Hop-optimal Networks in the Weak Sensor Model

Miguel Mosteiro

Department of Computer Science, Rutgers University

Joint work with Martín Farach-Colton and Rohan Fernandes

A sensor node

Capabilities

- processing
- sensing
- communication

University of California, Berkeley and Intel Berkeley Research Lab.

Limitations

- range
- memory
- life cycle

Deborah Estrin, UCLA, holds a sensor node.

Sensor network

Constraints:

- weak sensors.
- geometric random distribution.

Sensor network

Constraints:

- weak sensors.
- geometric random distribution.

Question:

How to organize such a network optimally?

Sensor network

Constraints:

- weak sensors.
- geometric random distribution.

Question:

How to organize such a network optimally?

Our result:

Optimal-Network Bootstrapping

Our results

Geometric properties

• There exists a hop-optimal subgraph of a random geometric graph with useful properties for weak sensors (details to follow).

Network bootstrapping

• Polylogarithmic localized algorithm to build the network modelled by such a graph within the Weak Sensor Model.

Byproduct

• Fast maximal independent set (MIS) distributed algorithm with contention resolution.

All with high probability.

This talk

- Problem details.
 - The Weak Sensor Model.
 - Optimization criteria.
 - Random geometric graph model.
- Related work.
- Our results.
- Future work.

- Limited memory size.
- Limited life cycle.
- Limited range.
- No initial infrastructure.
- Radio tx on a shared channel.
- Binary channel-status: tx|other.
- Discrete tx power range.

- One channel of communication.
- Non-simultaneous rx and tx.
- No position information.
- No synchronicity.
- Adversarial wake-up schedule.
- No global controller.

tx = transmission.

- Limited memory size.
- Limited life cycle.
- Limited range.
- No initial infrastructure.
- Radio tx on a shared channel.
- Binary channel-status: tx|other.
- Discrete tx power range.

- One channel of communication.
- Non-simultaneous rx and tx.
- No position information.
- No synchronicity.
- Adversarial wake-up schedule.
- No global controller.

tx = transmission.

- Limited memory size.
- Limited life cycle.
- Limited range.
- No initial infrastructure.
- Radio tx on a shared channel.
- Binary channel-status: tx|other.
- Discrete tx power range.

- One channel of communication.
- Non-simultaneous rx and tx.
- No position information.
- No synchronicity.
- Adversarial wake-up schedule.
- No global controller.

tx = transmission.

- Limited memory size.
- Limited life cycle.
- Limited range.
- No initial infrastructure.
- Radio tx on a shared channel.
- Binary channel-status: tx|other.
- Discrete tx power range.

- One channel of communication.
- Non-simultaneous rx and tx.
- No position information.
- No synchronicity.
- Adversarial wake-up schedule.
- No global controller.

tx = transmission.

- Limited memory size.
- Limited life cycle.
- Limited range.
- No initial infrastructure.
- Radio tx on a shared channel.
- Binary channel-status: tx|other.
- Discrete tx power range.

- One channel of communication.
- Non-simultaneous rx and tx.
- No position information.
- No synchronicity.
- Adversarial wake-up schedule.
- No global controller.

tx = transmission.

- Limited memory size.
- Limited life cycle.
- Limited range.
- No initial infrastructure.
- Radio tx on a shared channel.
- Binary channel-status: tx|other.
- Discrete tx power range.

- One channel of communication.
- Non-simultaneous rx and tx.
- No position information.
- No synchronicity.
- Adversarial wake-up schedule.
- No global controller.

tx = transmission.

- Limited memory size.
- Limited life cycle.
- Limited range.
- No initial infrastructure.
- Radio tx on a shared channel.
- Binary channel-status: tx|other.
- Discrete tx power range.

- One channel of communication.
- Non-simultaneous rx and tx.
- No position information.
- No synchronicity.
- Adversarial wake-up schedule.
- No global controller.

tx = transmission.

- Limited memory size.
- Limited life cycle.
- Limited range.
- No initial infrastructure.
- Radio tx on a shared channel.
- Binary channel-status: tx|other.
- Discrete tx power range.

- One channel of communication.
- Non-simultaneous rx and tx.
- No position information.
- No synchronicity.
- Adversarial wake-up schedule.
- No global controller.

tx = transmission.

