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A sensor node

Capabilities

• processing

• sensing

• communication

Limitations

• range

• memory

• life cycle

University of California, Berkeley and Intel Berkeley Research Lab. Deborah Estrin, UCLA, holds a sensor node.
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Sensor network

Constraints:

– weak sensors.

– geometric random distribution.
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Hop-optimal Networks in the Weak Sensor Model

Sensor network

Constraints:

– weak sensors.

– geometric random distribution.

Question:

How to organize such a network optimally?

Our result:

Optimal-Network Bootstrapping
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Our results

Geometric properties

• There exists a hop-optimal subgraph of a random geometric graph with

useful properties for weak sensors (details to follow).

Network bootstrapping

• Polylogarithmic localized algorithm to build the network modelled by such

a graph within the Weak Sensor Model.

Byproduct

• Fast maximal independent set (MIS) distributed algorithm with contention

resolution.

All with high probability.
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Hop-optimal Networks in the Weak Sensor Model

This talk

• Problem details.

– The Weak Sensor Model.

– Optimization criteria.

– Random geometric graph model.

• Related work.

• Our results.

• Future work.
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The Weak Sensor Model

• Limited memory size.

• Limited life cycle.

• Limited range.

• No initial infrastructure.

• Radio tx on a shared channel.

• Binary channel-status: tx|other.

• Discrete tx power range.

• One channel of communication.

• Non-simultaneous rx and tx.

• No position information.

• No synchronicity.

• Adversarial wake-up schedule.

• No global controller.

tx = transmission.

rx = reception.
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This talk

• Problem details.

– The Weak Sensor Model.

– Optimization criteria.

– Random geometric graph model.

• Related work.

• Our results.

• Future work.
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Optimization criteria

Maximize life cycle subject to the Weak Sensor Model constraints.

communication cost ∼ distα · count

range
min

u v

Transmission count due to contention resolution!

fewer hops ⇒ less energy
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Random geometric graph model

Random distributions inR2:

need to understand geometric properties such as:

– connectivity

– path length

– coverage

Gn,r,`

• [0, `]2

• ` → ∞
• Structural properties depend on

relation amongr, n and`.

`
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Random geometric graph model

Route-stretch

dmin(u,v)
dopt(u,v)

=
∑m−1

i=0 D(xi,xi+1)

D(u,v)
xm−1

x2

x1

v = xmD(u, v)

u = x0

Hop-stretch

dmin(u,v)
dopt(u,v)

= m
D(u,v)/r

xm−1

x2

x1

v = xmD(u, v)

u = x0
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This talk

• Problem details.

• Related work.

• Our results.

• Future work.
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Related work
Geometric properties

• Connectivity inGn,r.

[Gupta,Kumar,98]

Graph is connecteda.a.s. whenπr2 = log n+c(n)
n

if c(n) → ∞.

• Threshold properties inGn,r,`.

[Muthukrishnan,Pandurangan,03]

∗ Physical coverage whenr2n ∈ Θ(`2) a.a.s.

∗ Graph connectivity whenr2n ∈ Θ(`2 ln `) a.a.s.

∗ Route stretch of1 + α
2

whenr2n ∈ Ω
(

1
α
`2 ln `

)

a.a.s.

• Threshold properties inGn,r.

[Goel,Rai,Krishnamachari,04]

All monotone graph properties have a sharp threshold for random geometric graphs.
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Related work
Network bootstrapping

• Sensor networks.

[Sohrabi et al.,00] Flat topology.

Number of channels function of density.

[Blough et al., 03] k-neighbors protocol.

Distance estimation.

[Song et al., 04] OrdYaoGG structure power spanner.

Distance estimation, directional antenna.

All: memory size function of density and no contention resolution in the analysis.

• Bluetooth: scatternet formation.

[Salonidis et al., 01] One-hop network.

[Barrière et al. 03] One-hop network, max 32 nodes.

Other scatternet formation in multi-hop networks are heuristic.
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Related work
Related problems

Clustering, dominating set, maximal independent set, leader election, vertex coloring, etc.

Most of the solutions assume underlying communication infrastructure.

• MIS

[Moscibroda,Wattenhofer,04]

3 channels of communication.

proof of correctness is broken.

