Definition

Let P be a set of points in a d-ball, two points $a, b \in P$ form an edge of $D(P)$, if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.
Preliminaries

Definition
Let P be a set of points in a d-ball, two points $a, b \in P$ form an edge of $D(P)$, if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.
Results

Proof techniques

- Upper bounds: thanks to uniform density,
 a “large” empty area/volume is “unlikely”.
- Lower bounds: show configuration such that
 “long” Delaunay edge is “not very unlikely”.

Arkin, Fernández Anta, Mitchell, Mosteiro

Longest Delaunay Edges
Results

Proof techniques

- Upper bounds: thanks to uniform density, a “large” empty area/volume is “unlikely”.
- Lower bounds: show configuration such that “long” Delaunay edge is “not very unlikely”.

For enclosing bodies with boundaries...

... witness d-ball may be huge!
Results

Without boundary

<table>
<thead>
<tr>
<th>d</th>
<th>$A_d(\delta(a, b)) \geq \frac{\ln\left(\frac{n \choose 2}{n-2} / \varepsilon\right)}{n-d-1}$</th>
<th>$\delta(a, b) \geq \frac{\ln\left(\frac{n \choose 2}{n-2} / \varepsilon\right)}{n-2}$</th>
<th>$\delta(a, b) \geq \cos^{-1}\left(1 - \frac{2 \ln\left(\frac{n \choose 2}{n-2} / \varepsilon\right)}{n-3}\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{\ln\left(\frac{n \choose 2}{n-2} / \varepsilon\right)}{n-2}$</td>
<td>$\frac{\ln\left((e-1)/(e^2 \varepsilon)\right)}{n-2 + \ln\left((e-1)/(e^2 \varepsilon)\right)}$</td>
<td>$\frac{\ln\left((e-1)/(e^2 \varepsilon)\right)}{n-2 + \ln\left((e-1)/(e^2 \varepsilon)\right)}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{\ln\left(\frac{n \choose 2}{n-2} / \varepsilon\right)}{\sqrt{\pi}}$</td>
<td>$\frac{\ln\left((e-1)/(e^2 \varepsilon)\right)}{n-2 + \ln\left((e-1)/(e^2 \varepsilon)\right)}$</td>
<td>$\frac{\ln\left((e-1)/(e^2 \varepsilon)\right)}{n-2 + \ln\left((e-1)/(e^2 \varepsilon)\right)}$</td>
</tr>
</tbody>
</table>

w.p. $\geq 1 - \varepsilon$, $\not\exists \hat{a} b \in D(P)$

w.p. $\geq \varepsilon$, $\exists \hat{a} b \in D(P)$
Analysis

Results

Without boundary

<table>
<thead>
<tr>
<th>d</th>
<th>w.p. $\geq 1 - \varepsilon$, $\nexists \hat{ab} \in D(P)$</th>
<th>w.p. $\geq \varepsilon$, $\exists \hat{ab} \in D(P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$A_d(\delta(a, b)) \geq \frac{\ln\left(\binom{n}{2}/\varepsilon\right)}{n-2}$</td>
<td>$A_d(\delta(a, b)) \geq \frac{\ln\left((e-1)/(e^2\varepsilon)\right)}{n-2+\ln\left((e-1)/(e^2\varepsilon)\right)}$</td>
</tr>
<tr>
<td>2</td>
<td>$\delta(a, b) \geq \cos^{-1}\left(1 - \frac{2\ln\left(\binom{n}{2}(n-2)/\varepsilon\right)}{n-3}\right)$</td>
<td>$\delta(a, b) \geq \cos^{-1}\left(1 - \frac{2\ln\left((e-1)/(e^2\varepsilon)\right)}{n-2+\ln\left((e-1)/(e^2\varepsilon)\right)}\right)$</td>
</tr>
</tbody>
</table>

UB for $d = 2 \in \Theta\left(\sqrt{\frac{\ln(n/\varepsilon)}{n}}\right)$

... matching KLSS’04 for $\varepsilon = 1/n$.

