Opportunistic Information Dissemination in Mobile Ad-hoc Networks:
adaptiveness vs. obliviousness and randomization vs. determinism

Miguel A. Mosteiro

Department of Computer Science, Rutgers University &
LADyR, GSyC, Universidad Rey Juan Carlos

Joint work with Martín Farach-Colton, Antonio Fernández Anta,
Alessia Milani, and Shmuel Zaks.

DIMACS April 2012
Mobile Ad-hoc Network (MANET)

- Mobile set of nodes (processors with radio)
- No stable communication infrastructure
- Multihop network
Mobile Ad-hoc Network (MANET)

- Mobile set of nodes (processors with radio)
- No stable communication infrastructure
- Multihop network

E.g.
Opportunistic Communication

Thanks to mobility and asynch activation
communication between x and y is feasible
even if a path never exists! (a *chrono-path*)
The Dissemination Problem

Some information held by a given source node x at time t, must be disseminated to some set of nodes $S \subset V$.

In order to prove lower bounds we use Geocast.
Model

- **Network:**
 - n mobile nodes deployed in \mathbb{R}^2
 - slotted time steps:
 - slot length dominated by communication time
 - same for all nodes

- **Node:**
 - unique ID in $[n]$
 - may start/fail at any time slot
 - radio communication:
 - unique radio channel \implies collisions
 - background noise \equiv collision noise \implies no collision detection
 - no simultaneous reception & transmission
 - limited range $r \implies$ multihop network
Model

- Network:
 - n mobile nodes deployed in \mathbb{R}^2
 - slotted time steps:
 - slot length dominated by communication time
 - same for all nodes

- Node:
 - unique ID in $[n]$
 - may start/fail at any time slot
 - radio communication:
 - unique radio channel \implies collisions
 - background noise \equiv collision noise \implies no collision detection
 - no simultaneous reception & transmission
 - limited range $r \implies$ multihop network
Model

- **Adversary:**
 - initial position and movement
 - de/activation schedule *(many of our lower bounds don’t use it)*

limited by three parameters:
- a maximum speed $v_{\text{max}} > 0$
- the system must be (α, β)-connected, $\alpha, \beta \in \mathbb{Z}^+$

Definition ((\(\alpha, \beta\))-connectivity)

While moving at $\leq v_{\text{max}}$ speed, \forall non-trivial partition (S, \overline{S}),

$$\exists \gamma > \alpha \text{ consecutive steps without a } \beta\text{-stable edge} \text{ between } S \text{ and } \overline{S}.$$

(an edge is k-stable at time t if it exists for k consecutive steps $[t, t + k - 1]$)
Model

(α, β)-connectivity, for the partition defined by the information
Protocols

- **Deterministic:**
 - *oblivious* [K’05,KP’05]: use only node ID and time elapsed since node activation.
 - *quasi-oblivious* [PR’09]: use also the global time.
 - *adaptive*: no restriction.

- **Randomized:**
 - *oblivious* [C’01]: protocol access sequence of random variables at each node, independent of execution and mutually independent.
 - *locally adaptive*: same but rv’s may be mutually dependent. (still independent of the execution)
 - *fair* [C’01]: all nodes transmit with same probability in any given time step. (orthogonal def)
Related Work

Dissemination problems studied:
- Broadcast, Geocast, k-Selection, Multicast, Gossiping, etc.

Deterministic solutions rely on strong synchronization or stability:
- deterministic Broadcast in MANET [MCSPS’06].
 (One-dimension, known position.)
- deterministic Multicast in MANET [GS’99, PR’97].
 (Long enough globally stable topology periods.)

Leaving aside channel contention:
- Broadcast in MANET
 - $\Omega(n)$ rounds [PSMCS’04], even if nodes move in a grid.
 - $\Omega(D \log n)$ [BD’97].
 - $\Omega(n \log n)$ in [DP’07]. (linear D)
- Geocast in MANET [FM’08].
Related Work

Taking into account contention:

- **Broadcast in Static RNs [KP’05]:**
 adaptiveness helps (randomized and deterministic).

- **Deterministic Dissemination in MANET’s [FMMZ Dist. Comp.’12]:**
 adaptiveness helps, using asynchrony.

- **Randomized Dissemination in MANET’s [FFMMZ LATIN’12]:**
 adaptiveness does not help, even with synchrony, for fair or local adaptive protocols and $\alpha/\beta \in O(1)$.

