Unbounded Contention Resolution in Multiple-access Channels

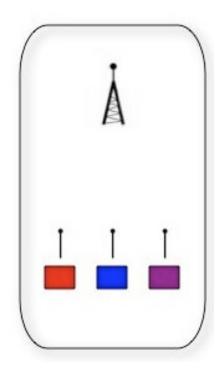
Antonio Fernández Anta Institute IMDEA Networks

Miguel A. Mosteiro Rutgers U. and U. Rey Juan Carlos

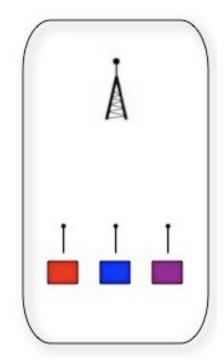
Jorge Ramón Muñoz U. Rey Juan Carlos

- Unique resource to be shared among users
 - All contenders must have access eventually
 - Only one user at a time may have access
 - This leads to contention

- Unique resource to be shared among users
 - All contenders must have access eventually
 - Only one user at a time may have access
 - This leads to contention
- k-Selection problem in Radio Networks:
 - k out of n network nodes have one message to deliver to a base station (BS)
 - Shared communication channel
 - Each node eventually delivers to the BS

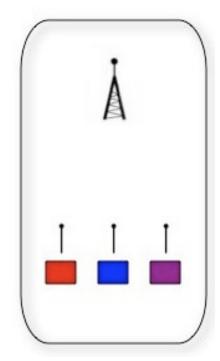


- Unique resource to be shared among users
 - All contenders must have access eventually
 - Only one user at a time may have access
 - This leads to contention
- k-Selection problem in Radio Networks:
 - k out of n network nodes have one message to deliver to a base station (BS)
 - Shared communication channel
 - Each node eventually delivers to the BS



Q: Efficient k-selection with n and k unknown?

- Unique resource to be shared among users
 - All contenders must have access eventually
 - Only one user at a time may have access
 - This leads to contention
- k-Selection problem in Radio Networks:
 - k out of n network nodes have one message to deliver to a base station (BS)
 - Shared communication channel
 - Each node eventually delivers to the BS



Q: Efficient k-selection with n and k unknown?

We concentrate on randomized protocols

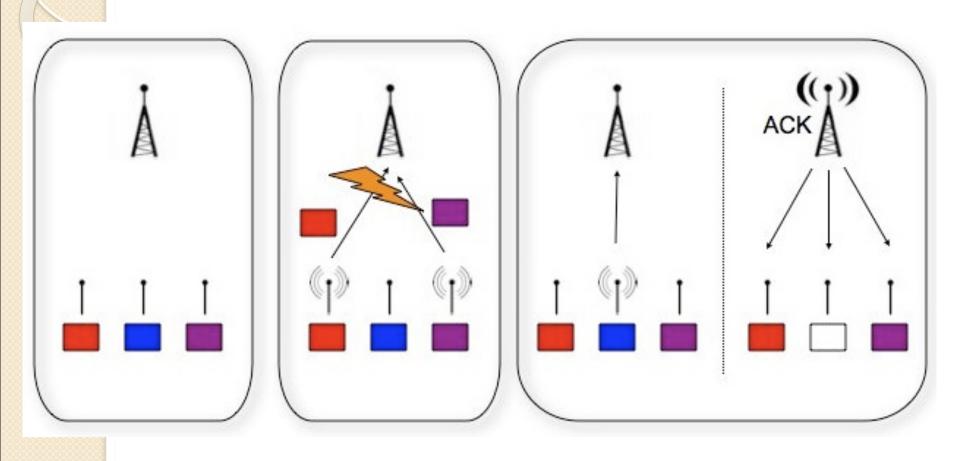
Radio Network Model

- All nodes are reachable in one comm step: single-hop
- No network information (not even the node ID)
- Time slotted in communication steps
- Time complexity = communication steps to complete (no computation cost)
- Batched message arrivals (static k-Selection): all messages arrive at the same time

Radio Network Model

- Broadcast on a shared channel:
 - No node transmits → background noise
 - More than one node transmits → collision
 - Exactly one node transmits → BS receives the message and broadcasts an ACK (successful transmission, message delivered)
- Nodes can not distinguish between collision and background noise: no collision detection.

