Probabilistic Bounds on the Length of a Longest Edge in Delaunay Graphs of Random Points in d-Dimensions

Esther M. Arkin ${ }^{1}$ Antonio Fernández Anta ${ }^{2}$
Joseph S. B. Mitchell ${ }^{1} \quad$ Miguel A. Mosteiro ${ }^{3}$
${ }^{1}$ Department of Applied Math and Statistics, Stony Brook University
${ }^{2}$ Institute IMDEA Networks
${ }^{3}$ Department of Computer Science, Rutgers University
CCCG 2011

The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it.
- Motivation:
- Length of longest edge: bound communication cost in wireless nets.
- Points deployment: RGG's.
- Length of longest Delaunay edge strongly influenced by boundaries \Rightarrow we study enclosing bodies
(i) with boundary (e.g. disk).
(ii) without boundary (e.g. sphere (ball surface)).

The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it.
- Motivation:
- Length of longest edge: bound communication cost in wireless nets.
- Points deployment: RGG's.
- Length of longest Delaunay edge strongly influenced by boundaries \Rightarrow we study enclosing bodies
(i) with boundary (e.g. disk).
(ii) without boundary (e.g. sphere (ball surface)).

The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it.
- Motivation:
- Length of longest edge: bound communication cost in wireless nets.
- Points deployment: RGG's.
- Length of longest Delaunay edge strongly influenced by boundaries \Rightarrow we study enclosing bodies
(i) with boundary (e.g. disk).
(ii) without boundary (e.g. sphere (ball surface)).

Previous Work

- Longest Delaunay edge
- inside a hypercube of size n (infinite Poisson point set)
- Bern, Eppstein, Yao (JCGA 1991): observe $\Theta(\sqrt[d]{\log n})$ in expectation. asymptotic only, expectation.
- RGG:
- Kozma, Lotker, Sharir, Stupp (PODC 2004):
$O(\sqrt[3]{(\log n) / n})$ w.h.p. for points "close" to boundary.
$O(\sqrt{(\log n) / n})$ w.h.p. for points "away" from boundary.
$d=2$ only, asymptotic only, fixed error probability.
- Longest Gabriel edge :
- Wan, Yi (TPDS 2007): show $\leq 2 \sqrt{(\ln n) /(\pi n)}$ a.a.s. for $d=2$.
- Devroye, Gudmundsson, Morin (arXiv 2009): observe $O(\sqrt[d]{(\log n) / n})$ a.a.s.
- Multidimensional Delaunay tessellations: (construction algorithms)
- Devijver, Dekesel (PRL 1983)
- Lemaire, Moreau (CG 2000)

Our results

Upper and lower bounds for d-dimensional bodies, with and without boundaries, with parametric error probability ε, and up to constants.

- Tight for $e^{-c n} \leq \varepsilon \leq n^{-c}$ and $d \in O(1)$.
- For $d=2$ and $\varepsilon=1 / n$, UB matches [KLSS 04].
- First comprehensive study of this problem.
(LBs with boundary for $d \in\{2,3\}$.)

Our results

Upper and lower bounds for d-dimensional bodies, with and without boundaries, with parametric error probability ε, and up to constants.

- Tight for $e^{-c n} \leq \varepsilon \leq n^{-c}$ and $d \in O(1)$.
- For $d=2$ and $\varepsilon=1 / n$, UB matches [KLSS 04].
- First comprehensive study of this problem.
(LBs with boundary for $d \in\{2,3\}$.)

Preliminaries

Definition

Let P be a set of points in a d-sphere, two points $a, b \in P$ form an arc of $D(P)$, if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the cap, it contains a and b on the boundary and does not contain any other point of P.

Preliminaries

Definition

Let P be a set of points in a d-sphere, two points $a, b \in P$ form an arc of $D(P)$, if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the cap, it contains a and b on the boundary and does not contain any other point of P.

Preliminaries

Definition

Let P be a set of points in a d-sphere, two points $a, b \in P$ form an arc of $D(P)$, if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the cap, it contains a and b on the boundary and does not contain any other point of P.