Lower bounds:

- **Broadcast [ABLP’91]:** $\Omega(\log^2 n)$.
- **Randomized Broadcast [KM’98]:** $\Omega(D \log(n/D))$ exp.
- **Oblivious Randomized Broadcast [KP’05]:** $\Omega(n)$ w.p. $\geq 1/2$.

we improve using mobility...
Results

<table>
<thead>
<tr>
<th></th>
<th>randomized</th>
<th>deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[FFMMZ LATIN’12]</td>
<td>[FMMZ Dist.Comp.’12]</td>
</tr>
<tr>
<td>l.b.</td>
<td>oblivious</td>
<td>(w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2 / \log n))</td>
</tr>
<tr>
<td></td>
<td>adaptive</td>
<td>(\Omega (\alpha n + n^2 / \log n)) exp.</td>
</tr>
<tr>
<td></td>
<td>fair</td>
<td>(w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2 / \log n))</td>
</tr>
<tr>
<td>u.b.</td>
<td>oblivious</td>
<td>(O (\alpha n + (1 + \alpha/\beta) n^2 / \log n)) w.h.p.</td>
</tr>
<tr>
<td></td>
<td>adaptive</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>fair</td>
<td>(O (\alpha n + (1 + \alpha/\beta) n^2 / \log n)) w.h.p.</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>randomized</th>
<th>deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[FFMMZ LATIN’12]</td>
<td>[FMMZ Dist.Comp.’12]</td>
</tr>
<tr>
<td>l.b.</td>
<td>oblivious</td>
<td>(w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2 / \log n))</td>
</tr>
<tr>
<td></td>
<td>adaptive</td>
<td>(\Omega (\alpha n + n^2 / \log n)) exp.</td>
</tr>
<tr>
<td></td>
<td>fair</td>
<td>(w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2 / \log n))</td>
</tr>
<tr>
<td>u.b.</td>
<td>oblivious</td>
<td>(O (\alpha n + (1 + \alpha/\beta) n^2 / \log n)) w.h.p.</td>
</tr>
<tr>
<td></td>
<td>adaptive</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>fair</td>
<td>(O (\alpha n + (1 + \alpha/\beta) n^2 / \log n)) w.h.p.</td>
</tr>
</tbody>
</table>

For deterministic algorithms, quasi-obliviousness helps.
<table>
<thead>
<tr>
<th></th>
<th>randomized</th>
<th>deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[FFMMZ LATIN’12]</td>
<td>[FMMZ Dist.Comp.’12]</td>
</tr>
<tr>
<td>l.b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oblivious</td>
<td>(w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2 / \log n))</td>
<td>(\Omega (\alpha n + n^3 / \log n))</td>
</tr>
<tr>
<td>adaptive</td>
<td>(\Omega (\alpha n + n^2 / \log n)) exp.</td>
<td>(\Omega(\alpha n + n^2))</td>
</tr>
<tr>
<td>fair</td>
<td>(w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2 / \log n))</td>
<td>–</td>
</tr>
<tr>
<td>u.b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oblivious</td>
<td>(O (\alpha n + (1 + \alpha/\beta) n^2 / \log n)) w.h.p.</td>
<td>(O(\alpha n + n^3 \log n))</td>
</tr>
<tr>
<td>adaptive</td>
<td>–</td>
<td>(O(\alpha n + n^2))</td>
</tr>
<tr>
<td>fair</td>
<td>(O (\alpha n + (1 + \alpha/\beta) n^2 / \log n)) w.h.p.</td>
<td>–</td>
</tr>
</tbody>
</table>

Also, full-adaptiveness does not help w.r.t. quasi-oblivioussness.
Results

<table>
<thead>
<tr>
<th></th>
<th>randomized</th>
<th>deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[FFMMZ LATIN’12]</td>
<td>[FMMZ Dist. Comp.’12]</td>
</tr>
<tr>
<td>l.b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oblivious</td>
<td>$w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2/\log n)$</td>
<td>$\Omega (\alpha n + n^3/\log n)$</td>
</tr>
<tr>
<td>adaptive</td>
<td>$\Omega (\alpha n + n^2/\log n) \text{ exp.}$</td>
<td>$\Omega (\alpha n + n^2)$</td>
</tr>
<tr>
<td>fair</td>
<td>$w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2/\log n)$</td>
<td>$-$</td>
</tr>
<tr>
<td>fair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u.b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oblivious</td>
<td>$O (\alpha n + (1 + \alpha/\beta) n^2/\log n) \text{ w.h.p.}$</td>
<td>$O(\alpha n + n^3 \log n)$</td>
</tr>
<tr>
<td>adaptive</td>
<td>$-$</td>
<td>$O(\alpha n + n^2)$</td>
</tr>
<tr>
<td>fair</td>
<td>$O (\alpha n + (1 + \alpha/\beta) n^2/\log n) \text{ w.h.p.}$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