Radio Network Model



Background noise

Collision

Successful transmission

Deterministic protocols:

- Tree algorithms: $O(k \log(n/k))$ [H'78, MT'78, C'79]. Adaptive, with collision detection
- Greenberg, Winograd'85: tree algorithms $\Omega(k \log_k n)$
- Greenberg, Komlòs'85: $\exists O(k \log(n/k))$ oblivious protocols without collision detection, k and n known
- Clementi, Monti, Silvestri'01: matching lower bound.
 Also holds for adaptive protocols if no collision detection
- Kowalski'05: $O(k \ polylog \ n)$ oblivious deterministic protocol without collision detection (using Indyk'02 explicit selectors)

Randomized protocols:

- With collision detection:
 - Willard'86: Expected log log k + o(log log k) for delivering the first message, with unknown n
 - Martel'94: k-selection expected O(k + log n) with known n
 - Kowalski'05: can be improved using Willard's protocol to expected O(k + log log n)
- Without collision detection:
 - Kushilevitz, Mansour'98: For any given protocol, $\exists k$ s.t. expected $\Omega(\log n)$ to get even the first message delivered

Beyond Radio Networks:

- Gerèb-Graus, Tsantilas'92: arbitrary k-relations realization in $\Theta(k + \log n \log \log n)$ w.h.p. (known k)
- Greenberg, Leiserson'89: routing of messages in fat-trees
 - Farach-Colton, Mosteiro'07: sensor network gossiping
 - Sawtooth technique embedded
 - Known n, asymptotic analysis.

Randomized protocols without collision detection:

- Bender, Farach-Colton, He, Kuszmaul, Leiserson'05: back-off strategies
 - Loglog-iterated Back-off:
 - $\Theta(k \log \log k / \log \log \log k)$ w.p. $\geq 1 1/k^{\Theta(1)}$
 - \circ Unknown k and n
 - Linear sawtooth technique described, no analysis
- Fernández Anta, Mosteiro' I 0: back-on/back-off
 - Log-fails Adaptive: $8k + O(\log^2(1/\varepsilon))$, w.p. $\geq 1-2\varepsilon$
 - Known n (ε depends on n)

Randomized protocols without collision detection:

- Bender, Farach-Colton, He, Kuszmaul, Leiserson'05: back-off strategies

 Not linear on k
 - Loglog-iterated Back-off:
 - $\Theta(k \ loglog \ k/logloglog \ k)$ w.p. $\geq 1 1/k^{\Theta(1)}$
 - \circ Unknown k and n
 - Linear sawtooth technique described, no analysis
- Fernández Anta, Mosteiro' I 0: back-on/back-off
 - Log-fails Adaptive: $8k + O(log^2(1/\epsilon))$, w.p. $\geq 1-2\epsilon$
 - Known n (ε depends on n)

Randomized protocols without collision detection:

- Bender, Farach-Colton, He, Kuszmaul, Leiserson'05: back-off strategies

 Not linear on k
 - Loglog-iterated Back-off:
 - $\Theta(k \ loglog \ k/logloglog \ k)$ w.p. $\geq 1 1/k^{\Theta(1)}$
 - \circ Unknown k and n
 - Linear sawtooth technique described, no analysis
- Fernández Anta, Mosteiro' I 0: back-on/back-off
 - Log-fails Adaptive: $8k + O(\log^2(1/\varepsilon))$, w.p. $\geq 1-2\varepsilon$
 - Known n (ε depends on n)

Results

- Randomized k-selection protocols:
 - One-fail Adaptive:

$$\approx 2(e+1)k + O(\log^2 k), \text{ w.p.} \ge 1-2/$$
(1+k)

