Contention Resolution in Multiple-access Channels: k-Selection in Radio Networks

Antonio Fernández Anta² Miguel A. Mosteiro^{1,2}

¹Department of Computer Science, Rutgers University

²LADyR, GSyC, Universidad Rey Juan Carlos

COCOON 2010

- Unique resource to be shared among many users
- All contenders must have access eventually
- Only one user at a time may have access

 \Longrightarrow Contention.

• Unknown number of contenders

 \Longrightarrow up to n.

 E.g.: k-Selection in Radio Networks:
 "unknown size-k subset of network nodes must access a unique shared channel of communication

- Unique resource to be shared among many users
- All contenders must have access eventually
- Only one user at a time may have access

 \Longrightarrow Contention.

• Unknown number of contenders

 \Longrightarrow up to n.

• E.g.: k-Selection in Radio Networks:

unknown size-k subset of network nodes
must access a unique shared channel of communication,
each of them at least once."

- Unique resource to be shared among many users
- All contenders must have access eventually
- Only one user at a time may have access

 \Longrightarrow Contention.

• Unknown number of contenders

 \Longrightarrow up to n.

• E.g.: k-Selection in Radio Networks:

"unknown size-k subset of network nodes must access a unique shared channel of communication, each of them at least once."

- Unique resource to be shared among many users
- All contenders must have access eventually
- Only one user at a time may have access

 \Longrightarrow Contention.

• Unknown number of contenders

 \Longrightarrow up to n.

• E.g.: k-Selection in Radio Networks:

"unknown size-k subset of network nodes must access a unique shared channel of communication, each of them at least once."

Radio Network Model and Notation

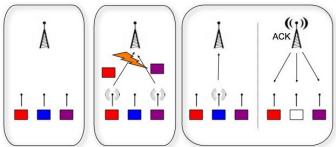
- labeled stations called *nodes*.
- no information except own ID (unique, arbitrary) and n.
- time slotted in communication steps.
- nodes are potentially reachable in one comm step \rightarrow single-hop.
- time complexity = communication steps (negligible computation cost).
- piece of information to deliver called *message*.
- node is *active* if holds a message to deliver.
- message assignment is external (called message arrival).
- batched message arrivals (static k-Selection).
- number of messages left to deliver called density.

Radio Network Model

- communication through radio broadcast on a shared channel.
- in one step:
 - no message transmitted \rightarrow all nodes receive background noise.
 - more than one node transmits → all other nodes receive interference noise.
 (collision, messages garbled, etc.)
 - exactly one node transmits → all other nodes receive message and the sender receives an ack.

(successful transmission, message delivered, single transmission, etc.)

• nodes can not distinguish between interference and background noise.



Related Work

Randomized

- With collision detection:
 - Willard'86:
 - Expected $\log \log k + o(\log \log k)$ for Selection with unknown n.
 - Martel'94:
 - k-Selection expected $O(k + \log n)$ with known n. Kowalski'05: can be improved to expected $O(k + \log \log n)$ using Willard's.
- Without collision detection:
 - Kushilevitz, Mansour'98:
 - For any given protocol, ∃k s.t.
 expected Ω(log n) to get even the first message delivered.

Related Work

Beyond Radio Networks

- Greenberg, Leiserson'89: randomized routing of bounded number of messages in fat-trees \Rightarrow k-Selection if constant edge-capacities. \Rightarrow logarithmic congestion parameter \Rightarrow O(k polylog n).
- Gerèb-Graus, Tsantilas'92: arbitrary h-relations realization in $\Theta(h + \log n \log \log n)$ w.h.p. $\Rightarrow k$ -Selection if h = k. Needs h known.
- Bender, Farach-Colton, Kuszmaul, Leiserson'05: Back-off strategies for contention resolution of batched arrivals of k packets on simple multiple access channels
 log log-iterated back-off → Θ(k log log k/ log log log k)
 - w.p. $\geq 1 1/k^{\Theta(1)}$, without knowledge of a bound on k.

Related Work

Deterministic

- Tree algorithms: $O(k \log(n/k))$ [H'78, MT'78, C'79]. Adaptive, with collision detection.
- Greenberg, Winograd'85: tree algorithms take $\Omega(k \log_k n)$.
- Greenberg, Komlòs'85: \exists oblivious protocols $O(k \log(n/k))$ even without collision detection if k and n are known.
- Clementi, Monti, Silvestri'01: matching lower bound. Also holds for *adaptive* protocols if no collision detection.
- Kowalski'05: oblivious deterministic protocol O(k polylog n) without collision detection, using Indyk'02 explicit selectors.

