Opportunistic Information Dissemination in Mobile Ad-hoc Networks: The Profit of Global Synchrony

Antonio Fernández Anta 1 Alessia Milani 2 Miguel A. Mosteiro 3 Shmuel Zaks 4

¹Institute IMDEA Networks

²LIP6, Université Pierre et Marie Curie - Paris 6

³Department of Computer Science, Rutgers University

⁴Department of Computer Science, Technion

DISC 2010

Mobile Ad-hoc Network (MANET)

- Mobile set of nodes (processors with radio)
- No stable communication infrastructure
- Multihop network

Mobile Ad-hoc Network (MANET)

- Mobile set of nodes (processors with radio)
- No stable communication infrastructure
- Multihop network

E.g.

Opportunistic Communication

Thanks to mobility and a synch activation communication between x and y is feasible even if a path never exists! (online route)

(Loading oportDiss.mov)

e.g. delay/disruption tolerant networks, opportunistic networking, etc.

The Dissemination Problem

Some information held by a given source node x at time t, must be disseminated to all nodes satisfying a given predicate \mathcal{P} .

Notation:

- a node that has received the information is *covered* (may be off)
- a node that holds the information is informed

The Dissemination Problem

 $\mathcal{P} \Longrightarrow$ Dissemination \equiv Broadcast, Geocast, Multicast, Routing, etc. In order to prove lower bounds we use Geocast:

> $\mathcal{P}(y) = \text{true iff, at time } t,$ y is active and located within distance d of x.

d and t are parameters.

- Network:
 - n mobile nodes deployed in \mathbb{R}^2
 - slotted time steps:
 - slot length dominated by communication time
 - same for all nodes
- Node:
 - unique ID in [n]
 - may start/fail at any time slot
 - radio communication:
 - unique radio channel \Longrightarrow collisions
 - ullet background noise \equiv collision noise \Longrightarrow no collision detection
 - no simultaneous reception & transmission
 - limited range $r \Longrightarrow$ multihop network

- Network:
 - n mobile nodes deployed in \mathbb{R}^2
 - slotted time steps:
 - slot length dominated by communication time
 - same for all nodes
- Node:
 - unique ID in [n]
 - may start/fail at any time slot
 - radio communication:
 - unique radio channel ⇒ collisions
 - ullet background noise \equiv collision noise \Longrightarrow no collision detection
 - no simultaneous reception & transmission
 - limited range $r \Longrightarrow$ multihop network

- Adversary:
 - initial position
 - de/activation schedule (many of our lb's don't even use it)
 - movement

- Adversary:
 - initial position
 - de/activation schedule (many of our lb's don't even use it)
 - movement

But, worst-case adversarial topologies

⇒ # deterministic Broadcast protocol, even if connectivity is guaranteed! [CPMS'07] ⇒adversary must be limited.

- Adversary:
 - initial position
 - de/activation schedule (many of our lb's don't even use it)
 - movement

limited by three parameters:

- a maximum speed $v_{\text{max}} > 0$
- the system must be (α, β) -connected, $\alpha, \beta \in \mathbb{Z}^+$

- Adversary:
 - initial position
 - de/activation schedule (many of our lb's don't even use it)
 - movement

limited by three parameters:

- a maximum speed $v_{\text{max}} > 0$
- the system must be (α, β) -connected, $\alpha, \beta \in \mathbb{Z}^+$

in words:

- while moving at $\leq v_{\text{max}}$ speed,
- $\leq \alpha$ steps disconnected (w.r.t. progress)
- $\geq \beta$ steps pair-stability (to allow progress)
- $(\beta \Longrightarrow \text{impossibility results}, \alpha \Longrightarrow \text{time complexity})$

- Adversary:
 - initial position
 - de/activation schedule (many of our lb's don't even use it)
 - movement

limited by three parameters:

- a maximum speed $v_{\text{max}} > 0$
- the system must be (α, β) -connected, $\alpha, \beta \in \mathbb{Z}^+$

Definition

Given a MANET and an instance of Dissemination, the system is (α, β) -connected if, $\forall t \ \exists t'$:

- $[t, t + \alpha) \cap [t', t' + \beta) \neq \emptyset$
- \exists nodes x, y: x is informed and y is uncovered at time t': x, y are active neighbors during $[t', t' + \beta)$.

