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The Internet of Things



• Fixed set of n nodes
– No identifiers or labels
– A special node, called the leader [1]

• Synchronous communication : At each round
– a node broadcasts a message to its neighbors
– receives the messages of its neighbors
– executes some local computation

• 1-interval connectivity [2] 
– communication links may change from round to round, but
– at each round the network is connected

[1] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013.

Anonymous Dynamic Networks

[2] F. Kuhn, N. A. Lynch, R. Oshman. Distributed computation in dynamic networks. STOC 2010.



How do you count the size of your group, 
                             if the members are all identical and move?

The Counting Problem



How do you count the size of your group, 
                             if the members are all identical and move?

The Counting Problem



How do you count the size of your group, 
                             if the members are all identical and move?

The Counting Problem

You all look the same,  

did I already count you?



How do you count the size of your group, 
                             if the members are all identical and move?

The Counting Problem

You all look the same,  

did I already count you?



How do you count the size of your group, 
                             if the members are all identical and move?

The Counting Problem

You all look the same,  

did I already count you?



How do you count the size of your group, 
                             if the members are all identical and move?

The Counting Problem

You all look the same,  

did I already count you?

I don’t know!  

You also look the same as 

 everyone else!!



The problem is clean, but why do we care?

Why do we care?

Distributed algorithms
need the number of processors to decide termination.

We need a protocol: « Given a system of n nodes, 
                           all nodes eventually terminate knowing n »



Previous work
• Previous Counting Protocols
– Guarantee only an exponential upper bound on the network size [1] or
– They guarantee the exact size but
• Take double-exponential number of rounds [2] or
• Take exponential number of rounds, but do not terminate [2] or
• Terminate but no running-time guarantees [3].
– Recently, exact-size exponential time Counting with termination:
• [5] Incremental Counting (IC): needs dyn. max degree dmax, poly space.
• [6] EXT Counting: no dmax, but exponential space.

• Lower bound on the time complexity
– Ω(D) where D is the dyn. diameter.
– Ω(log n) even if D is constant [4].

• Experimental work
– IC on trees, paths, stars, G(n,p) [7].

[1] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013.
[2] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic networks. ICDCN 2014.
[3] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous dynamic networks under worst-case adversary. ICDCS 2014.
[4] G. A. Di Luna and R. Baldoni. Investigating the cost of anonymity on dynamic networks. 2015.
[5] A. Milani and M. A. Mosteiro. A faster counting protocol for anonymous dynamic networks. OPODIS 2015.
[6] R. Baldoni and G. A. Di Luna. Non trivial computations in anonymous dynamic networks. OPODIS 2015.
[7] M. Chakraborty, A. Milani and M. A. Mosteiro. Counting in practical anonymous dynamic networks is polynomial. NETYS 2016.

Exponential speedup, 
but still not practical

Huge gap

Polynomial in practice



restrictions/ 
shortcomings

Previous work
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Table 1 Comparison of Counting protocols for Anonymous Dynamic Networks.
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With respect to lower bounds, it was proved in [8] that at least �(log n) rounds are124

needed, even if D is constant. Also, �(D) is a lower bound since at least one node needs to125

hear about all other nodes to obtain the right count.126

Counting and Naming was already studied in [20] for dynamic and static networks,127

showing that it is impossible to solve Counting without the presence of a distinguished node,128

even if the network is static. The Counting protocol requires knowledge of an upper bound129

on �, and obtains only an upper bound, which may be as bad as exponential.130

Conscious Counting [10] computes the exact count, but it needs to start from an upper131

bound, and it takes exponential time only if the size upper bound is tight. In the same work132

and follow-up papers [11, 12], more challenging scenarios where � is unknown are studied,133

but protocols either do not terminate [10], or the protocol is terminated heuristically [12].134

In experiments [12], such heuristic was found to perform well on dense topologies, but for135

other topologies the error rate was high. Another protocol in [11] is shown to terminate136

eventually, without running-time guarantees and under the assumption of having for each137

node an estimate of the number of neighbors in each round. In [20] it was conjectured that138

some knowledge of the network such as the latter would be necessary, but the conjecture was139

disproved later in [9]. On the other hand the protocol in [9] requires exponential space.140