- Limited memory size.
- Limited life cycle.
- Limited range.
- No initial infrastructure.
- Radio tx on a shared channel.
- Binary channel-status: tx|other.
- Discrete tx power range.

- One channel of communication.
- Non-simultaneous rx and tx.
- No position information.
- No synchronicity.
- Adversarial wake-up schedule.
- No global controller.

tx = transmission.

- Limited memory size.
- Limited life cycle.
- Limited range.
- No initial infrastructure.
- Radio tx on a shared channel.
- Binary channel-status: tx|other.
- Discrete tx power range.

- One channel of communication.
- Non-simultaneous rx and tx.
- No position information.
- No synchronicity.
- Adversarial wake-up schedule.
- No global controller.

tx = transmission.

- Limited memory size.
- Limited life cycle.
- Limited range.
- No initial infrastructure.
- Radio tx on a shared channel.
- Binary channel-status: tx|other.
- Discrete tx power range.

- One channel of communication.
- Non-simultaneous rx and tx.
- No position information.
- No synchronicity.
- Adversarial wake-up schedule.
- No global controller.

tx = transmission.

This talk

- Problem details.
 - The Weak Sensor Model.
 - Optimization criteria.
 - Random geometric graph model.
- Related work.
- Our results.
- Future work.

Optimization criteria

Maximize life cycle subject to the Weak Sensor Model constraints.

 $communication\ cost \sim dist^{\alpha} \cdot count$

Transmission count due to contention resolution!

 $fewer hops \Rightarrow less energy$

This talk

- Problem details.
 - The Weak Sensor Model.
 - Optimization criteria.
 - Random geometric graph model.
- Related work.
- Our results.
- Future work.

Random distributions in \mathbb{R}^2 :

need to understand geometric properties such as:

- connectivity
- path length
- coverage

 $\mathcal{G}_{n,r,\ell}$

- $\bullet [0,\ell]^2$
- \bullet $\ell \to \infty$
- Structural properties depend on relation among r, n and ℓ .

Random distributions in \mathbb{R}^2 :

need to understand geometric properties such as:

- connectivity
- path length
- coverage

 $\mathcal{G}_{n,r,\ell}$

- $\bullet \ [0,\ell]^2$
- \bullet $\ell \to \infty$
- Structural properties depend on relation among r, n and ℓ .

Random distributions in \mathbb{R}^2 :

need to understand geometric properties such as:

- connectivity
- path length
- coverage

 $\mathcal{G}_{n,r,\ell}$

- $\bullet \ [0,\ell]^2$
- \bullet $\ell \to \infty$
- Structural properties depend on relation among r, n and ℓ .

Random distributions in \mathbb{R}^2 :

need to understand geometric properties such as:

- connectivity
- path length
- coverage

- $\mathcal{G}_{n,r,\ell}$ $[0,\ell]^2$
 - \bullet $\ell \to \infty$
 - Structural properties depend on relation among r, n and ℓ .

Random distributions in \mathbb{R}^2 :

need to understand geometric properties such as:

- connectivity
- path length
- coverage

- $\mathcal{G}_{n,r,\ell}$ $[0,\ell]^2$
 - \bullet $\ell \to \infty$
 - Structural properties depend on relation among r, n and ℓ .

Route-stretch

Hop-stretch

This talk

- Problem details.
- Related work.
- Our results.
- Future work.

Related work

Geometric properties

• Connectivity in $\mathcal{G}_{n,r}$.

[Gupta,Kumar,98]

Graph is connected a.a.s. when $\pi r^2 = \frac{\log n + c(n)}{n}$ if $c(n) \to \infty$.

• Threshold properties in $\mathcal{G}_{n,r,\ell}$.

[Muthukrishnan,Pandurangan,03]

- * Physical coverage when $r^2n \in \Theta(\ell^2)$ a.a.s.
- * Graph connectivity when $r^2n \in \Theta(\ell^2 \ln \ell)$ a.a.s.
- * Route stretch of $1 + \frac{\alpha}{2}$ when $r^2 n \in \Omega\left(\frac{1}{\alpha}\ell^2 \ln \ell\right) a.a.s.$
- Threshold properties in $\mathcal{G}_{n,r}$.

[Goel,Rai,Krishnamachari,04]

All monotone graph properties have a sharp threshold for random geometric graphs.

Related work

Network bootstrapping

Sensor networks.