Result

- Back-on/back-off Randomized k-Selection in one-hop Radio Network in $(e+1+\xi)k + O(\log^2(1/\varepsilon))$ with probability $\geq 1-\varepsilon$ unknown k ($\xi > 0$ arb. small constant).
 - Optimal (modulo a small constant factor < 4) if $\varepsilon \in \Omega(2^{-\sqrt{k}})$.
 - Given $\Omega(k \log \log k / \log \log \log k)$ [Bender et al.'05] for monotonic back-off, shows separation using back-on strategies.
 - Improves over loglog-iterated back-off $O(k \log \log k / \log \log \log k)$ [Bender et al.'05] by exploiting back-on and knowledge of n.
 - Error probability is parametric ⇒ suitable to be used in multi-hop Radio Networks.

without constants

```
• Algorithm AT: (if \delta > \log(1/\varepsilon) messages left)
          Concurrent Task 1:
               t = \log(1/\varepsilon). (set up a step counter)
               \hat{\delta} = \log(1/\varepsilon). (set up a density estimate)
               for each communication step
                     transmit \langle x, message \rangle with probability 1/\hat{\delta}.
                     t = t - 1.
                    if t < 0
                          t = \log(1/\varepsilon). (new round)
                         \hat{\delta} = \hat{\delta} + \log(1/\varepsilon). (update estimate)
```

without constants

```
• Algorithm AT: (if \delta > \log(1/\varepsilon) messages left)
          Concurrent Task 1:
              t = \log(1/\varepsilon). (set up a step counter)
              \hat{\delta} = \log(1/\varepsilon). (set up a density estimate)
              for each communication step
                    transmit \langle x, message \rangle with probability 1/\hat{\delta}.
                    t = t - 1.
                    if t < 0
                         t = \log(1/\varepsilon). (new round)
                         \hat{\delta} = \hat{\delta} + \log(1/\varepsilon). (update estimate)
          Concurrent Task 2:
              upon receiving a message from other node
                   \hat{\delta} = \max{\{\hat{\delta} - 1, \log(1/\varepsilon)\}}. (update estimate)
                   t = t + 1. (stretch round)
```

without constants

```
• Algorithm AT: (if \delta > \log(1/\varepsilon) messages left)
         Concurrent Task 1:
              t = \log(1/\varepsilon). (set up a step counter)
              \hat{\delta} = \log(1/\varepsilon). (set up a density estimate)
              for each communication step
                   transmit \langle x, message \rangle with probability 1/\delta.
                   t = t - 1.
                   if t < 0
                        t = \log(1/\varepsilon). (new round)
                        \hat{\delta} = \hat{\delta} + \log(1/\varepsilon). (update estimate)
         Concurrent Task 2:
              upon receiving a message from other node
                  \hat{\delta} = \max{\{\hat{\delta} - 1, \log(1/\varepsilon)\}}. (update estimate)
                  t = t + 1. (stretch round)
         Concurrent Task 3:
              upon delivering message, stop.
```

without constants

• Algorithm BT: (if $\delta \leq \log(1/\varepsilon)$ messages left) for each communication step transmit $\langle x, message \rangle$ with probability $1/\log(1/\varepsilon)$.

without constants

But we do not know $\delta \to \text{interleave both}$:

```
Concurrent Task 1:
    t = \log(1/\varepsilon), \ \hat{\delta} = \log(1/\varepsilon).
    for each communication step
          if step is even (Algorithm BT)
               transmit \langle x, message \rangle with probability 1/\log(1/\varepsilon).
          if step is odd (Algorithm AT)
               transmit \langle x, message \rangle with probability 1/\delta.
               t = t - 1.
               if t < 0
                    t = \log(1/\varepsilon), \ \hat{\delta} = \hat{\delta} + \log(1/\varepsilon).
Concurrent Task 2:
    upon receiving a message from other node
         \hat{\delta} = \max\{\hat{\delta} - 1, \log(1/\varepsilon)\}.
         t = t + 1.
Concurrent Task 3:
    upon delivering message, stop.
```

- Failure steps:
 - Algorithm AT:
 - At most $k/\log(1/\varepsilon)$ rounds until the estimate reaches k.
 - Each round includes $\log(1/\varepsilon)$ failure steps.
 - Algorithm BT
 - After $\leq \log(1/\varepsilon)$ messages are left, in $O(\log^2(1/\varepsilon))$ steps w.p. 1ε BT delivers all.
- Success steps:
 - One step per message delivered $\Rightarrow k$ overall.
- Overall:
 - $(e+1+\xi)k + O(\log^2(1/\varepsilon))$ (there are some constants...)

- Failure steps:
 - Algorithm AT:
 - At most $k/\log(1/\varepsilon)$ rounds until the estimate reaches k.
 - Each round includes $\log(1/\varepsilon)$ failure steps.
 - Algorithm BT:
 - After $\leq \log(1/\varepsilon)$ messages are left, in $O(\log^2(1/\varepsilon))$ steps w.p. 1ε BT delivers all.
- Success steps:
 - One step per message delivered $\Rightarrow k$ overall.
- Overall:
 - $(e+1+\xi)k + O(\log^2(1/\varepsilon))$ (there are some constants...