Exponential Back-on/Back-off:

$$pprox 4(e+1)k,$$
 w.p. $\geq 1-1/k$

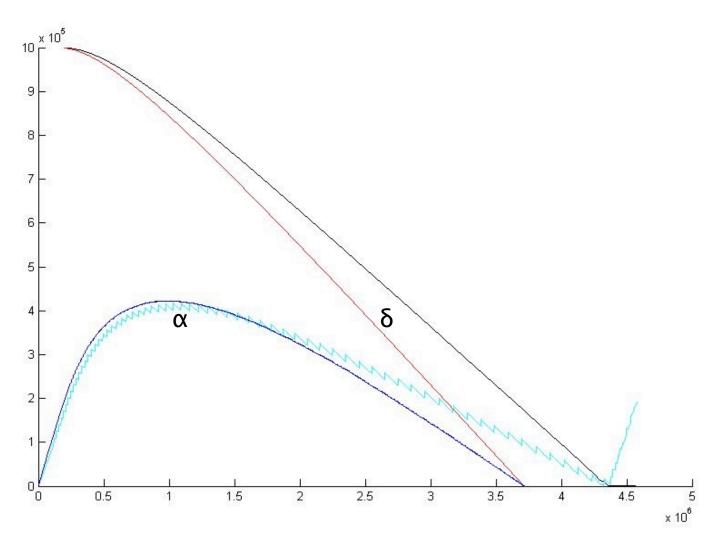
- Time-optimal & unknown k and n
 - Improve Log-fails Adaptive removing knowledge of n
 - Sawtooth analyzed down to constants

- State at each node:
 - An estimate (lower bound) α of the number of active nodes (density δ)
 - Number of successful transmissions σ (lower bound on k)
- In odd steps (Algorithm AT)
 - Nodes transmit with probability $1/\alpha$
- In even steps (Algorithm BT)
 - Nodes transmit with probability $\approx 1/log \sigma$

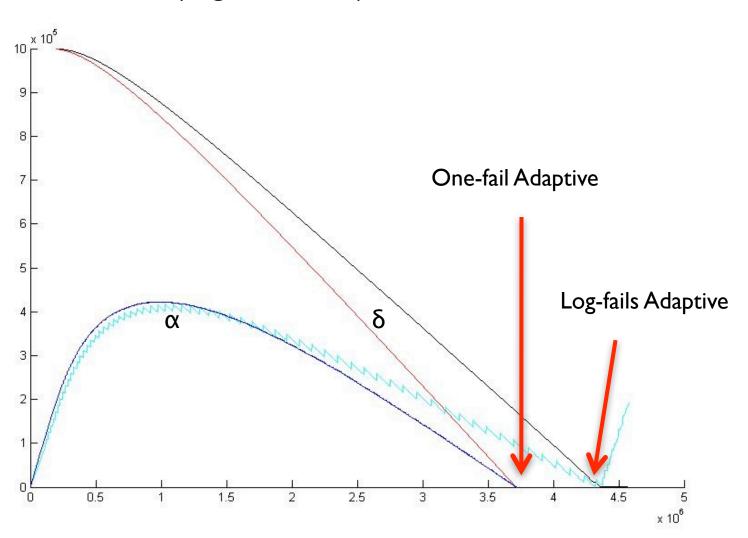
- Intuition:
 - When there are $\delta > \log k$ active nodes and α gets close to δ , AT steps are "good"
 - When there are $\delta \leq \log k$ active nodes, $\sigma \approx k$, and BT steps are "good"
- It is important to keep α below δ as long as active nodes $\delta > \log k$

```
Protocol for node x (without constants):
Concurrent Task 1:
    \sigma = 0, \alpha = e
    for each communication step
         if step is even
                                                   (Algorithm BT)
             transmit (message) with probability 1/log \sigma
         if step is odd
                                                   (Algorithm AT)
             transmit (message) with probability 1/\alpha
             \alpha = \alpha + 1
Concurrent Task 2:
    upon receiving an ACK from BS
    if x did transmit then stop
                                              (successful transmission)
    \sigma = \sigma + 1
    \alpha = max \{ \alpha - e, e \}
```

