Beeping Deterministic CONGEST Algorithms in Graphs

<u>Paweł Garncarek</u>¹, Dariusz R. Kowalski², Shay Kutten³ and Miguel A. Mosteiro⁴

¹Institute of Computer Science, University of Wrocław
²School of Computer and Cyber Sciences, Augusta University
³Technion Department of Data and Decision Sciences and the Grand Technion Energy Program
⁴Computer Science Department, Pace University

September 16, 2025

• Beeping Model is a communication model

- Beeping Model is a communication model
- Network is a graph an edge is a communication link

- Beeping Model is a communication model
- Network is a graph an edge is a communication link
- Synchronous rounds

- Beeping Model is a communication model
- Network is a graph an edge is a communication link
- Synchronous rounds
- Nodes can listen or beep

- Beeping Model is a communication model
- Network is a graph an edge is a communication link
- Synchronous rounds
- Nodes can listen or beep
- Beeps are heard by all neighbors

- Beeping Model is a communication model
- Network is a graph an edge is a communication link
- Synchronous rounds
- Nodes can listen or beep
- Beeps are heard by all neighbors
- At receiver: silence means 0, one or more beeps mean 1

 possible to implement it (or emulate it) in extremely restricted radio network environments

- possible to implement it (or emulate it) in extremely restricted radio network environments
- suitable for cheap devices with low energy consumption (e.g., Sensor Networks)

- possible to implement it (or emulate it) in extremely restricted radio network environments
- suitable for cheap devices with low energy consumption (e.g., Sensor Networks)
- non-adaptive communication schedules in the Beeping Model are equivalent to superimposed codes

- possible to implement it (or emulate it) in extremely restricted radio network environments
- suitable for cheap devices with low energy consumption (e.g., Sensor Networks)
- non-adaptive communication schedules in the Beeping Model are equivalent to superimposed codes
- studying natural communication in biological networks

Problem: Each node has a (different) message of $O(\log n)$ bits for each of its neighbors. How do we transmit all these messages?

Problem: Each node has a (different) message of $O(\log n)$ bits for each of its neighbors. How do we transmit all these messages?

Problem: Each node has a (different) message of $O(\log n)$ bits for each of its neighbors. How do we transmit all these messages?

Theorem

Deterministic simulation of one CONGEST rounds in the Beeping Model can be done in $O(\Delta^2 \text{ polylog } n)$.

Theorem

Deterministic simulation of one CONGEST rounds in the Beeping Model can be done in $O(\Delta^2 \text{ polylog } n)$.

• Beats the previous best result $O(\Delta^4 \log n)$ by Beauquier (INFOCOM 2018) by a factor of Δ^2 .

Theorem

Deterministic simulation of one CONGEST rounds in the Beeping Model can be done in $O(\Delta^2 \text{ polylog } n)$.

- Beats the previous best result $O(\Delta^4 \log n)$ by Beauquier (INFOCOM 2018) by a factor of Δ^2 .
- Matches the randomized result by Davies (PODC 2023) up to polylog n factor.

Theorem

Deterministic simulation of one CONGEST rounds in the Beeping Model can be done in $O(\Delta^2 \text{ polylog } n)$.

- Beats the previous best result $O(\Delta^4 \log n)$ by Beauquier (INFOCOM 2018) by a factor of Δ^2 .
- Matches the randomized result by Davies (PODC 2023) up to polylog n factor.
- Matches the lower bound $\Omega(\Delta^2 \log n)$ up to polylog n factor.

- The algorithm utilizes multiple different families of avoiding selectors.
- The algorithm regularly delivers messages in such a way that the degree of the graph is effectively reduced and we can use selectors for smaller graph degree.

Main results – MIS

Simulation of CONGEST round applied to MIS algorithm by Ghaffari et al. (SODA 2021) gives the following result.

Corollary

There exists deterministic MIS algorithm in the Beeping Model that works in $O(\Delta^2 \text{ polylog } n)$.

Main results – MIS

Simulation of CONGEST round applied to MIS algorithm by Ghaffari et al. (SODA 2021) gives the following result.

Corollary

There exists deterministic MIS algorithm in the Beeping Model that works in $O(\Delta^2 \text{ polylog } n)$.

• Beats the previous best result $O(\Delta^3 + \Delta^2 \log n)$ by Beauquier et al. (INFOCOM 2018) by a factor of Δ .

Theorem

B-bit h-hop CONGEST simulation can be done in $O(h \cdot B\Delta^{h+2} \text{ polylog } n)$ rounds.

Theorem

B-bit h-hop CONGEST simulation must use at least $\Omega(B\Delta^{h+1})$ rounds.

Theorem

B-bit h-hop CONGEST simulation can be done in $O(h \cdot B\Delta^{h+2} \text{ polylog } n)$ rounds.

Theorem

B-bit h-hop CONGEST simulation must use at least $\Omega(B\Delta^{h+1})$ rounds.

Note that repeated application of 1-hop CONGEST simulation would yield Δ^{2h} factor.

Problem: Each node knows its ID. The task is to learn the IDs of all neighbors.

Theorem

Learning Neighborhood can be done in the Beeping Model in $O(\Delta^2 \log^2 n)$ rounds.

Network decomposition is a central tool in distributed graph algorithms.

Theorem

($\log n$, $\log^2 n$)-Network Decomposition can be done in the Beeping Model in $O(\Delta^2 \log^8 n)$ rounds.

$\mathsf{Theorem}$

Cluster Gathering can be done in the Beeping Model in $O(\Delta^2 \log^4 n)$ rounds.

Summary of results and related work

problem	protocol type	beeping rounds	ref
simulation of one CONGEST round	randomized	$O(\Delta \min(n, \Delta^2) \log n)$ whp	PODC2020
		$O(\Delta^2 \log n)$ whp	PODC2023
	deterministic	$O(\Delta^4 \log n)$	INFOCOM2018
		$O(\Delta^2 \text{ polylog } n)$	our result
	rand./det.	$\Omega(\Delta^2 \log n)$	PODC2023
B-bit h-hop simulation	deterministic	$O(h \cdot B\Delta^{h+2} \text{ polylog } n)$	our result
	rand./det.	$\Omega(B\Delta^{h+1})$	our result
Learning Neighborhood	deterministic	$O(\Delta^2 \log^2 n)$	our result
Cluster Gathering		$O(\Delta^2 \log^4 n)$	our result
$(\log n, \log^2 n)$ -Network Decomposition		$O(\Delta^2 \log^8 n)$	our result
MIS		$O(\Delta^3 + \Delta^2 \log n)$	INFOCOM2018
		$O(\Delta^2 \text{ polylog } n)$	our result

Future Work

- Are there some graph problems that do not require Δ^2 factor in round complexity?
- Round complexity of Local Broadcast?

Thank you!