For randomized protocols, local-adaptiveness does not help if $\alpha/\beta \in O(1)$.
Results

<table>
<thead>
<tr>
<th></th>
<th>randomized</th>
<th>deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[FFMMZ LATIN’12]</td>
<td>[FMMZ Dist.Comp.’12]</td>
</tr>
<tr>
<td>l.b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oblivious</td>
<td>(w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2 / \log n))</td>
<td>(\Omega (\alpha n + n^3 / \log n))</td>
</tr>
<tr>
<td>adaptive</td>
<td>(\Omega (\alpha n + n^2 / \log n) \text{ exp.})</td>
<td>(\Omega(\alpha n + n^2))</td>
</tr>
<tr>
<td>fair</td>
<td>(w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2 / \log n))</td>
<td>–</td>
</tr>
<tr>
<td>u.b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oblivious</td>
<td>(O (\alpha n + (1 + \alpha/\beta) n^2 / \log n) \text{ w.h.p.})</td>
<td>(O(\alpha n + n^3 \log n))</td>
</tr>
<tr>
<td>adaptive</td>
<td>–</td>
<td>(O(\alpha n + n^2))</td>
</tr>
<tr>
<td>fair</td>
<td>(O (\alpha n + (1 + \alpha/\beta) n^2 / \log n) \text{ w.h.p.})</td>
<td>–</td>
</tr>
</tbody>
</table>

For oblivious protocols, randomization helps if \(\alpha/\beta \in O(1) \).
Results

<table>
<thead>
<tr>
<th></th>
<th>randomized</th>
<th>deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[FFMMZ LATIN'12]</td>
<td>[FMMZ Dist.Comp.'12]</td>
</tr>
<tr>
<td>l.b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oblivious</td>
<td>$w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2 / \log n)$</td>
<td>$\Omega (\alpha n + n^3 / \log n)$</td>
</tr>
<tr>
<td>adaptive</td>
<td>$\Omega (\alpha n + n^2 / \log n)$ exp.</td>
<td>$\Omega (\alpha n + n^2)$</td>
</tr>
<tr>
<td>fair</td>
<td>$w.p. \geq 2^{-n/2} \Rightarrow \Omega (\alpha n + n^2 / \log n)$</td>
<td>–</td>
</tr>
<tr>
<td>u.b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oblivious</td>
<td>$O (\alpha n + (1 + \alpha/\beta) n^2 / \log n)$ w.h.p.</td>
<td>$O(\alpha n + n^3 \log n)$</td>
</tr>
<tr>
<td>adaptive</td>
<td>–</td>
<td>$O(\alpha n + n^2)$</td>
</tr>
<tr>
<td>fair</td>
<td>$O (\alpha n + (1 + \alpha/\beta) n^2 / \log n)$ w.h.p.</td>
<td>–</td>
</tr>
</tbody>
</table>

For adaptive protocols, randomization helps if $\alpha/\beta \in O(1)$.
Deterministic Lower Bounds

By pigeonhole principle:

Lemma

For any deterministic Dissemination protocol, for any time step \(t \), and for any subset \(V' \) of \(k \) informed nodes that do not fail during the interval \([t, t + k - 2]\), there exists some node \(v \in V' \) such that \(v \) does not transmit uniquely among the nodes in \(V' \) during such interval.

