Brief Announcement: Opportunistic Information Dissemination in Mobile Ad-hoc Networks:

adaptiveness vs. obliviousness and randomization vs. determinism

¹Department of Computer Science, Rutgers University & Tokutek Inc.

²Institute IMDEA Networks

³LABRI, University of Bordeaux 1

⁴Department of Computer Science, Rutgers University & LADyR, GSyC, Universidad Rey Juan Carlos

⁵Department of Computer Science, Technion

DISC 2011

Mobile Ad-hoc Network (MANET)

- Mobile set of nodes (processors with radio)
- No stable communication infrastructure
- Multihop network

E.g.

Opportunistic Communication

Thanks to mobility and a synch activation $\mbox{communication between } x \mbox{ and } y \mbox{ is feasible}$ $\mbox{even if a path never exists! (a $\it chrono-path$)}$

(Loading oportDiss.mov)

The Dissemination Problem

Some information held by a given source node x at time t, must be disseminated to some set of nodes $S \subset V$.

In order to prove lower bounds we use Geocast.

- Network:
 - n mobile nodes deployed in \mathbb{R}^2
 - slotted time steps:
 - slot length dominated by communication time
 - same for all nodes
- Node:
 - unique ID in [n]
 - may start/fail at any time slot
 - radio communication:
 - unique radio channel ⇒ collisions
 - ullet background noise \equiv collision noise \Longrightarrow no collision detection
 - no simultaneous reception & transmission
 - \bullet limited range $r \Longrightarrow$ multihop network

- Adversary:
 - initial position and movement
 - de/activation schedule (lower bounds don't use it!)

limited by three parameters:

- a maximum speed $v_{\rm max} > 0$
- the system must be (α, β) -connected, $\alpha, \beta \in \mathbb{Z}^+$

Definition $((\alpha, \beta)$ -connectivity)

While moving at $\leq v_{\text{max}}$ speed, \forall non-trivial partition (S, \overline{S}) ,

 $\exists \leq \alpha$ consecutive steps without a β -stable edge between S and \overline{S} .

(an edge is k-stable at time t if it exists for k consecutive steps [t, t + k - 1])

 $(\alpha,\beta)\text{-connectivity, for the partition defined by the information$

(Loading alphabeta.mov)

- Randomized Protocols:
 - oblivious [C'01]: protocol access sequence of random variables at each node, independent of execution and mutually independent.
 - locally adaptive: same but rv's may be mutually dependent. (still independent of the execution)
 - fair [C'01]: all nodes transmit with same probability in any given time step. (orthogonal def)

Results

		randomized	deterministic [FMMZ'10]
l.b.	oblivious	$w.p. \ge 2^{-n/2} \Rightarrow \Omega\left(\alpha n + n^2/\log n\right)$	$\Omega\left(\alpha n + n^3/\log n\right)$
	adaptive	$\Omega\left(\alpha n + n^2/\log n\right) \exp.$	$\Omega(\alpha n + n^2)$
	fair	$w.p. \ge 2^{-n/2} \Rightarrow \Omega\left(\alpha n + n^2/\log n\right)$	_
u.b.	oblivious	$O\left(\alpha n + (1 + \alpha/\beta) n^2 / \log n\right)$ w.h.p.	$O(\alpha n + n^3 \log n)$
	adaptive	-	$O(\alpha n + n^2)$
	fair	$O\left(\alpha n + (1 + \alpha/\beta) n^2 / \log n\right)$ w.h.p.	_

Conclusions

- local adaptiveness $\Omega\left(\alpha n + \frac{n^2}{\log n}\right) exp$ does not help w.r.t. obliviousness $O\left(\alpha n + \left(1 + \frac{\alpha}{\beta}\right) \frac{n^2}{\log n}\right) whp$.
- linear separation between oblivious randomized $O\left(\alpha n + \left(1 + \frac{\alpha}{\beta}\right) \frac{n^2}{\log n}\right) whp$ and oblivious deterministic $\Omega\left(\alpha n + \frac{n^3}{\log n}\right)$.
- log separation between adaptive randomized $O\left(\alpha n + \left(1 + \frac{\alpha}{\beta}\right) \frac{n^2}{\log n}\right) whp$ and adaptive deterministic $\Omega\left(\alpha n + n^2\right)$.

Thank you