Ω(log6 n/ log2 log n) for one channel.
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This talk

• Problem details.

• Related work.

• Our results.

– Disk-cover algorithm.

– Proof of hop-optimality.

– Proof ofO(1) degree.

• Future work.
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Our results

Geometric properties

• There exists a hop-optimal subgraph for any connected random geometric

graph, even under a constant-degree assumption.

Network bootstrapping

• O(log3 `) localized algorithm to build the network modelled by such a

graph within the Weak Sensor Model.

Byproduct

• One-channelO(log2 `) MIS distributed algorithm with contention resolu-

tion.

All with high probability.
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Our results
Geometric properties

We want:

Random geometric graph. Hop-optimal constant-degree subgraph.

How?

– Define a cover of the rgg with disks.

– Glue all disks usingbridges.

– Connect all nodes within each disk to its bridge.

Miguel Mosteiro, Department of Computer Science, Rutgers University 34



Hop-optimal Networks in the Weak Sensor Model

Disk-cover algorithm
Given a threshold graph, find anoverlaid graph as follows:

• Define an MIS with radiusar/2 among the nodes (0 < a < 1).

• Designate all MIS members asbridges.

• Connect all bridges within a distance ofr.

• Lay down a disk of radiusr/2 centered on each bridge.

• Construct a constant-degree spanner within each disk.
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This talk

• Problem details.

• Related work.

• Our results.

– Disk-cover algorithm.

– Proof of hop-optimality.

– Proof ofO(1) degree.

• Future work.
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Proof of hop-optimality
What is the optimal path betweenu and v?

Lemmas:
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Proof of hop-optimality
What is the optimal path betweenu and v?

Lemmas:

• There is a path in the threshold graph ofO(D(u, v)/r) short edges,

i.e. edges of length≤ 1−a
b

r for any constantb > 1.

Proof: If the density of nodes isn
`2

> 64+α2

α

(

b
1−a

)2 ln `
r2

wherer = θ(`εf(`)),f(`) ∈ o(`γ), γ > 0, 0 ≤ ε < 1, 0 < α ≤ 1,

then there is a path in the threshold graph of≤
⌈

D(u,v)
r

b
√

4+α2

1−a

⌉

short edges w.h.p.

The points are sufficiently dense to guarantee the existenceof such a path.
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Proof of hop-optimality
What is the optimal path betweenu and v?

Lemmas:

• There is a path in the threshold graph ofO(D(u, v)/r) short edges,

i.e. edges of length≤ 1−a
b

r for any constantb > 1.

• Each short edge is completely covered by one disk.

Proof: details to follow.

Miguel Mosteiro, Department of Computer Science, Rutgers University 43



Hop-optimal Networks in the Weak Sensor Model

Proof of hop-optimality
What is the optimal path betweenu and v?

Lemmas:

• There is a path in the threshold graph ofO(D(u, v)/r) short edges,

i.e. edges of length≤ 1−a
b

r for any constantb > 1.

• Each short edge is completely covered by one disk.

• The number of nodes in any disk of radiusΘ(r) is Θ(log `).

Proof: Chernoff bounds on a uniform distribution.
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Proof of hop-optimality
What is the optimal path betweenu and v?

Lemmas:

• There is a path in the threshold graph ofO(D(u, v)/r) short edges,

i.e. edges of length≤ 1−a
b

r for any constantb > 1.

• Each short edge is completely covered by one disk.

• The number of nodes in any disk of radiusΘ(r) is Θ(log `).

u v

Theorem: d(u, v) ∈ O(D(u, v)/r + log `) is asymptotically optimal.
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Proof of hop-optimality
Each short edge is completely covered by one disk

Length of short edges≤ (1 − a)r/b for some constantb > 1.
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Proof of hop-optimality
Each short edge is completely covered by one disk

Length of short edges≤ (1 − a)r/b for some constantb > 1.

d

ar/2

r/2

d’

d > r
2 −

(1−a)r
2b

d′ > r
2
− (1−a)r

2b
− ar

2
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Proof of hop-optimality
Each short edge is completely covered by one disk

Length of short edges≤ (1 − a)r/b for some constantb > 1.

d
d’

d > r
2 −

(1−a)r
2b

d′ > r
2
− (1−a)r

2b
− ar

2
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This talk

• Problem details.

