Unbounded Contention Resolution in Multiple-access Channels

Antonio Fernández Anta Institute IMDEA Networks

ixdea networks

Miguel A. Mosteiro
Rutgers U. and U. Rey Juan Carlos

Jorge Ramón Muñoz
U. Rey Juan Carlos

Shared Resource Contention

- Unique resource to be shared among users
- All contenders must have access eventually
- Only one user at a time may have access
- This leads to contention

Shared Resource Contention

- Unique resource to be shared among users
- All contenders must have access eventually
- Only one user at a time may have access
- This leads to contention
- k-Selection problem in Radio Networks:
- k out of n network nodes have one message to deliver to a base station (BS)
- Shared communication channel
- Each node eventually delivers to the BS

Shared Resource Contention

- Unique resource to be shared among users
- All contenders must have access eventually
- Only one user at a time may have access
- This leads to contention
- k-Selection problem in Radio Networks:
- k out of n network nodes have one message to deliver to a base station (BS)
- Shared communication channel
- Each node eventually delivers to the BS

Q: Efficient k-selection with n and k unknown?

Shared Resource Contention

- Unique resource to be shared among users
- All contenders must have access eventually
- Only one user at a time may have access
- This leads to contention
- k-Selection problem in Radio Networks:
- k out of n network nodes have one message to deliver to a base station (BS)
- Shared communication channel
- Each node eventually delivers to the BS

Q: Efficient k-selection with n and k unknown?
We concentrate on randomized protocols

Radio Network Model

- All nodes are reachable in one comm step: single-hop
- No network information (not even the node ID)
- Time slotted in communication steps
- Time complexity = communication steps to complete (no computation cost)
- Batched message arrivals (static k-Selection): all messages arrive at the same time

Radio Network Model

- Broadcast on a shared channel:
- No node transmits \rightarrow background noise
- More than one node transmits \rightarrow collision
- Exactly one node transmits \rightarrow BS receives the message and broadcasts an ACK (successful transmission, message delivered)
- Nodes can not distinguish between collision and background noise: no collision detection.

Radio Network Model

Background noise

Collision

Successful transmission

Related Work

Deterministic protocols:

- Tree algorithms: $O(k \log (n / k))$ [H'78, MT'78, C'79]. Adaptive, with collision detection
- Greenberg,Winograd'85: tree algorithms $\Omega\left(k \log _{k} n\right)$
- Greenberg, Komlòs'85: ヨ $O(k \log (n / k))$ oblivious protocols without collision detection, k and n known
- Clementi, Monti, Silvestri'OI: matching lower bound. Also holds for adaptive protocols if no collision detection
- Kowalski'05: O (k polylog n) oblivious deterministic protocol without collision detection (using Indyk'02 explicit selectors)

Related Work

Randomized protocols:

- With collision detection:
- Willard'86: Expected $\log \log k+o(\log \log k)$ for delivering the first message, with unknown n
- Martel'94: k-selection expected $O(k+\log n)$ with known n
- Kowalski'05: can be improved using Willard's protocol to expected $O(k+\log \log n)$
- Without collision detection:
- Kushilevitz, Mansour'98: For any given protocol, $\exists k$ s.t. expected $\Omega(\log n)$ to get even the first message delivered

Related Work

Beyond Radio Networks:

- Gerèb-Graus,Tsantilas'92: arbitrary k-relations realization in $\Theta(k+\log n \log \log n)$ w.h.p. (known k)
- Greenberg, Leiserson'89: routing of messages in fat-trees
Farach-Colton, Mosteiro’07: sensor network gossiping
- Sawtooth technique embedded
- Known n, asymptotic analysis.

Related Work

Randomized protocols without collision detection:

- Bender, Farach-Colton, He, Kuszmaul, Leiserson'05: back-off strategies
- Loglog-iterated Back-off:
- $\Theta(k \log \log k / \log \log \log k)$ w.p. $\geq 1-1 / k^{\Theta(1)}$
- Unknown k and n
- Linear sawtooth technique described, no analysis
- Fernández Anta, Mosteiro'I0: back-on/back-off
- Log-fails Adaptive: $8 k+O\left(\log ^{2}(1 / \varepsilon)\right)$, w.p. $\geq 1-2 \varepsilon$
- Known n (ε depends on n)

Related Work

Randomized protocols without collision detection:

- Bender, Farach-Colton, He, Kuszmaul, Leiserson'05: back-off strategies
- Loglog-iterated Back-off:

Not linear on k

- $\Theta(k \log \log k / \log \log \log k)$ w.p. $\geq 1-1 / k^{\Theta(1)}$
- Unknown k and n
- Linear sawtooth technique described, no analysis
- Fernández Anta, Mosteiro'I0: back-on/back-off
- Log-fails Adaptive: $8 k+O\left(\log ^{2}(1 / \varepsilon)\right)$, w.p. $\geq 1-2 \varepsilon$
- Known n (ε depends on n)

Related Work

Randomized protocols without collision detection:

- Bender, Farach-Colton, He, Kuszmaul, Leiserson'05: back-off strategies
- Loglog-iterated Back-off:

