Probabilistic Lower Bounds on the Length of a Longest Edge in Delaunay Graphs of Random Points in a d-Ball

Miguel A. Mosteiro
Department of Computer Science, Rutgers University \&
Univ. Rey Juan Carlos

EuroCG 2012

The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it.
- Motivation:
- Length of longest edge: bound communication cost in wireless nets.
- Points deployment: RGG's.
- Length of longest Delaunay edge strongly influenced by boundaries:
- with boundary (e.g. disk).
- without boundary (e.g. sphere (ball surface)).

The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it.
- Motivation:
- Length of longest edge: bound communication cost in wireless nets.
- Points deployment: RGG's.
- Length of longest Delaunay edge strongly influenced by boundaries:
- with boundary (e.g. disk).
- without boundary (e.g. sphere (ball surface)).

The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it.
- Motivation:
- Length of longest edge: bound communication cost in wireless nets.
- Points deployment: RGG's.
- Length of longest Delaunay edge strongly influenced by boundaries:
- with boundary (e.g. disk).
- without boundary (e.g. sphere (ball surface)).

Previous Work

- Longest Delaunay edge
- inside a hypercube of size n (infinite Poisson point set)
- Bern, Eppstein, Yao (JCGA 1991): observe $\Theta(\sqrt[d]{\log n})$ in expectation.
- RGG $(d=2)$:
- Kozma, Lotker, Sharir, Stupp (PODC 2004):
$O(\sqrt[3]{(\log n) / n})$ w.h.p. for points "close" to boundary.
$O(\sqrt{(\log n) / n})$ w.h.p. for points "away" from boundary.
- d-sphere and d-ball:
- Arkin, Fernández-Anta, Mitchell, Mosteiro (CCCG 2011):

Upper and lower bounds with ε error probability down to constants.
Tight for $e^{-c n} \leq \varepsilon \leq n^{-c}$ and $d \in O(1)$.
LBs for a d-ball only for $d \in\{2,3\}$.

- Multidimensional Delaunay tessellations: (construction algorithms)
- Devijver, Dekesel (PRL 1983)
- Lemaire, Moreau (CG 2000)

Our results

We complete the study in [1] showing
lower bounds for a d-ball, for any $d>1$

- down to constants
- parametric error probability ε
- asymp tight for $e^{-c n} \leq \varepsilon \leq n^{-c}$ and $d \in O(1)$
[1] E. Arkin, A. Fernández Anta, J. S. B. Mitchell, and M. A. Mosteiro, CCCG 2011.

Preliminaries

Definition

Let P be a set of points in a d-ball, two points $a, b \in P$ form an edge of $D(P)$, if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.

Preliminaries

Definition

Let P be a set of points in a d-ball, two points $a, b \in P$ form an edge of $D(P)$, if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.

Preliminaries

Definition

Let P be a set of points in a d-ball, two points $a, b \in P$ form an edge of $D(P)$, if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.

Results

Proof techniques

- Lower bounds: show configuration such that
"long" Delaunay edge is "not very unlikely".

For enclosing bodies with boundaries...

... witness d-ball may be huge!

Results

For points on a d-ball

	$\begin{aligned} & \text { [1] Upper bounds: } \\ & \text { w.p. } \geq 1-\varepsilon \text {, } \\ & \nexists \widehat{a b} \in D(P) \end{aligned}$	[1] Lower bounds: w.p. $\geq \varepsilon$, $\exists \widehat{a b} \in D(P)$	$\begin{aligned} & \text { Our results: } \\ & \text { w.p. } \geq \varepsilon \text {, } \\ & \exists \widehat{a b} \in D(P) \end{aligned}$
d	$\begin{aligned} & V_{d}(d(a, b)) \geq \\ & \frac{\ln \frac{\binom{n}{2}\binom{n-2}{d-1}}{\varepsilon}}{n-d-1} \end{aligned}$	-	$\begin{gathered} V_{d}(x)=\frac{\ln \frac{\alpha(d)}{\varepsilon}}{\kappa_{2}(d)\left(n-2+\ln \frac{\alpha(d)}{\varepsilon}\right)} \\ d(a, b) \geq \frac{x}{\sqrt{d-1}} \end{gathered}$
2	$\sqrt[3]{\frac{16}{\sqrt{\pi}} \frac{\ln \frac{\binom{n}{2}(n-2)}{\varepsilon}}{n-3}}$	$\sqrt[3]{\frac{\ln \frac{\alpha_{2}}{\varepsilon}}{2 \sqrt{\pi}\left(n-2+\ln \frac{\alpha_{2}}{\varepsilon}\right)}}$	$\sqrt[3]{\frac{4 \ln \frac{\alpha(d)}{\varepsilon}}{7 \sqrt{\pi}\left(n-2+\ln \frac{\alpha(d)}{\varepsilon}\right)}}$
3	$\sqrt[4]{\frac{96}{\pi^{3 / 2}} \frac{\ln \frac{\binom{n}{2}\binom{n-2}{2}}{\varepsilon}}{n-4}}$	$\sqrt[4]{\frac{\sqrt[3]{\frac{48}{\pi^{4}}} \ln \frac{\alpha_{3}}{\varepsilon}}{\left(n-2+\ln \frac{\alpha_{3}}{\varepsilon}\right)}}$	$\sqrt[4]{\frac{4 \sqrt[3]{\frac{48}{\pi^{4}}} \ln \frac{\alpha(d)}{\varepsilon}}{\kappa_{2}(3)\left(n-2+\ln \frac{\alpha(d)}{\varepsilon}\right)}}$

$V_{d}(x)$: volume of a spherical cap of base diameter x.
[1] E. Arkin, A. Fernández Anta, J. S. B. Mitchell, and M. A. Mosteiro, CCCG 2011.

Proof sketch

Proof sketch

$$
\begin{aligned}
& \operatorname{Pr}(\exists a) \in \Omega(1) \\
& \operatorname{Pr}(\exists b) \in \Omega(1)
\end{aligned}
$$

$\operatorname{Pr}\left(S_{2}\right.$ is empty $) \geq \varepsilon$

Conclusions

- We have completed the study in AFMM-CCCG11 for arbitrary d.
- Other norms? $\left(L_{1}, L_{\infty}\right)$
- Other distributions of points?

Conclusions

- We have completed the study in AFMM-CCCG11 for arbitrary d.
- Other norms? $\left(L_{1}, L_{\infty}\right)$
- Other distributions of points?

Thank you!