• Related work.

• Our results.

– Disk-cover algorithm.

– Proof of hop-optimality.

– Proof of O(1) degree.

• Future work.
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Proof of O(1) degree
Bridge nodes

• Bridges are separated by a distance at leastar/2 w.h.p.

• Bridges are interconnected within a radius ofr w.h.p.

There are≤ 3d 4
a
√

3
e
(

d 4
a
√

3
e + 1

)

bridges in any disk of radiusr.
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Proof of O(1) degree
Non-bridge nodes

• Connected by a constant-degree spanner.

• Covered by a constant number of discs.
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Trade-off
Among the length of the optimal path ...

There is a path of≤
⌈

D(u,v)
r

b
√

4+α2

1−a

⌉

+ O(log `) hops w.h.p.

... the maximum degree ...

The degree of any bridge is≤ 3d 4
a
√

3
e
(

d 4
a
√

3
e + 1

)

+ 1 w.h.p.

... and the density ...

The density of nodes isn
`2

> 64+α2

α

(

b
1−a

)2 ln `
r2 .

... where0 < a < 1, b > 1 and0 < α ≤ 1.

Longer edges covered=⇒ lower density=⇒ smaller number of hops=⇒ bigger degree.
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Our results

Geometric properties

• There exists a hop-optimal subgraph for any connected random geometric

graph, even under a constant-degree assumption.

Network bootstrapping

• O(log3 `) localized algorithm to build the network modelled by such a

graph within the Weak Sensor Model.

Byproduct

• One-channelO(log2 `) MIS distributed algorithm with contention resolu-

tion.

All with high probability.
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This talk

• Problem details.

• Related work.

• Our results.

• Future work.
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Future work

• Faster network bootstrapping algorithm.

• Lower bounds for MIS for uniform and non-uniform distribution of nodes.

• Extensions of the MIS algorithm to other problems such as coloring.

• Positioning based on local distance estimation.

• Routing in this network.
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Thank you
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Localized algorithm
For each nodei in parallel

Run the MIS algorithm with rangear/2

If i ∈ MIS

Designatei as a bridge

Connect to neighboring bridges by broadcasting ID with ranger

Lay down a disk of radiusr/2 centered ini by broadcasting with ranger/2

Connect with disk neighbors forming a constant-degree spanner.
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MIS algorithm
Initialize a counter to0.

Repeat

Broadcast the counter with probability1/δ1 log `.

Else

If a counter was received and|counterreceived − counter| ≤ dδ2 log `e then

Set counter to−dδ2 log `e.
If an MIS member ID was received then stop.

If this node has ever transmitted, increase the counter.

If the counter has reacheddδ3 log2 `e then

This node declares itself an MIS member.

Repeat

Broadcast the ID with probability1/δ4
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Spanner construction algorithm
Bridge nodes

Asign local index to non-bridge nodes upon request.

Non-bridge nodes

Obtain a local index from the bridge.

Connect to current neighbors to form a butterfly network.

Handle new neighbor arrivals.
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Hop-stretch
A local spanner of small diameter: Hamilton-expander

- If G is δ-regular→ λ0 = δ andλn−1 ≥ −δ

- [AlMi85] If G is δ-regular→ Diameter(G) ≤ 2
√

2δ/δ − λ1 log n.

- [Al86][Fr03] Randomδ-regular graphs→ λ1 ≤ 2
√

δ − 1 + ε for anyε > 0 w.h.p.

- [Fr03] Same result for multigraphs composed ofδ/2 random Hamilton cycles with prob-

ability O(1 − 1/nγ) whereγ = d
√

δ − 1e − 1.

If G is a multigraph onn nodes composed ofδ/2 random Hamilton cycles:

Diameter(G) ∈ O(log n) with probabilityO(1 − 1/nγ) , γ = d
√

δ − 1e − 1

But, within a given disk, there areO(log `) nodes, then:

Diameter(Hamilton − expander) ∈ O(log log `) with probabilityO(1 − 1/ logγ `)
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Hamilton-expander algorithm
Bridge nodes

Initialize an index to0.

Repeat

If an index request is received then

Increase index.

Send the current index forδ6 steps with probability1/β3.

