The Length of the Longest Edge in Multi-dimensional Delaunay Graphs

Esther M. Arkin ${ }^{1}$ Antonio Fernández Anta ${ }^{2}$

Joseph S. B. Mitchell ${ }^{1} \quad$ Miguel A. Mosteiro ${ }^{3}$
${ }^{1}$ Department of Applied Math and Statistics, Stony Brook University
${ }^{2}$ Institute IMDEA Networks
${ }^{3}$ Department of Computer Science, Rutgers University
FWCG 2010

The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it. (motivation: RGG's)
- Length of longest Delaunay edge strongly influenced by boundaries \Rightarrow we study enclosing bodies
(i) with boundary (e.g. disk).
(ii) without boundary (e.g. sphere (ball surface)).

The Problem

- Longest Delaunay edge in multidimensional Euclidean spaces.
- Multidimensional body of volume 1.
- Set of points distributed uniformly at random in it. (motivation: RGG's)
- Length of longest Delaunay edge strongly influenced by boundaries \Rightarrow we study enclosing bodies
(i) with boundary (e.g. disk).
(ii) without boundary (e.g. sphere (ball surface)).

Previous Work

- Longest Delaunay edge in \mathbb{R}^{2} :
- Kozma, Lotker, Sharir, Stupp, PODC'04:

$$
\begin{aligned}
& O(\sqrt[3]{\log n / n}) \text { w.h.p. for points "close" to boundary. } \\
& O(\sqrt{\log n / n}) \text { w.h.p. for points "away" from boundary. }
\end{aligned}
$$

- Multidimensional Delaunay tessellations:
- Devijver, Dekesel, PRL, 1983.
- Lemaire, Moreau, CG, 2000.

Construction algorithmic techniques.

Our results

Upper and lower bounds for d-dimensional bodies, $d>1$ with and without boundaries, with parametric error probability ε, and up to constants.

- Tight for $e^{-c n} \leq \varepsilon \leq n^{-c}$, for constant $c>0$.
- UB matches [KLSS 04] for $d=2, \varepsilon=1 / n$.
- First comprehensive study of this problem.
(LBs with boundary for $d \in\{2,3\}$.)

Our results

Upper and lower bounds for d-dimensional bodies, $d>1$ with and without boundaries, with parametric error probability ε, and up to constants.

- Tight for $e^{-c n} \leq \varepsilon \leq n^{-c}$, for constant $c>0$.
- UB matches [KLSS 04] for $d=2, \varepsilon=1 / n$.
- First comprehensive study of this problem.
(LBs with boundary for $d \in\{2,3\}$.)

Preliminaries

Definition

Let P be a set of points in a d-sphere, two points $a, b \in P$ form an arc of $D(P)$, if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the cap, it contains a and b on the boundary and does not contain any other point of P.

Preliminaries

Definition

Let P be a set of points in a d-sphere, two points $a, b \in P$ form an arc of $D(P)$, if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the cap, it contains a and b on the boundary and does not contain any other point of P.

Preliminaries

Definition

Let P be a set of points in a d-sphere, two points $a, b \in P$ form an arc of $D(P)$, if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the cap, it contains a and b on the boundary and does not contain any other point of P.

Preliminaries

Definition

Let P be a set of points in a d-ball, two points $a, b \in P$ form an edge of $D(P)$, if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.

Preliminaries

Definition

Let P be a set of points in a d-ball, two points $a, b \in P$ form an edge of $D(P)$, if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.

Preliminaries

Definition

Let P be a set of points in a d-ball, two points $a, b \in P$ form an edge of $D(P)$, if and only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior of B does not contain any other point of P.

Results

Proof techniques

- Upper bounds: thanks to uniform density,
a "large" empty area/volume is "unlikely".
- Lower bounds: show configuration such that
"long" Delaunay edge is "not very unlikely".

Results

Proof techniques

- Upper bounds: thanks to uniform density,
a "large" empty area/volume is "unlikely".
- Lower bounds: show configuration such that
"long" Delaunay edge is "not very unlikely".

For enclosing bodies with boundaries...

... witness d-ball may be huge!

Results

Without boundary

d	$\nexists \hat{a b} \in D(P)$	$\exists \widehat{a b} \in D(P)$
d	w.p. $\geq 1-\varepsilon$	w.p. $\geq \varepsilon$
2	$A_{d}(1, \delta(a, b)) \geq \frac{\ln \left(\binom{n}{2} / \varepsilon\right)}{n-2}$	$A_{d}(1, \delta(a, b)) \geq \frac{\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}{n-2+\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}$
3	$\delta(a, b) \geq \frac{\ln \left(\binom{n}{2} / \varepsilon\right)}{n-2}$	$\delta(a, b) \geq \frac{\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}{n-2+\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}$
	$\delta(a, b) \geq \frac{\cos ^{-1}\left(1-\frac{2 \ln \left(\binom{n}{2} / \varepsilon\right)}{n-2}\right)}{\sqrt{\pi}}$	$\delta(a, b) \geq \frac{\cos ^{-1}\left(1-\frac{2 \ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}{n-2+\ln \left((e-1) /\left(e^{2} \varepsilon\right)\right)}\right)}{\sqrt{\pi}}$

Results

With boundary

	$\nexists \widehat{a b} \in D(P)$	$\exists \widehat{a b} \in D(P)$				
	w.p. $\geq 1-\varepsilon$	w.p. $\geq \varepsilon$				
d	$V_{d}\left(1,\\|\overrightarrow{a, b}\\|_{2}\right) \geq \frac{\ln \left(\binom{n}{2} / \varepsilon\right)}{n-2}$	-				
2	$\\|\overrightarrow{a, b}\\|_{2} \geq \sqrt[3]{\frac{16}{\sqrt{\pi}} \frac{\ln \left(\binom{n}{2} / \varepsilon\right)}{n-2}}$	$\\|\overrightarrow{a b}\\|_{2} \geq \rho_{2} / 2: V_{d}\left(1, \rho_{2}\right)=\frac{\ln \left(\alpha_{2} / \varepsilon\right)}{\left(n-2+\ln \left(\alpha_{2} / \varepsilon\right)\right)}$				
3	$\\|\overrightarrow{a, b}\\|_{2} \geq \sqrt[4]{\frac{96}{\pi^{3 / 2}} \frac{\ln \left(\binom{n}{2} / \varepsilon\right)}{n-2}}$	$\\|\overrightarrow{a b}\\|_{2} \geq \rho_{3} / 2: V_{d}\left(1, \rho_{3}\right)=\frac{\ln \left(\alpha_{3} / \varepsilon\right)}{\left(n-2+\ln \left(\alpha_{3} / \varepsilon\right)\right)}$				

Results

E.g. Lower Bound in a Disk

Results

E.g. Lower Bound in a Ball

Open Problems

- Other norms? $\left(L_{1}, L_{\infty}\right)$
- Lower bound with boundary for $d>3$?

Conjecture: same bound modulo a constant.

Thank you