Not linear on k

- $\Theta(k \log \log k / \log \log \log k)$ w.p. $\geq 1-1 / k^{\Theta(1)}$
- Unknown k and n
- Linear sawtooth technique described, no analysis
- Fernández Anta, Mosteiro'I0: back-on/back-off
- Log-fails Adaptive: $8 k+O\left(\log ^{2}(1 / \varepsilon)\right)$, w.p. $\geq 1-2 \varepsilon$
- Known n (ε depends on n)

Results

- Randomized k-selection protocols:
- One-fail Adaptive:

$$
\approx 2(e+1) k+O\left(\log ^{2} k\right), \quad \text { w.p. } \geq 1-2 /
$$

($1+k$)

- Exponential Back-on/Back-off:

$$
\approx 4(e+1) k,
$$

$$
\text { w.p. } \geq 1-1 /
$$ $k^{\Theta(l)}$

- Time-optimal \& unknown k and n
- Improve Log-fails Adaptive removing knowledge of n
- Sawtooth analyzed down to constants

One-fail Adaptive

- State at each node:
- An estimate (lower bound) α of the number of active nodes (density δ)
- Number of successful transmissions σ (lower bound on k)
- In odd steps (Algorithm AT)
- Nodes transmit with probability $1 / \alpha$
- In even steps (Algorithm BT)
- Nodes transmit with probability $\approx 1 / \log \sigma$

One-fail Adaptive

- Intuition:
- When there are $\delta>\log k$ active nodes andagets close to δ, AT steps are "good"
- When there are $\delta \leq \log k$ active nodes, $\sigma \approx k$, and BT steps are "good"
- It is important to keep α below δ as long as active nodes $\delta>\log k$

One－fail Adaptive

Protocol for node x（without constants）：
Concurrent Task I：

$$
\sigma=0, \alpha=e
$$

for each communication step if step is even
（Algorithm BT）
transmit 〈message〉 with probability $1 / \log \sigma$
if step is odd
（Algorithm AT）
transmit 〈message〉 with probability $1 / \alpha$

$$
\alpha=\alpha+1
$$

Concurrent Task 2：
upon receiving an ACK from BS
if x did transmit then stop
（successful transmission）

$$
\begin{aligned}
& \sigma=\sigma+1 \\
& \alpha=\max \{\alpha-e, e\}
\end{aligned}
$$

One-fail Adaptive

Estimate evolution (Algorithm AT)

One-fail Adaptive

Estimate evolution (Algorithm AT)

One-fail Adaptive

Correctness:

- Algorithm AT:
- We divide the time into rounds of $\approx \log k$ steps
- Concentration bounds show that $\geq \log k$ messages/ round are delivered if $\alpha \approx \delta$
- Then, estimate α never exceeds the density δ
- Algorithm BT:
- When density $\delta \leq \log k$, then $\sigma=\Theta(k)$ and rest of messages delivered in $O\left(\log ^{2} k\right)$ steps w.p. $1-1 / k$

One-fail Adaptive

Time performance:

- Algorithm AT:
- Initially, density - estimate: $\delta-\alpha<k$
- Difference $\delta-\alpha$ increased with each message delivered by at most e
- Difference decreases by 1 otherwise
- But estimate α always < density δ
- Hence at most $(e+1) k$ AT steps
- Algorithm BT: $O\left(\log ^{2} k\right)$ steps
- Overall:
- $2(e+1) k+O\left(\log ^{2} k\right) \approx 7.4 k+O\left(\log ^{2} k\right)$

Exponential Back-on/Back-off

Window size adjustment: for $i=1,2, \ldots$
$w=2^{i}$
while $w \geq 1$
transmit in a uniformly chosen step in next w steps
$w=w(1-l / e)$
ㅁㅁ

ㄴํำ

Exponential Back-on/Back-off

- Correctness:
- Bins and balls argument to show at least a constant fraction of deliveries in each subround after $k<w \leq 2 k$
- The process completes in the round $w=4 k$

Time performance:

- Telescoping the number of steps up to the first round when $w=4 k$ yields

$$
4(e+1) k \approx 14.9 k
$$

Simulations

Simulations

k	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	Analysis
LOG-FAILS ADAPTIVE $\xi_{t}=1 / 2$	46.4	1292.4	181.9	26.6	9.4	8.0	7.8	7.8
LOG-FAILS ADAPTIVE $\xi_{t}=1 / 10$	26.3	3289.2	593.8	50.3	11.5	4.5	4.4	4.4
ONE-FAIL ADAPTIVE	4.0	6.9	7.4	7.4	7.4	7.4	7.4	7.4
EXP BACK-ON/BACK-OFF	4.0	5.5	5.2	7.2	6.6	5.6	7.9	14.9
LOGLOG-ITERATED BACK-OFF	5.6	8.6	9.6	9.2	10.5	10.5	10.1	$\Theta\left(\frac{\log \log k}{\log \log \log k}\right)$

Ratio steps/nodes as a function of the number of nodes k.

