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Show that there is a ranking function with high resistance & low distortion! 
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The Stationary Distribution of a Random Walk

Definition: 

Fraction of time at each node = stationary distribution 

Graph

1.Start at an arbitrary node

2.Take a random out edge

3.Go forever
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Stationary Distribution: Pros and Cons

Pros: 
• Reward having in-edges from high-quality pages

• Easy to compute


Cons: 
• Not defined on all graphs (only on ergodic graphs)

• Not defined for the web graph!


What does a grad student* do when their idea doesn’t work?

Come up with a workaround!
*NB: Grad students = Brin and Page
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PageRank: the workaround that saved the stationary distribution idea

PageRank is the stationary distribution of a slightly different random walk 
• Let reset vector  be a distribution over the nodes

• In the PageRank paper, , the uniform distribution over the nodes


PageRank is defined for every graph!  (unless ) 

Types of PageRank: 
• When , it’s called the Uniform PageRank (UPR)

• When , for some center , it’s called Personalized PageRank (PPR )

r
r = u

ε = 0

r = u
r[c] = 1 c c
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}Sybil attack
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Example: Uniform PageRank

If ranker is using UPR, what should the spammer do?

The Web

UPR

Lots of new

nodes for 


free
PageRank will reset to new 

nodes quite often


So spammer can acquire 
as much rank as they want


With no expenditure!

This trivial vulnerability of UPR is why it was never used for web ranking at Google!

So total captured rank approaches 1.
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If ranker is using PPR, what should the spammer do?

Example: Personalized PageRank

The Web

PPRc

Lots of new

nodes for 


free

Spammer must acquire a 
high rank node


It can then divert random 
walks into it’s own new 
nodes


Where they last for about 
 steps before reseting 

to 
1/ε

c

So total captured rank is PPRc(d)/ε

Spammer acquires a high rank node d

c
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Contribution: Definition of Spam Resistance

A ranking function is -spam resistant if 

Lemma: UPR is 0-spam resistant 

Theorem: PPR with reset probability  is -spam resistant 
• Conjecture: This is the best any PageRank can do over all choices of reset vectors

σ

ε ε

Spammer's Cost
Spammer's Benefit

≥ σmin
spammer choices

max
choice of cost function
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Personalized PageRank has local distortion

The nodes just downstream of  get very high rankc

Local distortion of rankings 

PPRc

c

The Web



Contribution: Defining distortion of a ranking function

Following Brin & Page:  
• On ergodic graphs, stationary distribution is the reference rank


We define distortion as the max multiplicative error vs reference rank

max
ergodic graphs G=(V,E)

max
v∈V

max { rank of v
reference rank of v

,
reference rank of v

rank of v }
*

*for technical reasons, we round up all ranks to something reasonable like 1/nO(1)

contractionstretch
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Partial results

Theorem: UPR has poor spam resistance and poor distortion 

Theorem: PPR has good spam resistance and poor distortion

What does a grad student* do when their idea doesn’t work?

Come up with a workaround!
*Again, Brin and Page!

That’s progress, but still need to deal with distortion
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Compute two PPRs: one with center  and one with center  

Compute the (normalized) component-wise min!

c d
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PPRa = c(x) min{a, b} PPRb = d(x)



Compute two PPRs: one with center  and one with center  

Compute the component-wise min! 
• PPR  will kill distortion around  and vice versa

c d

c d

Reducing distortion of PPR

c

The Web

d

The Web

PPRc PPRd



Compute two PPRs: one with center  and one with center  

Compute the component-wise min! 
• PPR  will kill distortion around  and vice versa

c d

c d

Reducing distortion of PPR

c

The Web

d

The Web

PPRc PPRd



Compute two PPRs: one with center  and one with center  

Compute the component-wise min! 
• PPR  will kill distortion around  and vice versa

c d

c d

Reducing distortion of PPR

c

The Web

d

The Web

PPRc PPRd



And now for main 
theorems



Main theorems



Main theorems

Theorem: For almost all choices of centers, Min-PPR has low distortion! 
• Almost all = from a sensible distribution (see paper)




Main theorems

Theorem: For almost all choices of centers, Min-PPR has low distortion! 
• Almost all = from a sensible distribution (see paper)


Theorem: Min-PPR with  centers is -spam resistant! 
• So if  is small, Min-PPR is almost as spam resistant as PPR

• And the proof gives a concrete (natural) cost function

• The cost function tells the rankers where to spend their spam-detection efforts

k ε/k
k
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Fun fact about PageRank and component-wise min
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Technical Nugget

Fun fact about PageRank and component-wise min

Theorem: PageRank vectors is closed under norm. component-wise min

reset vector r

A Graph

reset probability ε

PageRank pr

reset vector s PageRank ps

, norm min of p* pr, psvector r*
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Summary

We formalize web ranker-spammer interaction as a game 

We observe that all ranking functions in the literature have poor distortion 
or poor spam resistance (or both) 

We prove that the heuristic used by Google has good resistance and good 
distortion 
• Technical nugget: we use the closure property of PageRank extensively in our proofs
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Further questions

More work to be done on the web ranking spamming game 
• Formalize setting the cost function?


Spamming is ubiquitous. Can we analyze games for: 
• Wikipedia spamming?

• Citation spamming? H-index spamming?

Goodhart’s Law 
When a measure becomes a target, it ceases to be a good measure. 

(unless you can prove spam resistance)