Preliminaries

Definition

Let P be a set of points in a d-ball, two points $a, b \in P$ form an edge of $D(P)$, if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.

Preliminaries

Definition

Let P be a set of points in a d-ball, two points $a, b \in P$ form an edge of $D(P)$, if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.

Preliminaries

Definition

Let P be a set of points in a d-ball, two points $a, b \in P$ form an edge of $D(P)$, if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.

Results

Proof techniques

- Upper bounds: thanks to uniform density,
a "large" empty area/volume is "unlikely".
- Lower bounds: show configuration such that
"long" Delaunay edge is "not very unlikely".

Results

Proof techniques

- Upper bounds: thanks to uniform density,
a "large" empty area/volume is "unlikely".
- Lower bounds: show configuration such that
"long" Delaunay edge is "not very unlikely".

For enclosing bodies with boundaries...

... witness d-ball may be huge!

Results

Without boundary

	w.p. $\geq 1-\varepsilon, \nexists \widehat{a b} \in D(P)$	w.p. $\geq \varepsilon, \exists \widehat{a b} \in D(P)$
d	$A_{d}(\delta(a, b)) \geq \frac{\ln \left(\binom{n}{2}\binom{n-2}{d-1} / \varepsilon\right)}{n-d-1}$	$A_{d}(\delta(a, b)) \geq \frac{\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}{n-2+\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}$
1	$\delta(a, b) \geq \frac{\ln \left(\binom{n}{2} / \varepsilon\right)}{n-2}$	$\delta(a, b) \geq \frac{\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}{n-2+\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}$
2	$\delta(a, b) \geq \frac{\cos ^{-1}\left(1-\frac{2 \ln \left(\binom{n}{2}(n-2) / \varepsilon\right)}{n-3}\right)}{\sqrt{\pi}}$	$\delta(a, b) \geq \frac{\cos ^{-1}\left(1-\frac{2 \ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}{n-2+\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}\right)}{\sqrt{\pi}}$

Results

Without boundary

	w.p. $\geq 1-\varepsilon, \nexists \widehat{a b} \in D(P)$	w.p. $\geq \varepsilon, \exists \widehat{a b} \in D(P)$
d	$A_{d}(\delta(a, b)) \geq \frac{\ln \left(\binom{n}{2}\binom{n-2}{d-1} / \varepsilon\right)}{n-d-1}$	$A_{d}(\delta(a, b)) \geq \frac{\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}{n-2+\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}$
1	$\delta(a, b) \geq \frac{\ln \left(\binom{n}{2} / \varepsilon\right)}{n-2}$	$\delta(a, b) \geq \frac{\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}{n-2+\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}$
2	$\delta(a, b) \geq \frac{\cos ^{-1}\left(1-\frac{2 \ln \left(\binom{n}{2}(n-2) / \varepsilon\right)}{n-3}\right)}{\sqrt{\pi}}$	$\delta(a, b) \geq \frac{\cos ^{-1}\left(1-\frac{2 \ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}{n-2+\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}\right)}{\sqrt{\pi}}$

UB for $d=2 \in \Theta(\sqrt{\ln (n / \varepsilon) / n})$
... matching KLSS'04 for $\varepsilon=1 / n$.