[Sohrabi et al.,00] Flat topology.

Number of channels function of density.

[Blough et al., 03] k-neighbors protocol.

Distance estimation.

[Song et al., 04] OrdYaoGG structure power spanner.

Distance estimation, directional antenna.

All: memory size function of density and no contention resolution in the analysis.

• Bluetooth: scatternet formation.

[Salonidis et al., 01] One-hop network.

[Barrière et al. 03] One-hop network, max 32 nodes.

Other scatternet formation in multi-hop networks are heuristic.

Related work

Related problems

Clustering, dominating set, maximal independent set, leader election, vertex coloring, etc. Most of the solutions assume underlying communication infrastructure.

• MIS

[Moscibroda, Wattenhofer, 04]

3 channels of communication.

proof of correctness is broken.

 $\Omega(\log^6 n / \log^2 \log n)$ for one channel.

This talk

- Problem details.
- Related work.
- Our results.
 - Disk-cover algorithm.
 - Proof of hop-optimality.
 - Proof of O(1) degree.
- Future work.

Our results

Geometric properties

• There exists a hop-optimal subgraph for any connected random geometric graph, even under a constant-degree assumption.

Network bootstrapping

• $O(\log^3 \ell)$ localized algorithm to build the network modelled by such a graph within the Weak Sensor Model.

Byproduct

• One-channel $O(\log^2 \ell)$ MIS distributed algorithm with contention resolution.

All with high probability.

Our results

Geometric properties

We want:

Random geometric graph.

Hop-optimal constant-degree subgraph.

How?

- Define a cover of the rgg with disks.
- Glue all disks using *bridges*.
- Connect all nodes within each disk to its bridge.

Disk-cover algorithm

Given a threshold graph, find an *overlaid graph* as follows:

- Define an MIS with radius ar/2 among the nodes (0 < a < 1).
- Designate all MIS members as *bridges*.
- Connect all bridges within a distance of r.
- Lay down a disk of radius r/2 centered on each bridge.
- Construct a constant-degree spanner within each disk.

Disk-cover algorithm

Given a threshold graph, find an *overlaid graph* as follows:

- Define an MIS with radius ar/2 among the nodes (0 < a < 1).
- Designate all MIS members as bridges.
- Connect all bridges within a distance of r.
- Lay down a disk of radius r/2 centered on each bridge.
- Construct a constant-degree spanner within each disk.

Disk-cover algorithm

Given a threshold graph, find an *overlaid graph* as follows:

- Define an MIS with radius ar/2 among the nodes (0 < a < 1).
- Designate all MIS members as bridges.
- Connect all bridges within a distance of r.
- Lay down a disk of radius r/2 centered on each bridge.
- Construct a constant-degree spanner within each disk.

Disk-cover algorithm

Given a threshold graph, find an *overlaid graph* as follows:

- Define an MIS with radius ar/2 among the nodes (0 < a < 1).
- Designate all MIS members as bridges.
- Connect all bridges within a distance of r.
- Lay down a disk of radius r/2 centered on each bridge.
- Construct a constant-degree spanner within each disk.

Disk-cover algorithm

Given a threshold graph, find an *overlaid graph* as follows:

- Define an MIS with radius ar/2 among the nodes (0 < a < 1).
- Designate all MIS members as bridges.
- ullet Connect all bridges within a distance of r.
- Lay down a disk of radius r/2 centered on each bridge.
- Construct a constant-degree spanner within each disk.

This talk

- Problem details.
- Related work.
- Our results.
 - Disk-cover algorithm.
 - Proof of hop-optimality.
 - Proof of O(1) degree.
- Future work.

What is the optimal path between u and v?

What is the optimal path between u and v?

Lemmas:

• There is a path in the threshold graph of O(D(u,v)/r) short edges, i.e. edges of length $\leq \frac{1-a}{b}r$ for any constant b>1.

Proof: If the density of nodes is $\frac{n}{\ell^2} > 6 \frac{4+\alpha^2}{\alpha} \left(\frac{b}{1-a}\right)^2 \frac{\ln \ell}{r^2}$

where
$$r = \theta(\ell^{\epsilon} f(\ell)), f(\ell) \in o(\ell^{\gamma}), \gamma > 0, 0 \le \epsilon < 1, 0 < \alpha \le 1,$$

then there is a path in the threshold graph of $\leq \left\lceil \frac{D(u,v)}{r} \frac{b\sqrt{4+\alpha^2}}{1-a} \right\rceil$ short edges w.h.p.

