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We concentrate on randomized protocols




Radio Network Model

* All nodes are reachable in one comm step:
single-hop
* No network information (not even the node ID)

* Time slotted in communication steps

* Time complexity = communication steps to
complete (no computation cost)

* Batched message arrivals (static k-Selection): all
messages arrive at the same time




Radio Network Model

* Broadcast on a shared channel:
> No node transmits — background noise
o More than one node transmits — collision

o Exactly one node transmits — BS receives the
message and broadcasts an ACK (successful
transmission, message delivered)

* Nodes can not distinguish between
collision and background noise: no collision
detection.
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Related Work

Deterministic protocols:

Tree algorithms: O(k log(n/k)) [H'78, MT°78, C'79].
Adaptive, with collision detection

Greenberg,Winograd’85: tree algorithms Q(k log, n)
Greenberg, Komlos’85: 3 O(k log(n/k)) oblivious
protocols without collision detection, k and n known

Clementi, Monti, Silvestri’0|: matching lower bound.
Also holds for adaptive protocols if no collision
detection

Kowalski’05: O(k polylog n) oblivious deterministic
protocol without collision detection (using Indyk’02
explicit selectors)




Related Work

Randomized protocols:
With collision detection:
Willard’86: Expected log log k + o(log log k) for
delivering the first message, with unknown n

Martel’94: k-selection expected O(k + log n) with
known n

Kowalski’05: can be improved using Willard’s protocol
to expected O(k + log log n)

Without collision detection:

Kushilevitz, Mansour’98: For any given protocol, 3k s.t.

expected Q(log n) to get even the first message
delivered




Related Work

Beyond Radio Networks :
Gereb-Graus, Tsantilas’92: arbitrary k-relations
realization in @(k +log n loglog n) w.h.p. (known
k)
Greenberg, Leiserson’89: routing of messages in
fat-trees
Farach-Colton, Mosteiro’07: sensor network
gossiping

Sawtooth technique embedded

Known 7, asymptotic analysis.
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— What if n is not known?




Results

Randomized £-selection protocols:
One-fail Adaptive:

~2(e +1)k + O(log k), w.p.>1-2/
(1+k)

Exponential Back-on/Back-off:

~4(e + Dk, w.p.>1—-1/
FO1)

Time-optimal & unknown k and n

Improve Log-fails Adaptive removing knowledge
of n

Sawtooth analyzed down to constants




One-fail Adaptive

State at each node:

An estimate (lower bound)Xof the number of
active nodes (density 0)

Number of successful transmissions O (lower
bound on k)

In odd steps (Algorithm AT)
Nodes transmit with probability 7/

In even steps (Algorithm BT)
Nodes transmit with probability =//log o




One-fail Adaptive

Intuition:

When there are 0> log k active nodes andtgets
close tod, AT steps are “good”

When there ared< log k active nodes, 0= £k, and
BT steps are “good”
It is important to keepObelowdas long as
active nodes 0> log k




One-fail Adaptive

Protocol for node x (without constants):
Concurrent Task |I:
c=0a=e
for each communication step
if step is even (Algorithm BT)
transmit {message) with probability //log o
if step is odd (Algorithm AT)
transmit {message) with probability //o
a=otl
Concurrent Task 2:
upon receiving an ACK from BS
if x did transmit then stop (successful transmission)
oc=o0+t1
o =max {o. — e, e}




One-fail Adaptive

Estimate evolution (Algorithm AT)
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One-fail Adaptive

Correctness:

Algorithm AT:

We divide the time into rounds of = [og k steps

Concentration bounds show that > /og k messages/
round are delivered if o = 0

Then, estimateXnever exceeds the density O

Algorithm BT:

When density 0 <log k, then ¢ =O@(k) and rest of
messages delivered in O(log? k) steps w.p. I - 1/k




One-fail Adaptive

Time performance:
Algorithm AT:

Initially, density — estimate:0 —a < k

Difference 0 — o increased with each message
delivered by at most e

Difference decreases by / otherwise
But estimateXalways < density®
Hence at most (e +1)k AT steps

Algorithm BT: O(log’ k) steps
Overall:
2(e +Dk + O(log? k) = 7.4 k + O(log’ k)




Exponential Back-on/Back-off

Window size adjustment:

fori=1 2 ...
w=2
while w > [
transmit in a uniformly chosen step in next w steps

w=w(l— 1/e)
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Exponential Back-on/Back-off

Correctness:

Bins and balls argument to show at least a
constant fraction of deliveries in each sub-
round after £k < w <2k

The process completes in the round w =4k

Time performance:

Telescoping the number of steps up to the first
round when w = 4k yields

dfe + Dk=14.9k




Simulations




Simulations

k | 10 104 10° 10% 10° 10° 10" Analysis
LOG-FAILS ADAPTIVE §4 = 1/2 46.4 1292.4 181.9 26.6 9.4 8.0 7.8 7.8
LOG-FAILS ADAPTIVE £4; = 1/10 26.3 3289.2 593.8 50.3 11.5 4.5 4.4 4.4
ONE-FAIL ADAPTIVE 4.0 6.9 7.4 7.4 7.4 7.4 7.4 7.4
Exp BACK-ON/BACK-OFF 4.0 5.5 5.2 7.2 6.6 5.6 7.9 14.9
LOGLOG-ITERATED BACK-OFF 5.6 8.6 9.6 9.2 | 105 | 105 | 10.1 log log k )
log log log k

Ratio steps/nodes as a function of the number of nodes k.




Simulations

Bad for small k
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Simulations

good even for small k
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Not far from the optimal ratio e
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Conclusions

Static k-selection solvable in almost optimal
time

Even without knowledge of £ nor n
Probability w.r.t. &, not with n

n is not used!!

Work in progress:
Packet arrivals not simultaneous

Continuous packet arrival
802.1 I -friendly algorithms




Thank you!!




Protocol for node x (without constants)

Concurrent Task 1:
o =0, K = 4. (msg-received counter, density estimate)
for each communication step
if step is even (Algorithm BT)
transmit (z, message) with probability 1/(1 + log(c + 1)).
if step is odd (Algorithm AT)
transmit (x, message) with probability 1/&.
k =k + 1. (new estimate)
Concurrent Task 2:
upon receiving an ACK from BS
o = o0 + 1. (update counter)
if step is even (Algorithm BT)
k = max{k — 3,4}. (new estimate)
if step is odd (Algorithm AT)
k = max{k — 4,4}. (new estimate)
Concurrent Task 3:
upon delivering message, stop.




Exponential Back-on/Back-off

Window size adjustment

fori={1,2,...}
w = 2"
while w > 1

choose uniformly a step within the next w steps
w=w(l—1/e)