 (α, β) -connectivity

(Loading alphabeta.mov)

- Protocols:
 - oblivious protocol [K'05,KP'05]: use only node ID and time elapsed since node activation.
 - quasi-oblivious protocol [PR'09]: use also the global time.
 - adaptive protocol: no restriction.

We assume that uninformed nodes do not transmit.

Related Work

Dissemination problems studied:

Broadcast, Geocast, k-Selection, Multicast, Gossiping, etc.

But, deterministic solutions rely on strong synchronization or stability:

- deterministic Broadcast in MANET [MCSPS'06]. (One-dimension, known position.)
- deterministic Multicast in MANET [GS'99, PR'97]. (Long enough globally stable topology periods.)

Leaving aside channel contention:

- Broadcast in MANET
 - $\Omega(n)$ rounds [PSMCS'04], even if nodes move in a grid.
 - $\Omega(D \log n)$ [BD'97].
 - $\Omega(n \log n)$ in [DP'07]. (linear D)
- Geocast in MANET [FM'08].

Related Work

Dissemination problems studied:

Broadcast, Geocast, k-Selection, Multicast, Gossiping, etc.

But, deterministic solutions rely on strong synchronization or stability:

- deterministic Broadcast in MANET [MCSPS'06]. (One-dimension, known position.)
- deterministic Multicast in MANET [GS'99, PR'97]. (Long enough globally stable topology periods.)

Leaving aside channel contention:

- Broadcast in MANET
 - $\Omega(n)$ rounds [PSMCS'04], even if nodes move in a grid.
 - $\Omega(D \log n)$ [BD'97].
 - $\Omega(n \log n)$ in [DP'07]. (linear D)
- Geocast in MANET [FM'08].

Related Work

Dissemination problems studied:

Broadcast, Geocast, k-Selection, Multicast, Gossiping, etc.

But, deterministic solutions rely on strong synchronization or stability:

- deterministic Broadcast in MANET [MCSPS'06]. (One-dimension, known position.)
- deterministic Multicast in MANET [GS'99, PR'97]. (Long enough globally stable topology periods.)

Leaving aside channel contention:

- Broadcast in MANET
 - $\Omega(n)$ rounds [PSMCS'04], even if nodes move in a grid.
 - $\Omega(D \log n)$ [BD'97].
 - $\Omega(n \log n)$ in [DP'07]. (linear D)
- Geocast in MANET [FM'08].

Results

• \forall Geocast ... protocol: \exists (α, β) -conn MANET:

using only arbitrarily slow movements:

even random
$$\rightarrow \geq \alpha(n-1), v_{\text{max}} > 0$$

using only activation:

(equi)periodic
$$\rightarrow \geq n(n-1)/2, v_{\text{max}} \geq 0$$

Results

• \forall Geocast ... protocol: \exists (α, β) -conn MANET:

using adversarial activation:

oblivious
$$\begin{cases} \Omega\left(\alpha n + \frac{n^3}{\log n}\right) & v_{\max} \in \Omega\left(\frac{\pi r}{\alpha + n^2/\log n}\right) \\ \beta \in \Omega\left(\frac{n^2}{\log n}\right) & v_{\max} > 0 \end{cases}$$

even with simultaneous activation and no failures:

adaptive
$$\begin{cases} \Omega(\alpha n + n^2) & v_{\max} \in \Omega\left(\frac{\pi r}{\alpha + n}\right) \\ \beta \ge n - 1 & v_{\max} > 0 \end{cases}$$

• Dissemination protocols:

oblivious
$$\to \alpha n + O(n^3 \log n)$$
, $\beta \in \Omega(n^2 \log n)$. (Primed-Selection.) quasi-oblivious $\to \alpha n + n^2$, $\beta \ge n$. (Round-Robin, piggybacking a counter.)