The points are sufficiently dense to guarantee the existence of such a path.

What is the optimal path between u and v?

Lemmas:

- There is a path in the threshold graph of O(D(u,v)/r) short edges, i.e. edges of length $\leq \frac{1-a}{b}r$ for any constant b>1.
- Each short edge is completely covered by one disk.

Proof: details to follow.

What is the optimal path between u and v?

Lemmas:

- There is a path in the threshold graph of O(D(u,v)/r) short edges, i.e. edges of length $\leq \frac{1-a}{b}r$ for any constant b>1.
- Each short edge is completely covered by one disk.
- The number of nodes in any disk of radius $\Theta(r)$ is $\Theta(\log \ell)$.

Proof: Chernoff bounds on a uniform distribution.

What is the optimal path between u and v?

- There is a path in the threshold graph of O(D(u,v)/r) short edges, i.e. edges of length $\leq \frac{1-a}{b}r$ for any constant b>1.
- Each short edge is completely covered by one disk.
- The number of nodes in any disk of radius $\Theta(r)$ is $\Theta(\log \ell)$.

What is the optimal path between u and v?

- There is a path in the threshold graph of O(D(u,v)/r) short edges, i.e. edges of length $\leq \frac{1-a}{b}r$ for any constant b>1.
- Each short edge is completely covered by one disk.
- The number of nodes in any disk of radius $\Theta(r)$ is $\Theta(\log \ell)$.

What is the optimal path between u and v?

- There is a path in the threshold graph of O(D(u,v)/r) short edges, i.e. edges of length $\leq \frac{1-a}{b}r$ for any constant b>1.
- Each short edge is completely covered by one disk.
- The number of nodes in any disk of radius $\Theta(r)$ is $\Theta(\log \ell)$.

What is the optimal path between u and v?

- There is a path in the threshold graph of O(D(u,v)/r) short edges, i.e. edges of length $\leq \frac{1-a}{b}r$ for any constant b>1.
- Each short edge is completely covered by one disk.
- The number of nodes in any disk of radius $\Theta(r)$ is $\Theta(\log \ell)$.

What is the optimal path between u and v?

Lemmas:

- There is a path in the threshold graph of O(D(u,v)/r) short edges, i.e. edges of length $\leq \frac{1-a}{b}r$ for any constant b>1.
- Each short edge is completely covered by one disk.
- The number of nodes in any disk of radius $\Theta(r)$ is $\Theta(\log \ell)$.

Theorem: $d(u,v) \in O(D(u,v)/r + \log \ell)$ is asymptotically optimal.

What is the optimal path between u and v?

Lemmas:

- There is a path in the threshold graph of O(D(u,v)/r) short edges, i.e. edges of length $\leq \frac{1-a}{b}r$ for any constant b>1.
- Each short edge is completely covered by one disk.
- The number of nodes in any disk of radius $\Theta(r)$ is $\Theta(\log \ell)$.

Theorem: $d(u,v) \in O(D(u,v)/r + \log \ell)$ is asymptotically optimal.

Each short edge is completely covered by one disk

Each short edge is completely covered by one disk

Each short edge is completely covered by one disk

Each short edge is completely covered by one disk

Each short edge is completely covered by one disk

This talk

- Problem details.
- Related work.
- Our results.
 - Disk-cover algorithm.
 - Proof of hop-optimality.
 - Proof of O(1) degree.
- Future work.

Proof of O(1) **degree**

Bridge nodes

- Bridges are separated by a distance at least ar/2 w.h.p.
- \bullet Bridges are interconnected within a radius of r w.h.p.

There are $\leq 3\lceil \frac{4}{a\sqrt{3}} \rceil \left(\lceil \frac{4}{a\sqrt{3}} \rceil + 1 \right)$ bridges in any disk of radius r.

Proof of O(1) degree

Non-bridge nodes

- Connected by a constant-degree spanner.
- Covered by a constant number of discs.

Trade-off

Among the length of the optimal path ...

There is a path of
$$\leq \left\lceil \frac{D(u,v)}{r} \frac{b\sqrt{4+\alpha^2}}{1-a} \right\rceil + O(\log \ell)$$
 hops w.h.p.