Non-bridge nodes

Phase 1: Ordering the nodes locally using the bridge

Initialize a counter to0.

Repeat

With probability1/β3 request a new index from the bridge.

If not requesting and an index is received then stop.

Increase the counter.

Wait for (δ6 log3 n − counter + (index − 1)δ7 log2 n) steps.
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Hamilton-expander algorithm
Non-bridge nodes

Phase 2: Joining the Hamilton-expander

Choosed nodes at random in the index range[1, index − 1]].

For τ1 steps, request the ID’s of the chosen nodes and their successors.

Repeat

If an ID is received then update linked list.

If all answers were received then stop.

Phase 3: Handling insertion requests

Repeat

If an ID request is received then

Broadcast the ID forτ2 steps with probability1/β4.
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Proof of hop-optimality
A path of O(D(u, v)/r + log `) hops is asymptotically optimal

D(u, v)/r is a lower bound of the length of an optimal path.

In a δ-regular graph:

Pr(d(u, v) < c log n) ≤ 1

n − 1

c log n−2
∑

i=0

δ(δ − 1)i ∈ O(n−γ)

Thus, inG(n, r, `), wherer2n = k`2 ln `, r = θ(`εf(`)),f(`) ∈ o(`γ), γ > 0, 0 ≤ ε < 1.

d(u, v) ∈ Ω(log `) w.h.p.

Hence,(D(u, v)/r + log `)/2 is a lower bound of the length of such a path.
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Proof of hop-optimality
The number of nodes in any disk of radiusΘ(r) is Θ(log `).

ConsiderG(n, r, `), wherer2n = k`2 ln `, r = θ(`εf(`)),f(`) ∈ o(`γ), γ > 0, 0 ≤ ε < 1.

Consider a circle of radiusβr for any constantβ > 0.

The probability of falling in the circle isπβ2r2/`2.

Using Chernoff bounds and the parameter conditions:

Pr(X ≥ (1 + ε)πβ2k ln `) ≤ `−
ε2πβ2k

3

Pr(X ≤ (1 − ε)πβ2k ln `) ≤ `−
ε2πβ2k

2

ar/2

br/2
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Proof of hop-optimality
There is a path in the threshold graph ofO(D(u, v)/r) short edges

xi+1

r”

xir′

r′ = b−a
c

r

r” = r′√
1+(α/2)2

αr”/2vu

0 < α ≤ 1

Path definition: for any nodexi

• The nodexi+1 lies in the strip.

• Dh(xi, xi+1) ≤ r′′.

• The horizontal distanceDh(xi+1, v) is minimized.
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Proof of hop-optimality
There is a path in the threshold graph ofO(D(u, v)/r) short edges

Assume there is nohole.

r′ = b−a
c

r

r”/2

xi+1xi
xi−1

y

r” = r′√
1+(α/2)2

because> r”

if < r”/2

then< r”

r′
αr”/2vu

SinceDh(xi, xi+1) ≥ r′′/2 for 0 ≤ i < m,

d(u, v) ≤
⌈

2
Dh(u, v)

r′′

⌉

=

⌈

2
D(u, v)

r

b
√

1 + (α/2)2

1 − a

⌉

∈ O(D(u, v)/r) hops.
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Proof of hop-optimality
There is no hole within a strip

G(n, r′, `), wherer′2n = k`2 ln `, r′ = θ(`εf(`)),f(`) ∈ o(`γ), γ > 0, 0 ≤ ε < 1.

r′ = b−a
c

r

r”/2

xi+1xi
xi−1

y

r” = r′√
1+(α/2)2

because> r”

if < r”/2

then< r”

r′
αr”/2vu
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Pr[Hole] ≤
(

n

2

)

n
αr′′√

2`

(

1 − αr′′2

4`2

)n−1

∈ O(`−γ) for k > 6
4 + α2

α
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Optimization criteria

Maximize life cycle subject to the Weak Sensor Model constraints.

• Minimize transmission power:

– Polynomial in the distance.

– Power cannot be adjusted to any number of levels.

– Not clear how to minimize.

• Minimize transmission count:

– Transmission count dominated by contention resolution.

– Each hop in a path requires a new round of contention.

– Transmission count can be minimized:the relevant measure is the

number of hops.
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