Estimate evolution (Algorithm AT)



Estimate evolution (Algorithm AT)



Correctness:

- Algorithm AT:
 - We divide the time into rounds of $\approx log k$ steps
 - Concentration bounds show that $\geq log k$ messages/ round are delivered if $\alpha \approx \delta$
 - \circ Then, estimate α never exceeds the density δ
- Algorithm BT:
 - When density $\delta \leq \log k$, then $\sigma = \Theta(k)$ and rest of messages delivered in $O(\log^2 k)$ steps w.p. 1 1/k

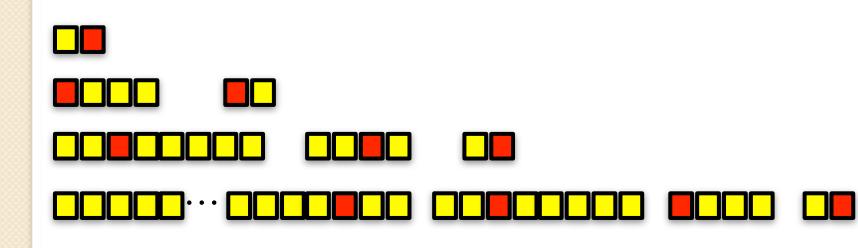
Time performance:

- Algorithm AT:
 - Initially, density estimate: $\delta \alpha \le k$
 - Difference $\delta \alpha$ increased with each message delivered by at most e
 - Difference decreases by 1 otherwise
 - But estimateαalways < densityδ
 - Hence at most (e + 1)k AT steps
- Algorithm BT: $O(log^2 k)$ steps
- Overall:
 - $2(e+1)k + O(\log^2 k) \approx 7.4 k + O(\log^2 k)$

Exponential Back-on/Back-off

Window size adjustment:

```
for i=1,\,2,\,\ldots w=2^i while w\geq 1 transmit in a uniformly chosen step in next w steps w=w\;(1-1/e)
```



Exponential Back-on/Back-off

- Correctness:
 - Bins and balls argument to show at least a constant fraction of deliveries in each subround after $k < w \le 2k$
 - The process completes in the round w = 4k

Time performance:

• Telescoping the number of steps up to the first round when w = 4k yields

$$4(e+1)k \approx 14.9 k$$

k	10	10 ²	10 ³	10^{4}	10 ⁵	10 ⁶	107	Analysis
Log-fails Adaptive $\xi_t=1/2$	46.4	1292.4	181.9	26.6	9.4	8.0	7.8	7.8
Log-fails Adaptive $\xi_t=1/10$	26.3	3289.2	593.8	50.3	11.5	4.5	4.4	4.4
One-fail Adaptive	4.0	6.9	7.4	7.4	7.4	7.4	7.4	7.4
EXP BACK-ON/BACK-OFF	4.0	5.5	5.2	7.2	6.6	5.6	7.9	14.9
Loglog-iterated Back-off	5.6	8.6	9.6	9.2	10.5	10.5	10.1	$\Theta\left(\frac{\log\log k}{\log\log\log k}\right)$

Bad for small k

k	10	10^{2}	10 ³	10 ⁴	10 ⁵	10 ⁶	107	Analysis
Log-fails Adaptive $\xi_t=1/2$	46.4	1292.4	181.9	26.6	9.4	8.0	7.8	7.8
Log-fails Adaptive $\xi_t=1/10$	26.3	3289.2	593.8	50.3	11.5	4.5	4.4	4.4
One-fail Adaptive	4.0	6.9	7.4	7.4	7.4	7.4	7.4	7.4
EXP BACK-ON/BACK-OFF	4.0	5.5	5.2	7.2	6.6	5.6	7.9	14.9
Loglog-iterated Back-off	5.6	8.6	9.6	9.2	10.5	10.5	10.1	$\Theta\left(\frac{\log\log k}{\log\log\log k}\right)$