... the maximum degree ...

The degree of any bridge is
$$\leq 3\lceil \frac{4}{a\sqrt{3}} \rceil \left(\lceil \frac{4}{a\sqrt{3}} \rceil + 1 \right) + 1$$
 w.h.p.

... and the density ...

The density of nodes is
$$\frac{n}{\ell^2} > 6 \frac{4+\alpha^2}{\alpha} \left(\frac{b}{1-a}\right)^2 \frac{\ln \ell}{r^2}$$
.

... where 0 < a < 1, b > 1 and $0 < \alpha \le 1$.

 $\textbf{Longer edges covered} \Longrightarrow \textbf{lower density} \Longrightarrow \textbf{smaller number of hops} \Longrightarrow \textbf{bigger degree.}$

Our results

Geometric properties

• There exists a hop-optimal subgraph for any connected random geometric graph, even under a constant-degree assumption.

Network bootstrapping

• $O(\log^3 \ell)$ localized algorithm to build the network modelled by such a graph within the Weak Sensor Model.

Byproduct

• One-channel $O(\log^2 \ell)$ MIS distributed algorithm with contention resolution.

All with high probability.

This talk

- Problem details.
- Related work.
- Our results.
- Future work.

Future work

- Faster network bootstrapping algorithm.
- Lower bounds for MIS for uniform and non-uniform distribution of nodes.
- Extensions of the MIS algorithm to other problems such as coloring.
- Positioning based on local distance estimation.
- Routing in this network.

Localized algorithm

For each node i in parallel

Run the MIS algorithm with range ar/2

If $i \in MIS$

Designate i as a bridge

Connect to neighboring bridges by broadcasting ID with range r

Lay down a disk of radius r/2 centered in i by broadcasting with range r/2

Connect with disk neighbors forming a constant-degree spanner.

MIS algorithm

Initialize a counter to 0.

Repeat

Broadcast the counter with probability $1/\delta_1 \log \ell$.

Else

If a counter was received and $|counterreceived - counter| \le \lceil \delta_2 \log \ell \rceil$ then Set counter to $-\lceil \delta_2 \log \ell \rceil$.

If an MIS member ID was received then stop.

If this node has ever transmitted, increase the counter.

If the counter has reached $\lceil \delta_3 \log^2 \ell \rceil$ then

This node declares itself an MIS member.

Repeat

Broadcast the ID with probability $1/\delta_4$

Spanner construction algorithm

Bridge nodes

Asign local index to non-bridge nodes upon request.

Non-bridge nodes

Obtain a local index from the bridge.

Connect to current neighbors to form a butterfly network.

Handle new neighbor arrivals.

Hop-stretch

A local spanner of small diameter: Hamilton-expander

- If G is δ -regular $\rightarrow \lambda_0 = \delta$ and $\lambda_{n-1} \geq -\delta$
- [AlMi85] If G is δ -regular $\to Diameter(G) \le 2\sqrt{2\delta/\delta \lambda_1}\log n$.
- [Al86][Fr03] Random δ -regular graphs $\to \lambda_1 \le 2\sqrt{\delta 1} + \epsilon$ for any $\epsilon > 0$ w.h.p.
- [Fr03] Same result for multigraphs composed of $\delta/2$ random Hamilton cycles with probability $O(1-1/n^{\gamma})$ where $\gamma = \lceil \sqrt{\delta-1} \rceil 1$.

If G is a multigraph on n nodes composed of $\delta/2$ random Hamilton cycles:

$$Diameter(G) \in O(\log n)$$
 with probability $O(1 - 1/n^{\gamma})$, $\gamma = \lceil \sqrt{\delta - 1} \rceil - 1$

But, within a given disk, there are $O(\log \ell)$ nodes, then:

 $Diameter(Hamilton - expander) \in O(\log \log \ell)$ with probability $O(1 - 1/\log^{\gamma} \ell)$

Hamilton-expander algorithm

Bridge nodes

Initialize an index to 0.

Repeat

If an index request is received then

Increase index.

Send the current index for δ_6 steps with probability $1/\beta_3$.

Non-bridge nodes

Phase 1: Ordering the nodes locally using the bridge

Initialize a counter to 0.

Repeat

With probability $1/\beta_3$ request a new index from the bridge.

If not requesting and an index is received then stop.

