

My Relationship with Insertion Sort

Anybody who has spent time in a library knows that insertions are cheaper than linear time.

Everybody (except computer scientists) know that gaps make inserts cheaper than O(n) ("folk computer science").

Question: how much.

Small library

big library

14 years after that lecture on insertion sort (1 BA, 1 DEA, 1 Magistère, 1 Ph.D., tenure-almost)...

Insertion Sort is O(N logN)

Michael A. Bender

Martin Farach-Colton

Miguel Mosteiro

Results

• LibrarySort, a natural implementation of InsertionSort with gaps.

• Theorem: LibrarySort runs in $O(N \lg N)$ time w.h.p. and uses linear space. Each insertion is exp O(1) and $O(\lg N)$ w.h.p..

Overview of Talk

Library Sort is O(NlogN)

for k = 1 to N do find location to insert x_k (binary search)

insert Xk

if k is power of 2 then rearrange elements evenly in (2+E)k-sized region.

Library Sort is O(NlogN)

for k=1 to N do

find location to insert x_k (binary search)

O(log N)

insert x_k

if k is power of 2 then rearrange elements evenly in (2+E)k - sized region.

Library Sort is O(NlogN)

for k=1 to N do

if k is power of 2 then rearrange elements evenly in (2+E)k-sized region.

Library Sort is O(NIOgN)

Library Sort is O(NIOgN)

Thm: each insertion has cost O(19 N) w.h.p.

Thm: each insertion has cost O(IgN) w.h.p.

<u>Pf idea</u>: Phase Q: elements $2^{Q} \longrightarrow 2^{Q+1}$ inserted.

beginning of phase: elements are rebalanced (evenly spread in array).

Thm: each insertion has cost O(19 N) w.h.p.

<u>Pf idea</u>: Phase Q: elements $Q^{Q} \longrightarrow Q^{Q+1}$ inserted.

beginning of phase: elements are rebalanced (evenly spread in array).

end of phase: for sufficiently large constant c, any region of size clg N has gaps w.h.p.

Invariant

The (k+1)st element is equally likely to be inserted between any two of the k elements already in the array.

Follows because elements are inserted in random order.

key order -----

(numbers = order of insertion)

Difficulty

Dense regions of array act as attractors.

Need to show that despite attraction dense regions do not get too big.

Contents

Contents may have settled during shipping.

Balls and Bins Game

Idea: model attracting regions when m elmts in array.

Initially
ClgM balls
Bin A

Initially
M-clgM balls
Bin B

M additional balls thrown in bins.

kth ball thrown into Bin A or B with probability proportional to # balls in bins $X_k = \begin{cases} 1 & \text{if ball } k \text{ thrown into B in A} \\ 0 & \text{otherwise.} \end{cases}$

Balls and Bins Game

Idea: model attracting regions when m elmts in array.

M additional balls thrown in bins.

kth ball thrown into Bin A or B with probability proportional to # balls in bins $X_k = \begin{cases} 1 & \text{if ball } k \text{ thrown into B in A} \\ 0 & \text{otherwise.} \end{cases}$

Thm: Number of balls thrown in Bin A is
$$X = X_{M+1} + X_{M+2} + ... + X_{2M} = O(IgN)$$
.

Issue: Random variables $X_{M+1} ... X_{2M}$ are positively correlated.

Need an alternative approach

Elements ordered by insertion order: vandom permutation on keys

Elements ordered by insertion order: vandom permutation on keys

- 2¹ support elements — 2¹ intercalated elements —

Elements ordered by keys: rendom permutation on insert order

—(2+€) clgN——

Clarin: In any window of size $\theta(lg N)$ there are $\theta(lg N)$ support elements and $\theta(lg N)$ intercalated elements w.h.p.

> evenly distributed.

Elements ordered by keys: random permutation on insert order

—(2+€) clgN——

Claim: For sufficiently large c, in any window of size (2+E) clg N, there are > clg N support elements and < (1+E) clg N intercalated elements.

Elements ordered by keys: random permutation on insert order

Claim: For sufficiently large c, in any window of size (2+E) clg N, there are > clg N support elements and < (1+E) clg N intercalated elements.

Recall: K support elements take space (2+4) K.

> room for intercolated elements

Claim: In any window of size $\theta(lg N)$ there are $\theta(lg N)$ support elements and $\theta(lg N)$ intercalated elements w.h.p.

Similar to # coin flips until we get a head. O(1) in expectation & O(lg N) w.h.p.

Coins are not independent, but negatively correlated. Easy to solve using Chernoff bounds. Can also solve directly using basic probability.

Concluding analysis

• Pr[given set C, $|C|=(2+\varepsilon)c$ lg m has too few support elements]

$$\leq \sum_{j=0}^{c \log m} {|C| \choose j} \left(\frac{m}{2m - |C| + 1}\right)^j \left(\frac{m}{2m - |C| + 1}\right)^{|C| - j}$$

$$\leq \left(\frac{m}{2m - |C| + 1}\right)^{|C|} \sum_{j=0}^{c \log m} {|C| \choose j}.$$

...which is polynomially small.

Minor Detail

Holds only when # elmts is large, but...

<u>claim</u>: while the number of elements $k \le In$, the total cost for library sort is O(n). \Rightarrow only need to consider case $k \ge I2(In)$.

Thm: each insertion has cost O(19 N) w.h.p.

Gaps in My Knowledge

This talk: average-case analysis of naïve folk insertion.

Related work: Ave-case priority queues
[Itai,Konheim,Rodeh81]
Contains most ideas of LibrarySort.
LibrarySort simplifies.

Gaps in My Knowledge Other work: rebalance schemes for worst case.

Upper bound

Lower bound

O(N) gaps Sequential File Maintenance	O(lg²N) insert [Itai,Konheim,Rodeh] [Willard]	Ω (\log N) insert [Dietz][Seiferas]
poly(N) gaps order maintenance, list labeling	O(IgN) insert [Deitz][DietzSleator][Tsakal idis][Bender,Cole,Demaine,Fa rachColton,Zito]	Ω(lg N) insert [Dietz][Seiferas]
O(N) gaps in external memory packed-memory structure in cache-oblivious algorithms	O(1+lg ² N/B) insert	

Why do computer scientists say that insertions ort is $O(N^2)$?

Personal Experience?

Bookshelves of Distinguished Computer Scientists

Results

 LibrarySort, a natural implementation of InsertionSort with gaps.

• Theorem: LibrarySort runs in O(NlgN) time w.h.p. and uses linear space. Each insertion is exp O(1) and O(lg N) w.h.p..