Incremental Counting, presented recently in [21], reduced exponentially the best-known141

running time guarantees. The protocol obtains the exact count, all nodes terminate simul-142

taneously, the topology dynamics is only limited to 1-interval connectivity, it only requires143

polynomial space, and it only requires knowledge of of an upper bound (d
max

) on the dynamic144

maximum degree. The running time is still exponential, but reducing from doubly-exponential145

was an important step towards understanding the complexity of Counting.146

In a follow-up paper [6], Incremental Counting was tested experimentally showing a147

promising polynomial behavior. The study was conducted on pessimistic inputs designed to148

slow the convergence, such as bounded-degree trees rooted at the leader uniformly chosen149

at random for each round, and a single path starting at the leader with non-leader nodes150

permuted uniformly at random for each round. The protocol was also tested on static versions151



• Methodical Counting (MC) algorithm: 
- no knowledge of network characteristics
- computes the exact size of the network  
- all nodes obtain n and terminate
- first polynomial time guarantees
- exponentially faster than best previous work

• Design of control mechanisms:
- for mass-distribution-based computations, 

to detect wrong convergence-time estimation 
• Novel approach opens path: 

- to study more complex computations using same techniques
• Extensions to algebraic and other computations:

- sum, average, max, min, multiple Boolean functions, others

Contributions



Key idea: 
• distribute a potential value iteratively 

      (resembling previous works),
• but let the leader participate in the process 

      as any other node, 
• leader removes potential but only after it has

      accumulated enough! 

MC Key Ingredients



• In ADNs, neighbors cannot be distinguished.

• Even number of neighbors unknown at transmission time, 
       only after receiving but may change for next round.

• Unknown network parameters => 
       potential received could be bigger than 1. 

• Mixing and cover time of lazy random walks depend on n => 
      cannot be used for termination.

so, we use lazy random walks bounds,
but only when parameters are temporarily fixed,

 and the number of received messages is not invalid.

MC Key Ingredients

[1] C. Avin, M. Koucky, and Z. Lotker. How to explore a fast-changing world (cover time of a simple random walk on evolving graphs). ICALP 2008.

Our approach allows to leverage previous work on 
                        lazy random walks in evolving graphs [1].

But, not a simple de-randomization, 



MC Structure
epochs:

– one for each estimate k=2,3,…,n
– initially, “potential” value: Φnon-leader=1, Φleader=0

k?

k?

k?

k?

k?
k?

k

p(k) phases:
(to let the leader remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

let's see how…



MC Averaging Phase Example 
End of round 1

End of round 2

The distribution continues for a number of rounds r(k).

r(n)  is large enough to average all potentials in the network.

Round 1

Round 2



k?

k?

k?

k?

k?
k?

k

ρ=

MC Epoch Example
epochs:

– one for each estimate k=2,3,…,n
– initially, “potential” value: Φnon-leader=1, Φleader=0

p(k) phases:
(to let the leader remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

– leader “removes” its potential: ρ=ρ+Φ, Φ=0

mass distribution:
– broadcast Φ and receive neighbors’ Φi

– Φ = Φ + 𝝨i∈N Φi/d(k) - |N|Φ/d(k)
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MC Epoch Example
epochs:

– one for each estimate k=2,3,…,n
– initially, “potential” value: Φnon-leader=1, Φleader=0

p(k) phases:
(to let the leader remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

– leader “removes” its potential: ρ=ρ+Φ, Φ=0

mass distribution:
– broadcast Φ and receive neighbors’ Φi

– Φ = Φ + 𝝨i∈N Φi/d(k) - |N|Φ/d(k)

ρ=
– if ρ < k-1-1/k  or  ρ > k-1 

– try next k

k?

k?

k?

k?

k?
k?

kElse ( k-1-1/k ≦ ρ ≦ k-1)
we would like to say k=n, 

but not always true!

We use some previous 
alarms to detect k<n in those 

cases…

After p(k) phases…

Analysis shows that if
 ρ < k-1-1/k  or  ρ > k-1 

then k<n. 

– else notify all nodes that k=n



MC Alarms (for k<n)

If n is “close” to k then 
leader removes 

“too much” potential.

k1+ϵk

If n is “far” from k then 
not “many” nodes 

have “low” potential,

so, leader receives alarm from
 nodes with “high” potential 

“soon” after first phase.



MC Epoch Example
epochs:

– one for each estimate k=2,3,…,n
– initially, “potential” value: Φnon-leader=1, Φleader=0

p(k) phases:
(to let the leader remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

– leader “removes” its potential: ρ=ρ+Φ, Φ=0

mass distribution:
– broadcast Φ and receive neighbors’ Φi

– Φ = Φ + 𝝨i∈N Φi/d(k) - |N|Φ/d(k)

– if k-1-1/k <= ρ <= k-1 and status = normal
– notify all nodes that k=n

We use some previous 
alarms to detect k<n 

in those cases.