Increase the counter.

Wait for $(\delta_6 \log^3 n - counter + (index - 1)\delta_7 \log^2 n)$ steps.

Hamilton-expander algorithm

Non-bridge nodes

Phase 2: Joining the Hamilton-expander

Choose d nodes at random in the index range [1, index - 1]].

For τ_1 steps, request the ID's of the chosen nodes and their successors.

Repeat

If an ID is received then update linked list.

If all answers were received then stop.

Phase 3: Handling insertion requests

Repeat

If an ID request is received then

Broadcast the ID for τ_2 steps with probability $1/\beta_4$.

A path of $O(D(u,v)/r + \log \ell)$ hops is asymptotically optimal

D(u,v)/r is a lower bound of the length of an optimal path.

In a δ -regular graph:

$$Pr(d(u, v) < c \log n) \le \frac{1}{n-1} \sum_{i=0}^{c \log n - 2} \delta(\delta - 1)^i \in O(n^{-\gamma})$$

Thus, in $G(n,r,\ell)$, where $r^2n=k\ell^2\ln\ell$, $r=\theta(\ell^\epsilon f(\ell)), f(\ell)\in o(\ell^\gamma), \, \gamma>0, \, 0\leq\epsilon<1.$

$$d(u, v) \in \Omega(\log \ell)$$
 w.h.p.

Hence, $(D(u, v)/r + \log \ell)/2$ is a lower bound of the length of such a path.

The number of nodes in any disk of radius $\Theta(r)$ is $\Theta(\log \ell)$.

Consider $G(n, r, \ell)$, where $r^2 n = k\ell^2 \ln \ell$, $r = \theta(\ell^{\epsilon} f(\ell)), f(\ell) \in o(\ell^{\gamma}), \gamma > 0, 0 \le \epsilon < 1$.

Consider a circle of radius βr for any constant $\beta > 0$.

The probability of falling in the circle is $\pi \beta^2 r^2/\ell^2$.

Using Chernoff bounds and the parameter conditions:

$$Pr(X \ge (1+\epsilon)\pi\beta^2 k \ln \ell) \le \ell^{-\frac{\epsilon^2\pi\beta^2 k}{3}}$$

$$Pr(X \le (1 - \epsilon)\pi\beta^2 k \ln \ell) \le \ell^{-\frac{\epsilon^2\pi\beta^2 k}{2}}$$

There is a path in the threshold graph of O(D(u,v)/r) short edges

$$0 < \alpha \le 1$$

Path definition: for any node x_i

- The node x_{i+1} lies in the strip.
- $\bullet \ D_h(x_i, x_{i+1}) \le r''.$
- The horizontal distance $D_h(x_{i+1}, v)$ is minimized.

There is a path in the threshold graph of O(D(u, v)/r) short edges

Assume there is no hole.

Since
$$D_h(x_i, x_{i+1}) \ge r''/2$$
 for $0 \le i < m$,

$$d(u,v) \le \left\lceil 2 \frac{D_h(u,v)}{r''} \right\rceil = \left\lceil 2 \frac{D(u,v)}{r} \frac{b\sqrt{1+(\alpha/2)^2}}{1-a} \right\rceil \in O(D(u,v)/r) \text{ hops.}$$

There is no hole within a strip

$$G(n,r',\ell)$$
, where $r'^2n=k\ell^2\ln\ell$, $r'=\theta(\ell^\epsilon f(\ell))$, $f(\ell)\in o(\ell^\gamma)$, $\gamma>0$, $0\leq\epsilon<1$.

$$\begin{split} Pr[\text{Hole}] & \leq \binom{n}{2} n \frac{\alpha r''}{\sqrt{2}\ell} \left(1 - \frac{\alpha r''^2}{4\ell^2}\right)^{n-1} \\ & \in O(\ell^{-\gamma}) \text{ for } k > 6 \frac{4 + \alpha^2}{\alpha} \end{split}$$

Optimization criteria

Maximize life cycle subject to the Weak Sensor Model constraints.

- Minimize transmission power:
 - Polynomial in the distance.
 - Power cannot be adjusted to any number of levels.
 - Not clear how to minimize.
- Minimize transmission count:
 - Transmission count dominated by contention resolution.
 - Each hop in a path requires a new round of contention.
 - Transmission count can be minimized: the relevant measure is the number of hops.