Results

With boundary

	w.p. $\geq 1-\varepsilon, \nexists \widehat{a b} \in D(P)$	w.p. $\geq \varepsilon, \exists \widehat{a b} \in D(P)$
d	$V_{d}(d(a, b)) \geq \frac{\ln \left(\binom{n}{2}\binom{n-2}{d-1} / \varepsilon\right)}{n-d-1}$?
2	$d(a, b) \geq \sqrt[3]{\frac{16}{\sqrt{\pi}} \frac{\ln \left(\binom{n}{2}(n-2) / \varepsilon\right)}{n-3}}$	$\begin{gathered} d(a, b) \geq \rho_{2} / 2: V_{2}\left(\rho_{2}\right)=\frac{\ln \left(\alpha_{2} / \varepsilon\right)}{\left(n-2+\ln \left(\alpha_{2} / \varepsilon\right)\right)} \\ \quad \Longrightarrow d(a, b) \geq \sqrt[3]{\frac{\ln \left(\alpha_{2} / \varepsilon\right)}{2 \sqrt{\pi}\left(n-2+\ln \left(\alpha_{2} / \varepsilon\right)\right)}} \end{gathered}$
3	$d(a, b) \geq \sqrt[4]{\frac{96}{\pi^{3 / 2}} \frac{\ln \left(\binom{n}{2}\binom{n-2}{2} / \varepsilon\right)}{n-4}}$	$\begin{aligned} & d(a, b) \geq \rho_{3} / 2: V_{3}\left(\rho_{3}\right)=\frac{\ln \left(\alpha_{3} / \varepsilon\right)}{\left(n-2+\ln \left(\alpha_{3} / \varepsilon\right)\right)} \\ & \Longrightarrow d(a, b) \geq \sqrt[4]{\sqrt[3]{\frac{48}{\pi^{4}}} \frac{\ln \left(\alpha_{3} / \varepsilon\right)}{\left(n-2+\ln \left(\alpha_{3} / \varepsilon\right)\right)}} \end{aligned}$

Results

With boundary

	w.p. $\geq 1-\varepsilon, \nexists \widehat{a b} \in D(P)$	w.p. $\geq \varepsilon, \exists \widehat{a b} \in D(P)$
d	$V_{d}(d(a, b)) \geq \frac{\ln \left(\binom{n}{2}\binom{n-2}{d-1} / \varepsilon\right)}{n-d-1}$?
2	$d(a, b) \geq \sqrt[3]{\frac{16}{\sqrt{\pi}} \frac{\ln \left(\binom{n}{2}(n-2) / \varepsilon\right)}{n-3}}$	$\begin{gathered} d(a, b) \geq \rho_{2} / 2: V_{2}\left(\rho_{2}\right)=\frac{\ln \left(\alpha_{2} / \varepsilon\right)}{\left(n-2+\ln \left(\alpha_{2} / \varepsilon\right)\right)} \\ \quad \Longrightarrow d(a, b) \geq \sqrt[3]{\frac{\ln \left(\alpha_{2} / \varepsilon\right)}{2 \sqrt{\pi}\left(n-2+\ln \left(\alpha_{2} / \varepsilon\right)\right)}} \end{gathered}$
3	$d(a, b) \geq \sqrt[4]{\frac{96}{\pi^{3 / 2}} \frac{\ln \left(\binom{n}{2}\binom{n-2}{2} / \varepsilon\right)}{n-4}}$	$\begin{aligned} & d(a, b) \geq \rho_{3} / 2: V_{3}\left(\rho_{3}\right)=\frac{\ln \left(\alpha_{3} / \varepsilon\right)}{\left(n-2+\ln \left(\alpha_{3} / \varepsilon\right)\right)} \\ & \Longrightarrow d(a, b) \geq \sqrt[4]{\sqrt[3]{\frac{48}{\pi^{4}}} \frac{\ln \left(\alpha_{3} / \varepsilon\right)}{\left(n-2+\ln \left(\alpha_{3} / \varepsilon\right)\right)}} \end{aligned}$

UB for $d=2 \in \Theta(\sqrt[3]{\ln (n / \varepsilon) / n})$
... matching KLSS' 04 for $\varepsilon=1 / n$.

Results

E.g. Proof of Lower Bound in a Disk

Results

E.g. Proof of Lower Bound in a Disk

Results

E.g. Proof of Lower Bound in a Disk

$$
\begin{aligned}
& \operatorname{Pr}(\exists a) \in \Omega(1) \\
& \operatorname{Pr}(\exists b) \in \Omega(1) \\
& \operatorname{Pr}(V(\rho)+1 / n \text { is empty }) \geq \varepsilon
\end{aligned}
$$

Results

E.g. Lower Bound in a Ball

Open Problems

- Lower bound with boundary for $d>3$?

Conjecture: same bound modulo a constant.

- Other norms? $\left(L_{1}, L_{\infty}\right)$
- Other distribution of points.

Thank you!

Questions?