good even for small k

k	10	10^{2}	10^{3}	10 ⁴	10 ⁵	10 ⁶	107	Analysis
Log-fails Adaptive $\xi_t=1/2$	46.4	1292.4	181.9	3.6	9.4	8.0	7.8	7.8
Log-fails Adaptive $\xi_t=1/10$	26.3	3289.2	593.8	50.3	11.5	4.5	4.4	4.4
One-fail Adaptive	4.0	6.9	7.4	7.4	7.4	7.4	7.4	7.4
EXP BACK-ON/BACK-OFF	4.0	5.5	5.2	7.2	6.6	5.6	7.9	14.9
Loglog-iterated Back-off	5.6	8.6	9.6	9.2	10.5	10.5	10.1	$\Theta\left(\frac{\log\log k}{\log\log\log k}\right)$

k	10	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	107	Analysis
Log-fails Adaptive $\xi_t=1/2$	46.4	1292.4	181.9	26.6	9.4	8.0	7.8	7.8
Log-fails Adaptive $\xi_t=1/10$	26.3	3289.2	593.8	50.3	11.5	4.5	4.4	4.4
One-fail Adaptive	4.0	6.9	7.4	7.4	7.4	7.4	7.4	7.4
EXP BACK-ON/BACK-OFF	4.0	5.5	5.2	7.2	6.6	5.6	7.9	14.9
Loglog-iterated Back-off	5.6	8.6	9.6	9.2	10.5	10.5	10.1	$\Theta\left(\frac{\log\log k}{\log\log\log k}\right)$

Ratio steps/nodes as a function of the number of nodes k.

Not far from the optimal ratio e

k	10	10^{2}	10 ³	10 ⁴	10 ⁵	10 ⁶	107	Analysis
Log-fails Adaptive $\xi_t=1/2$	46.4	1292.4	181.9	26.6	9.4	8.0	7.8	7.8
Log-fails Adaptive $\xi_t=1/10$	26.3	3289.2	593.8	50.3	11.5	4.5	4.4	4.4
One-fail Adaptive	4.0	6.9	7.4	7.4	7.4	7.4	7.4	7.4
EXP BACK-ON/BACK-OFF	4.0	5.5	5.2	7.2	6.6	5.6	7.9	14.9
Loglog-iterated Back-off	5.6	8.6	9.6	9.2	10.5	10.5	10.1	$\Theta\left(\frac{\log\log k}{\log\log\log k}\right)$

Conclusions

- Static k-selection solvable in almost optimal time
- Even without knowledge of k nor n
- Probability w.r.t. k, not with n
- n is not used!!
- Work in progress:
 - Packet arrivals not simultaneous
 - Continuous packet arrival
 - 802. I I-friendly algorithms

Thank you!!

Protocol for node x (without constants) Concurrent Task 1: $\sigma = 0$, $\hat{\kappa} = 4$. (msg-received counter, density estimate) for each communication step if step is even (Algorithm BT) transmit $\langle x, message \rangle$ with probability $1/(1 + \log(\sigma + 1))$. if step is odd (Algorithm AT) transmit $\langle x, message \rangle$ with probability $1/\hat{\kappa}$. $\hat{\kappa} = \hat{\kappa} + 1$. (new estimate) Concurrent Task 2: upon receiving an ACK from BS $\sigma = \sigma + 1$. (update counter) if step is even (Algorithm BT) $\hat{\kappa} = \max{\{\hat{\kappa} - 3, 4\}}$. (new estimate) if step is odd (Algorithm AT) $\hat{\kappa} = \max{\{\hat{\kappa} - 4, 4\}}$. (new estimate) Concurrent Task 3: upon delivering message, stop.

Exponential Back-on/Back-off

Window size adjustment

for
$$i=\{1,2,\dots\}$$
 $w=2^i$ while $w\geq 1$ choose uniformly a step within the next w steps $w=w(1-1/e)$