– else try next k

And now the leader can 
notify k=n 

when ρ is in that range.



MC Epoch Example
epochs:

– one for each estimate k=2,3,…,n
– initially, “potential” value: Φnon-leader=1, Φleader=0

p(k) phases:
(to let the leader remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

– leader “removes” its potential: ρ=ρ+Φ, Φ=0

mass distribution:
– broadcast Φ and receive neighbors’ Φi

– Φ = Φ + 𝝨i∈N Φi/d(k) - |N|Φ/d(k)

– if k-1-1/k <= ρ <= k-1 and status = normal
– notify all nodes that k=n

We use some previous 
alarms to detect k<n 

in those cases,

– else try next k

and now the leader can 
notify k=n 

when ρ is in that range.



Main Theorem

the total potential in the network would be k � 1 (cf. Claim 1) and no individual node should have potential
larger than (k � 1)(1/k + 1/k2+✏�ln(k

✏�1)/ ln k). We show that the latter is at most ⌧ = 1� 1/k1+✏ as follows.

(k � 1)(1/k + 1/k2+✏�ln(k

✏�1)/ ln k)  1� 1/k1+✏

(k � 1)/k2+✏�ln(k

✏�1)/ ln k  (k✏ � 1)/k1+✏

k1�ln(k

✏�1)/ ln k � (k � 1)/(k✏ � 1)
✓
1� ln(k✏ � 1)

ln k

◆
ln k � ln(k � 1)� ln(k✏ � 1)

ln k � ln(k � 1).

And the latter is true for any k > 1.
Consider a partition of the set of nodes {L,H}, where L is the set of nodes with potential at most

⌧ = 1 � 1/k1+✏ at the end of the first phase. At the end of the first phase, the size of L is at most k1+✏

(cf. Lemma 6.3), and the size of H is at least 1 because n > k1+✏. Thus, there is at least one node changing to
alarm status in Line 2.15 in round 1 of phase 2, and due to 1-interval connectivity at least one new node moves
from L to H in each of the following rounds. Thus, the claim follows.

⇤

Based on the above lemmata, we establish our main result in the following theorem.

Theorem 6.2. Given an Anonymous Dynamic Network with n nodes, after running Methodical Counting

for each estimate k = 2, 3, . . . , n with parameters

d = k1+✏,

p =

⇠
(2 + ✏)k1+✏

1� 1/k
ln k

⇡
,

r =

⇠✓
4 + 2✏+max

⇢
0,�2 ln(k✏ � 1)

ln k

�◆
dk2+2✏ ln k

⇡
,

⌧ = 1� 1/k1+✏,

where ✏ > 0, all nodes stop after

P
n

k=2

(pr + k) rounds of communication and output n.

Proof. Notice that the above parameters fulfill the conditions of the previous lemmas.
First we prove that Methodical Counting is correct. To do so, it is enough to show that for each estimate

k < n the algorithm detects the error and moves to the next estimate, and that if otherwise k = n the algorithm
stops and outputs k. We consider three cases: k = n, k < n  k1+✏, and k1+✏ < n, for a chosen value of ✏ > 0.

Assume first that k < n  k1+✏. Then, even if the leader does not receive an alarm during the execution, as
shown in Lemma 6.2, at the end of the epoch in Line 1.21 the leader will detect that ⇢ is out of range and will
not change its status to done. Therefore, no other node will receive a termination message (loop in Line 1.28),
and all nodes will continue to the next epoch.

Assume now that k1+✏ < n. Lemma 6.4 shows that within the following k1+✏ rounds after the first phase the
leader has received an alarm message, even if no node has more than d � 1 neighbors during the execution and
alarms due to this are not triggered. For the given value of p and k � 2, the epoch has more than one phase.
Therefore, within k1+✏ rounds into the second phase the leader will change to alarm status in Line 1.13, will not
change its status to done later in this epoch, and no other node will receive a termination message. Hence, all
nodes will continue to the next epoch.

Finally, if k = n, Lemma 6.1 shows that the accumulated potential ⇢ will be k � 1� 1/k  ⇢  k � 1. Thus,
in Line 1.21 the leader will change its status to done, and in the loop of Line 1.28 will inform all other nodes that
the current estimate is correct. The number of iterations of such loop are enough due to 1-interval connectivity.