Simulations

Bad for small k

k	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	Analysis
LOG-FAILS ADAPTIVE $\xi_{t}=1 / 2$	46.4	1292.4	181.9	26.6	9.4	8.0	7.8	7.8
LOG-FAILS ADAPTIVE $\xi_{t}=1 / 10$	26.3	3289.2	593.8	50.3	11.5	4.5	4.4	4.4
ONE-FAIL ADAPTIVE	4.0	6.9	7.4	7.4	7.4	7.4	7.4	7.4
EXP BACK-ON/BACK-OFF	4.0	5.5	5.2	7.2	6.6	5.6	7.9	14.9
LOGLOG-ITERATED BACK-OFF	5.6	8.6	9.6	9.2	10.5	10.5	10.1	$\Theta\left(\frac{\log \log k}{\log \log \log k}\right)$

Ratio steps/nodes as a function of the number of nodes k.

Simulations

good even for small k

k	10	10^{2}	10^{3}	$1 / 0^{4}$	10^{5}	10^{6}	10^{7}	Analysis
LOG-FAILS ADAPTIVE $\xi_{t}=1 / 2$	46.4	1292.4	181.9		9.6	9.4	8.0	7.8
LOG-FAILS ADAPTIVE $\xi_{t}=1 / 10$	26.3	3289.2	593.8	50.3	11.5	4.5	4.4	7.8
ONE-FAIL ADAPTIVE	4.0	6.9	7.4	7.4	7.4	7.4	7.4	4.4
EXP BACK-ON/BACK-OFF	4.0	5.5	5.2	7.2	6.6	5.6	7.9	7.4
LOGLOG-ITERATED BACK-OFF	5.6	8.6	9.6	9.2	10.5	10.5	10.1	$\Theta\left(\frac{\log \log k}{\log \log \log k}\right)$

Ratio steps/nodes as a function of the number of nodes k.

Simulations

k	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	Analysis
LOG-FAILS ADAPTIVE $\xi_{t}=1 / 2$	46.4	1292.4	181.9	26.6	9.4	8.0	7.8	7.8
LOG-FAILS ADAPTIVE $\xi_{t}=1 / 10$	26.3	3289.2	593.8	50.3	11.5	4.5	4.4	4.4
ONE-FAIL ADAPTIVE	4.0	6.9	7.4	7.4	7.4	7.4	7.4	7.4
EXP BACK-ON/BACK-OFF	4.0	5.5	5.2	7.2	6.6	5.6	7.9	7.4
LOGLOG-ITERATED BACK-OFF	5.6	8.6	9.6	9.2	10.5	10.5	10.1	$\Theta\left(\frac{14.9}{\log \log k}\right)$

Ratio steps/nodes as a function of the number of nodes k.

Not far from the optimal ratio e

Simulations

k	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	Analysis
LOG-FAILS ADAPTIVE $\xi_{t}=1 / 2$	46.4	1292.4	181.9	26.6	9.4	8.0	7.8	7.8
LOG-FAILS ADAPTIVE $\xi_{t}=1 / 10$	26.3	3289.2	593.8	50.3	11.5	4.5	4.4	4.4
ONE-FAIL ADAPTIVE	4.0	6.9	7.4	7.4	7.4	7.4	7.4	7.4
EXP BACK-ON/BACK-OFF	4.0	5.5	5.2	7.2	6.6	5.6	7.9	14.9
LOGLOG-ITERATED BACK-OFF	5.6	8.6	9.6	9.2	10.5	10.5	10.1	$\Theta\left(\frac{\log \log k}{\log \log \log k}\right)$

Ratio steps/nodes as a function of the number of nodes k.

Conclusions

- Static k-selection solvable in almost optimal time
- Even without knowledge of k nor n
- Probability w.r.t. k, not with n
- n is not used!!
- Work in progress:
- Packet arrivals not simultaneous
- Continuous packet arrival
-802. I I-friendly algorithms

Thank you!!

Protocol for node x (without constants)
Concurrent Task 1:
$\sigma=0, \hat{\kappa}=4$. (msg-received counter, density estimate)
for each communication step
if step is even (Algorithm BT)
transmit $\langle x$, message \rangle with probability $1 /(1+\log (\sigma+1))$.
if step is odd (Algorithm AT)
transmit $\langle x$, message \rangle with probability $1 / \hat{\kappa}$.
$\hat{\kappa}=\hat{\kappa}+1$. (new estimate)
Concurrent Task 2:
upon receiving an ACK from BS
$\sigma=\sigma+1$. (update counter)
if step is even (Algorithm BT)

$$
\hat{\kappa}=\max \{\hat{\kappa}-3,4\} . \text { (new estimate) }
$$

if step is odd (Algorithm AT)

$$
\hat{\kappa}=\max \{\hat{\kappa}-4,4\} . \text { (new estimate) }
$$

Concurrent Task 3:
upon delivering message, stop.

Exponential Back-on/Back-off

Window size adjustment

```
\[
\text { for } i=\{1,2, \ldots\}
\]
```

$w=2^{i}$
while $w \geq 1$
choose uniformly a step within the next w steps

$$
w=w(1-1 / e)
$$