![Diagram](image_url)
Results

With boundary

<table>
<thead>
<tr>
<th></th>
<th>w.p. $\geq 1 - \varepsilon$, $\nexists , \hat{a}b \in D(P)$</th>
<th>w.p. $\geq \varepsilon$, $\exists , \hat{a}b \in D(P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>$V_d(d(a, b)) \geq \frac{\ln\left(\frac{n}{2}\left(\frac{n-2}{d-1}\right)/\varepsilon\right)}{n-d-1}$</td>
<td>$d(a, b) \geq \rho_2/2 : V_2(\rho_2) = \frac{\ln(\alpha_2/\varepsilon)}{(n-2+\ln(\alpha_2/\varepsilon))}$</td>
</tr>
<tr>
<td>2</td>
<td>$d(a, b) \geq 3\sqrt{\frac{16}{\sqrt{\pi}}} \frac{\ln\left(\frac{n}{2}(n-2)/\varepsilon\right)}{n-3}$</td>
<td>$\implies d(a, b) \geq 3\sqrt{\frac{2\sqrt{\pi}(n-2+\ln(\alpha_2/\varepsilon))}{\ln(\alpha_2/\varepsilon)}}$</td>
</tr>
<tr>
<td>3</td>
<td>$d(a, b) \geq 4\sqrt{\frac{96}{\pi^{3/2}}} \frac{\ln\left(\frac{n}{2}\left(\frac{n-2}{2}\right)/\varepsilon\right)}{n-4}$</td>
<td>$d(a, b) \geq \rho_3/2 : V_3(\rho_3) = \frac{\ln(\alpha_3/\varepsilon)}{(n-2+\ln(\alpha_3/\varepsilon))}$</td>
</tr>
<tr>
<td></td>
<td>$\implies d(a, b) \geq 4\sqrt{\frac{48}{\pi^{3/2}}} \frac{\ln(\alpha_3/\varepsilon)}{(n-2+\ln(\alpha_3/\varepsilon))}$</td>
<td>$\implies d(a, b) \geq 4\sqrt{\frac{48}{\pi^{3/2}}} \frac{\ln(\alpha_3/\varepsilon)}{(n-2+\ln(\alpha_3/\varepsilon))}$</td>
</tr>
</tbody>
</table>

Arkin, Fernández Anta, Mitchell, Mosteiro

Longest Delaunay Edges

9/13
Results

With boundary

<table>
<thead>
<tr>
<th>d</th>
<th>$w.p. \geq 1 - \varepsilon, \exists \hat{ab} \in D(P)$</th>
<th>$w.p. \geq \varepsilon, \exists \hat{ab} \in D(P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$d(a, b) \geq 3\sqrt{\frac{16}{\sqrt{\pi}}} \cdot \frac{\ln\left(\frac{n}{2}(n-2)/\varepsilon\right)}{n-3}$</td>
<td>$d(a, b) \geq \frac{\rho_2}{2} : V_2(\rho_2) = \frac{\ln(\alpha_2/\varepsilon)}{(n-2+\ln(\alpha_2/\varepsilon))}$</td>
</tr>
<tr>
<td>3</td>
<td>$d(a, b) \geq 4\sqrt{\frac{96}{\pi^{3/2}}} \cdot \frac{\ln\left(\frac{n}{2}(n-2)/\varepsilon\right)}{n-4}$</td>
<td>$d(a, b) \geq \frac{\rho_3}{2} : V_3(\rho_3) = \frac{\ln(\alpha_3/\varepsilon)}{(n-2+\ln(\alpha_3/\varepsilon))}$</td>
</tr>
</tbody>
</table>

UB for $d = 2 \in \Theta\left(\frac{3\ln(n/\varepsilon)}{n}\right)$

... matching KLSS’04 for $\varepsilon = \frac{1}{n}$.
Results

E.g. Proof of Lower Bound in a Disk

\[V(\rho) + \frac{1}{n} \]
Results
E.g. Proof of Lower Bound in a Disk

\[\leq V(\rho) + \frac{1}{n} \]
Results

E.g. Proof of Lower Bound in a Disk

\[Pr(\exists a) \in \Omega(1) \]

\[Pr(\exists b) \in \Omega(1) \]

\[Pr(V(\rho) + 1/n \text{ is empty}) \geq \varepsilon \]
Results

E.g. Lower Bound in a Ball

\[\rho_1 / \sqrt{2} \]

\[\rho_1 / 2 \]

\(h_1 \)

\(h_2 \)

\(\Gamma \)

\(\Gamma_1 \)

\(\Gamma_2 - \Gamma_1 \)
Open Problems

- Lower bound with boundary for $d > 3$?
 Conjecture: same bound modulo a constant.
- Other norms? (L_1, L_∞)
- Other distribution of points.
Thank you!

Questions?