The claimed running time can be obtained by inspection of the algorithm, either for the leader or non-leader
since they are synchronized. Refer for instance to the leader algorithm in Figure 1. The outer loop in Line 1.5
corresponds to each epoch with estimates k = 2, 3, . . . , n. For each epoch, Line 1.6 starts a loop of p phases

Copyright
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followed by k rounds in Line 1.28. Each of the p phases has r rounds. Thus, the overal number of rounds isP
n

k=2

(pr + k).
⇤

Choosing ✏ = log
k

2, the following holds.

Corollary 6.1. The time complexity of Methodical Counting is O(n5 log2 n).

nX
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nX
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k

2) 23k3 ln k
⌥
+ k

◆


nX

k=2
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6k2

k � 1
ln k

⇡ ⌃
48k3 ln k

⌥
+ k

◆

2 O(n5 log2 n).

7 Extensions

We argue that Methodical Counting can be extended to compute the sum of values stored in the nodes, and
thus also the average (as it computes the number of nodes n), and other functions. Assume that each node of
the Anonymous Dynamic Network initially stores a value, represented as a sequence of bits. W.l.o.g. we could
assume that the value stored at the leader is zero; otherwise, the nodes could compute the sum of other initial
values (with the leader value set up to 0), and later the leader could propagate its actual initial value appended
to the message “done” at the end of the execution to be added to the computed sum of other nodes.

The modified Methodical Counting prepends the potential to the sequence. Instead of sending potential
by the original Methodical Counting, each node transmits its current sequence (in which the potential stands
in the first location). Changes at each position of the sequence are done independly by the same algorithm as
used for the potential, cf. Figures 1 and 2. Re-setting the values, in the beginning of each epoch, means putting
back the initial values of the sequence. It means that the modified algorithm maintains potential in exactly the
same way as the original Methodical Counting, regardless of the initial values. At the end of some epoch,
with number corresponding to the number of nodes n, all nodes terminate. When it happens, each node recalls
the sequence stored in it at the end of the first phase of the epoch, multiplies the values stored at each position
of the sequence by the epoch number n, and rounds each of the results to the closest integer; then it sums up
the subsequent values multiplied by corresponding (consecutive) powers of 2. Note that such “recalling” could be
easily implemented by storing and maintaining the sequence after the first phase of each epoch.

We argue that the computed value is the sum of the initial values. It is enough to analyze how the modified
algorithm processes values at one position of the sequence, as positions are treated independently; therefore,
w.l.o.g. we assume that each node has value 0 or 1 in the beginning. Consider the last epoch before the leader
sends the final sequence (in our case, representing one value). In the beginning of the epoch, the values are re-set
to the original one, and manipulated independently according to the rules in Figures 1 and 2. Therefore, let us
focus on the first phase of this epoch. Since we already proved that the estimate of the last epoch is equal to the
number of nodes, the value of d in this epoch (and thus also in its first phase) is an upper bound on the node
degree. Thus, the mass distribution scaled down by the sum of the initial values behaves exactly the same as
the probabilities of being at nodes in the corresponding round of the lazy random walk, with parameter d and
starting from initial distribution equal to the initial values divided by the sum. Since the length of the phase is
set up to guarantee that the distribution is close to the stationary uniform within error 1/n, and the sum of bits
is not bigger than n, at the end of the phase the value stored by each node is close to the sum (i.e., scaling factor)
divided by n by at most 1/n4 (cf. Equation 6.1). Therefore, after multiplying it by n, each node gets value of
sum within error of at most 1/n3, which after rounding will give the integer equal to the value of the sum.

Once having the number n and the sum, each node can compute the average. As argued in [12], the capacity
of computing the sum of the input values makes possible the computation of more complex functions. Moreover,
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MC Extensions
SUM: assume each node i stores a value vi, 

and we need to compute the exact sum.
Compute n and SUM simultaneously:
For each node i
• Append to potential Φi the bit representation of value vi as a sequence of values 

(initially in {0,1} but later averaged iteratively and independently). 

• Apply same algorithm to each vij independently, as well as to the potential.
• Store the vij’s at the end of each first phase, call them v’ij.
• At the end of each epoch while k<n, reset to the original vij’s.
• At the end of last epoch (k=n), compute                      .

Others: AVG, Boolean (AND, OR, XOR, etc.), some 
database queries. 
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Future and Ongoing Work
• Many leaders.
• Improve upper and lower bounds. 
• Other computations in ADNs.
• Asynchronous protocol.



Thank you!