By probabilistic method:

Lemma

For any deterministic oblivious Dissemination protocol, and for any subset of \(k \) nodes, \(k \geq 3 \), there exists a node-activation schedule such that, for any time step \(t \), each of the \(k \) nodes is activated in \(\left[t - \left\lfloor \frac{k(k-1)}{\ln(k(k-1))} \right\rfloor + 1, t\right] \), and there is one of the \(k \) nodes that is not scheduled to transmit uniquely among those \(k \) nodes in \(\left[t, t + \left\lfloor \frac{k(k-1)}{\ln(k(k-1))} \right\rfloor - 1\right] \).
Deterministic Lower Bounds

Theorem

For any deterministic Geocast protocol Π, if $\beta < n - 1$,

$\exists (\alpha, \beta)$-connected MANET such that Π does not terminate.

Move nodes from C to B to produce collisions. Using lemma claim follows.
Deterministic Lower Bounds

Theorem

For any deterministic oblivious Geocast protocol Π, if $\beta \leq \left\lfloor \frac{(n-1)(n-3)}{4 \ln((n-1)(n-3)/4)} \right\rfloor$, there exists an (α, β)-connected MANET such that Π does not terminate.

Move nodes from C to B to produce collisions and alternate activations/deactivations. Using lemma claim follows.
Deterministic Lower Bounds

Theorem

For any $v_{max} > \pi r / (3(2\alpha + n - 4))$, and any deterministic Geocast protocol Π, there exists an (α, β)-connected MANET such that Π takes $\Omega(\alpha n + n^2)$.

(a) Distances invariant.

(b) Initial configuration.
Deterministic Lower Bounds

(c) Paths $A \rightsquigarrow C$ and $A \rightsquigarrow A'$.

(d) Paths $A' \rightsquigarrow C'$ and $A' \rightsquigarrow A$.

M. A. Mosteiro
Opportunistic Dissemination in MANETs

Deterministic Lower Bounds

(e) Phase 1 of \(u \) begins.

(f) End of phase 1 of \(u \).

Move nodes between \(B \) and \(B' \) to produce collisions.
Deterministic Lower Bounds

(g) Phase 2 of u and phase 1 of v begin.

(h) End of phase 2 of u and phase 1 of v.

M. A. Mosteiro

Opportunistic Dissemination in MANETs
Deterministic Lower Bounds

(i) Phase 3 of u, 2 of v, and 1 of w (j) End of phase 3 of u, 2 of v, and 1 of w.

Analysis
Deterministic Lower Bounds

Similarly, but additionally using the adversarial activation schedule,

Theorem

For any $0 < \beta < 2 \left(\alpha + \left\lceil \frac{(2n/5)(2n/5-1)}{\ln((2n/5)(2n/5-1))} \right\rceil \right)$,

any $v_{max} > \pi r / \left(6 \left(\alpha + \left\lceil \frac{(2n/5)(2n/5-1)}{\ln((2n/5)(2n/5-1))} \right\rceil - 2 \right) \right)$,

and any oblivious deterministic Geocast protocol Π,

$\exists (\alpha, \beta)$-connected MANET such that Π takes $\Omega(\alpha n + n^3 / \ln n)$.
Deterministic Upper Bounds

Using known techniques:

- quasi-oblivious:
 Round robin padding global clock to the message $\rightarrow n(\alpha + n)$.

- oblivious:
 Primed selection $\rightarrow n(\alpha + 4n(n - 1) \ln(2n))$.
Randomized Lower Bounds

Theorem

For any fair randomized Geocast protocol, ∃ (α, β)-connected MANET such that, within $ck \log_4(1/\varepsilon)/(4 \log k)$ steps after k nodes are covered, no new node is covered with probability at least ε^c.

- Place any node y in B forever.
- For each step where $p \geq 4 \log k/k$, place all nodes from B' in B.
Randomized Lower Bounds

Theorem

For any oblivious randomized Geocast protocol, \(\exists (\alpha, \beta) \)-connected MANET such that, within \(ck/(2(1 + \ln k)) \) steps after \(k \) nodes are covered, no new node is covered with probability at least \((2e^e)^{-c} \).

Probabilities may be different

\[\rightarrow \text{node } y \text{ to be placed in } B \text{ needs to be chosen more carefully.} \]
Randomized Lower Bounds

Theorem

For any oblivious randomized Geocast protocol, \(\exists (\alpha, \beta) \)-connected MANET such that, within \(ck/(2(1 + \ln k)) \) steps after \(k \) nodes are covered, no new node is covered with probability at least \((2e^e)^{-c} \).

How node \(y \) is chosen:

- For each sequence of \(\beta \) slots,
 - Define **quiet** and **noisy** slots according to the sum of probabilities.
 - Choose the node with the smallest sum of probabilities over quiet slots.