- Failure steps:
 - Algorithm AT:
 - At most $k/\log(1/\varepsilon)$ rounds until the estimate reaches k.
 - Each round includes $\log(1/\varepsilon)$ failure steps.
 - Algorithm BT:
 - After $\leq \log(1/\varepsilon)$ messages are left, in $O(\log^2(1/\varepsilon))$ steps w.p. 1ε BT delivers all.
- Success steps:
 - One step per message delivered $\Rightarrow k$ overall.
- Overall:
 - $(e+1+\xi)k + O(\log^2(1/\varepsilon))$ (there are some constants...

- Failure steps:
 - Algorithm AT:
 - At most $k/\log(1/\varepsilon)$ rounds until the estimate reaches k.
 - Each round includes $\log(1/\varepsilon)$ failure steps.
 - Algorithm BT:
 - After $\leq \log(1/\varepsilon)$ messages are left, in $O(\log^2(1/\varepsilon))$ steps w.p. 1ε BT delivers all.
- Success steps:
 - One step per message delivered $\Rightarrow k$ overall.
- Overall:
 - $(e+1+\xi)k + O(\log^2(1/\varepsilon))$ (there are some constants...)

Correctness sketch

Lemma

Until the estimate $\hat{\delta}$ is some "constant close" to the number of messages left δ , within a round, the probability of passing a message is not positively correlated with time.

Lemma

If $\hat{\delta}$ is "logarithmically close" to δ at the begining of a round, until the number of messages delivered in this round is logarithmic, the probability of delivering a message is at least constant.

⇒ we can bound from below logarithmically the number of messages delivered in each round where the estimate is "close" to the number of messages left using Chernoff.

Correctness sketch

Lemma

Until the estimate $\hat{\delta}$ is some "constant close" to the number of messages left δ , within a round, the probability of passing a message is not positively correlated with time.

Lemma

If $\hat{\delta}$ is "logarithmically close" to δ at the beginning of a round, until the number of messages delivered in this round is logarithmic, the probability of delivering a message is at least constant.

⇒ we can bound from below logarithmically the number of messages delivered in each round where the estimate is "close" to the number of messages left using Chernoff.

Correctness sketch

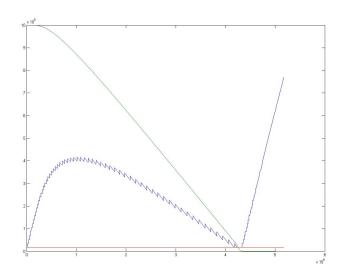
Lemma

If δ is more than some logarithmic number M, after running the AT-algorithm for $(e+1+\xi)k$ steps, where $\xi > 0$ is any constant arbitrarily close to 0, $\delta \leq M$ with probability at least $1-\varepsilon$.

Proof.

- Using Chernoff, the probability of reducing δ logarithmically in each round after $\hat{\delta}$ is "logarithmically close" is at least $1 \varepsilon/(k + \varepsilon)$.
- Using an inductive argument over rounds and conditional probabilities, $\delta \leq M$ in one pass with probability at least 1ε .

Illustration of estimate progress



Correctness sketch

Together with Algorithm BT...

Theorem

For any one-hop Radio Network, under the model detailed, the protocol described solves the k-selection problem within $(e+1+\xi)k + O(\log^2(1/\varepsilon))$ communication steps, where $\xi > 0$ is any constant arbitrarily close to 0, with probability at least $1 - \varepsilon$.

Application

Farach-Colton, Fernández Anta, Mosteiro Optimal Memory-Aware Sensor Network Gossiping

Phases of the algorithm:

- Partition nodes in masters and slaves \Rightarrow MIS $\rightarrow O(\log^2 n)$
- ② Every master reserves blocks of time steps for local use \Rightarrow Coloring $\rightarrow O(\log n)$
- **②** Every master maintains set of messages received \Rightarrow back-on/back-off $\rightarrow O(\Delta + \log^2 n)$
- Every master disseminates local set \Rightarrow flooding among masters $\rightarrow O(D)$

Overall:

$$O(\log^2 n + \log n + \Delta + \log^2 n \log \Delta + D) \in O(\Delta + D)$$
 w.h.p.

Future Work

- lacktriangledown Remove the knowledge of n.
- ② Generalize the system model:
 - Continuous message arrival.
 - Arbitrary wake-up.
- **3** Evaluation of the algorithm:
 - Study its practicality by simulation.
 - Compare it with other algorithms (e.g., Bender et al).
 - Improve its constants.

Thank you