By pigeonhole principle:

Lemma

For any time step t of the execution of a Dissemination protocol, where a subset V' of k informed nodes do not fail during the interval [t,t+k-2], there exists some node $v \in V'$ such that v does not transmit uniquely among the nodes in V' during the interval [t,t+k-2].

By probabilistic method:

Lemma

For any deterministic oblivious protocol that solves Dissemination in a MANET of n nodes, where nodes are activated possibly at different times, and for any subset of k nodes, $k \geq 3$, there exists a node-activation schedule such that, for any time slot t and letting $m = \lfloor k(k-1)/\ln(k(k-1)) \rfloor$, each of the k nodes is activated during the interval [t-m+1,t], and there is one of the k nodes that is not scheduled to transmit uniquely among those k nodes during the interval [t,t+m-1].

By pigeonhole principle:

Lemma

For any time step t of the execution of a Dissemination protocol, where a subset V' of k informed nodes do not fail during the interval [t, t+k-2], there exists some node $v \in V'$ such that v does not transmit uniquely among the nodes in V' during the interval [t, t+k-2].

By probabilistic method:

Lemma

For any deterministic oblivious protocol that solves Dissemination in a MANET of n nodes, where nodes are activated possibly at different times, and for any subset of k nodes, $k \geq 3$, there exists a node-activation schedule such that, for any time slot t and letting $m = \lfloor k(k-1)/\ln(k(k-1))\rfloor$, each of the k nodes is activated during the interval [t-m+1,t], and there is one of the k nodes that is not scheduled to transmit uniquely among those k nodes during the interval [t,t+m-1].

Theorem

For any $V_{max} > 0$, d > r, $\alpha > 0$, and any deterministic Geocast protocol Π , if $\beta < n-1$, there exists an (α, β) -connected MANET of n nodes such that Π does not terminate, even if all nodes are activated simultaneously and do not fail.

Theorem

For any $V_{max} > 0$, d > r, $n \ge 8$, $\alpha > 0$, and any deterministic oblivious protocol for Geocast Π , if $\beta \le m = \lfloor (n-1)(n-3)/(4\ln((n-1)(n-3)/4)) \rfloor$, there exists an (α, β) -connected MANET of n nodes such that Π does not terminate.

Theorem

For any $v_{max} > \pi r/(3(2\alpha + n - 4))$, d > r, \forall deterministic Geocast protocol: $\exists (\alpha, \beta)$ -connected MANET: $\Omega(\alpha n + n^2)$.

Initial configuration

(b) End of phase 1 of u

(d) End of phase 2 of u and phase 1 of v

(f) End of phase 3 of u, phase 2 of v, and phase 1 of w

Theorem

For any $v_{max} > \pi r/6(\alpha + \lfloor (n/3)(n/3 - 1)/\ln(n/3(n/3 - 1)) \rfloor - 2)$, d > r, $n \ge 9$, \forall oblivious deterministic Geocast protocol: $\exists (\alpha, \beta)$ -connected MANET: $\frac{\Omega(\alpha n + n^3/\log n)}{(n/3 - 1)}$.

Conclusions

Profit of global synchrony:

- full adaptiveness $(\Omega(\alpha n + n^2))$ does not help w.r.t. quasi-obliviousness $(\alpha n + n^2)$.
- almost linear separation between oblivious $(\Omega(\alpha n + n^3/\log n))$ and quasi-oblivious protocols $(\alpha n + n^2)$.
- while $\beta = n$ is enough for quasi-oblivious, oblivious protocols require $\beta \in \Omega(n^2/\log n)$.

Thank you