It works because:

- a) it is unlikely that \(y \) transmits in quiet slot.
- b) it is unlikely that exactly one node transmits in a noisy slot.
Randomized Lower Bounds

Theorem

For any **oblivious** randomized Geocast protocol, $\exists (\alpha, \beta)$-connected MANET such that, within $ck/(2(1 + \ln k))$ steps after k nodes are covered, no new node is covered with probability at least $(2e^e)^{-c}$.

How node y is chosen:

- For each sequence of β slots,
 - Define **quiet** and **noisy** slots according to the sum of probabilities.
 - Choose the node with the smallest sum of probabilities over quiet slots.

It works because:

a) it is unlikely that y transmits in quiet slot.

b) it is unlikely that exactly one node transmits in a noisy slot.
Randomized Lower Bounds

Theorem

For any locally adaptive randomized Geocast protocol, \(\exists (\alpha, \beta) \)-connected MANET such that, within \(\frac{k}{(2e\xi \ln(\beta^2k^e/\xi))} \) steps after \(k \) nodes were covered, in expectation no new node is covered.

Protocol is adaptive

\[\leq r \leq \beta \leq r + \xi \]

\(r < \delta \leq r + \xi \)

\(A \rightarrow B \rightarrow B' \)

→ the adversary doesn’t know the future

→ choose the “most likely” quietest for the next \(\beta \) steps.

(Will have in expectation < 1 transmissions)
Randomized Lower Bounds

Theorem

For any fair randomized Geocast protocol Π, $\exists (\alpha, \beta)$-connected MANET such that, in order to solve the problem with probability at least $2^{-n/2}$, Π takes at least $\alpha n/2 + n^2/(96 \ln(n/2))$.
Randomized Lower Bounds

Fair protocols

- **Phase 1**: node moves from A to x ($\alpha - 1$ slots)
- **Interlude**: nodes move back and forth between B and B'
- **Phase 2**: node moves from x to C ($\alpha - 1$ slots)
Randomized Lower Bounds

Theorem

For any oblivious randomized Geocast protocol Π, $\exists (\alpha, \beta)$-connected MANET such that, in order to solve the problem with probability at least $2^{-n/2}$, Π takes at least $\alpha n/2 + n^2/(48e \ln(n/2))$.

Theorem

For any locally adaptive randomized Geocast protocol Π, $\exists (\alpha, \beta)$-connected MANET such that, in order to solve the problem, Π takes on expectation at least $\alpha n/2 + e^2(e + 1)^2n^2/(2(e - 1)^2 \ln(n/2))$.

Similar proof, choosing y as in β lower bounds.
Randomized Upper Bounds

Using known techniques:

- oblivious and fair:

 all nodes transmit with probability $\ln n/n$ in each time step,

 $\rightarrow O(n(\alpha + (1 + \alpha/\beta)n/\log n))$.
Conclusions

adaptiveness vs. obliviousness and randomization vs. determinism

Deterministic
- full adaptiveness \(\Omega(\alpha n + n^2) \)
 does not help w.r.t. quasi-obliviousness \((\alpha n + n^2) \).
- almost linear sep. between oblivious \(\Omega(\alpha n + n^3 / \log n) \)
 and quasi-oblivious protocols \((\alpha n + n^2) \).
- while \(\beta = n \) is enough for quasi-oblivious,
 oblivious protocols require \(\beta \in \Omega(n^2 / \log n) \).

Randomized
- local adaptiveness \(\Omega \left(\alpha n + \frac{n^2}{\log n} \right) exp \)
 does not help w.r.t. obliviousness \(O \left(\alpha n + \left(1 + \frac{\alpha}{\beta}\right) \frac{n^2}{\log n} \right) whp \).
- linear sep. between oblivious randomized \(O \left(\alpha n + \left(1 + \frac{\alpha}{\beta}\right) \frac{n^2}{\log n} \right) whp \)
 and oblivious deterministic \(\Omega \left(\alpha n + \frac{n^3}{\log n} \right) \).
- log sep. between adaptive randomized \(O \left(\alpha n + \left(1 + \frac{\alpha}{\beta}\right) \frac{n^2}{\log n} \right) whp \)
 and adaptive deterministic \(\Omega \left(\alpha n + n^2 \right) \).
Thank you