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Anonymous Dynamic Networks
&

* Fixed set of n nodes / \‘
— No identifiers or labels fi\ / \
— A special node, called the leader [1] @ \

« Synchronous communication : At each round \ @

— a node broadcasts a message to its neighbors f
— receives the messages of its neighbors ‘/ kl o
N‘

— executes some local computation

* 1-interval connectivity [2]
— communication links may change from round to round, but

— at each round the network is connected

[1] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013.
[2] F. Kuhn, N. A. Lynch, R. Oshman. Distributed computation in dynamic networks. STOC 2010.



The Counting Problem

How do you count the size of your group,
If the members are all identical and move?
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Why do we care?

The problem is clean, but why do we care?

Distributed algorithms
need the number of processors to decide termination.

We need a protocol: « Given a system of n nodes,
all nodes eventually terminate knowing n »




Previous work

* Previous Counting Protocols
— Guarantee only an exponential upper bound on the network size [1] or

— They guarantee the exact size but
« Take double-exponential number of rounds [2] or
« Take exponential number of rounds, but do not terminate [2] or
« Terminate but no running-time guarantees [3].

— Recently, exact-size exponential time Counting with termination:
« [5] Incremental Counting (IC): needs dyn. max degree dmax, poly space.
« [6] EXT Counting: no dmax, but exponential space. SLRETIL el

] ] but still not practical
 Lower bound on the time complexity
— Q)(D) where D is the dyn. diameter.

H
— Q(log n) even if D is constant [4]. eI
 Experimental work
— IC on trees, paths, stars, G(n,p) [7] Polynomial in practice

[1] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013.

[2] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic networks. ICDCN 2014.
[3] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous dynamic networks under worst-case adversary. ICDCS 2014.
[4] G. A. Di Luna and R. Baldoni. Investigating the cost of anonymity on dynamic networks. 2015.

[5] A. Milani and M. A. Mosteiro. A faster counting protocol for anonymous dynamic networks. OPODIS 2015.

[6] R. Baldoni and G. A. D1 Luna. Non trivial computations in anonymous dynamic networks. OPODIS 2015.

[7] M. Chakraborty, A. Milani and M. A. Mosteiro. Counting in practical anonymous dynamic networks is polynomial. NETYS 2016.



restrictions/
shortcomings

Previous work
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Contributions
Methodical Counting (MC) algorithm:

- no knowledge of network characteristics

- computes the exact size of the network

- all nodes obtain n and terminate

- first polynomial time guarantees

- exponentially faster than best previous work

Design of control mechanisms:
- for mass-distribution-based computations,
to detect wrong convergence-time estimation

Novel approach opens path:
- to study more complex computations using same techniques

Extensions to algebraic and other computations:
- sum, average, max, min, multiple Boolean functions, others



MC Key Ingredients

Key idea:

o distribute a potential value iteratively
(resembling previous works),

e but let the leader participate in the process
as any other node,

* |eader removes potential but only after it has
accumulated enough!



MC Key Ingredients

Our approach allows to leverage previous work on
lazy random walks in evolving graphs [1].

But, not a simple de-randomization,

56, WARNS NEBarRIGAT e R BRinaished

e Even number of qui hbors unknown at transmission tigne,e g

ut only w arameters are temporarily fi
y oﬁ)ly a?ter rece‘lgvmg ut mgy change or néxt round.

e Unknowd IR YIRGERFLeceived messages is not invalid.

potential received could be bigger than 1.

e Mixing and cover time of lazy random walks depend on n =>
cannot be used for termination.

[1] C. Avin, M. Koucky, and Z. Lotker. How to explore a fast-changing world (cover time of a simple random walk on evolving graphs). ICALP 2008.



MC Structure

epochs:
— one for each estimate k=2,3,...,n
— initially, “potential” value: ®non-leader=1, Pieader=0




MC Averaging Phase Example
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MC Epoch Example

epochs: After p(k) phases...

— one for each estimate k=2,3,...,n
— initially, “potential” value: ®non-leader=1, Pieader=0

es...

— ifp<k-1-1/k or p > k-1 w
— try next k p=
— else notify all nodes that k=n




MC Alarms (for k<n)

K

k1 E

L )
If nis “close” to k then
leader removes

“too much” potential.
——

AN
If nis “far” from k then

not “many” nodes

have “low” potential,
—

( . )
SO, leader receives alarm from

nodes with “high” potential

“soon” after first phase.
—



MC Epoch Example

epochs:
— one for each estimate k=2,3,...,n
— initially, “potential” value: ®non-leader=1, Pieader=0

We use some previous
alarms to detect k<n
In those cases.

— if k-1-1/k <= p <= k-1 and status = normal And now the leader can
— notify all nodes that k=n - - notify k=n

— else try next k when p is in that range.
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Main Theorem

for each estimate k = 2,3, ...,n with parameters

d=k'"e,

[ (2 + €)ktTe
= In k

b 1 —1/k ]
i 2In(k€ —1

r= (44 2¢+max< 0, — al ) dk*T2¢Ink |,

In k
T=1-1/k"",

where € > 0, all nodes stop after 2222(]97“ + k) rounds of communication and output n.

COROLLARY 6.1. The time complezity of METHODICAL COUNTING is O(n®log®n).

\_

GHEOREM 6.2. Given an Anonymous Dynamic Network with n nodes, after running METHODICAL COUNTIIQ

J




MC Extensions

SUM: assume each node i stores a value v;,
and we need to compute the exact sum.

fCompute n and SUM simultaneously: \

For each node |

Append to potential ®; the bit representation of value vi as a sequence of values
(initially in {0,1} but later averaged iteratively and independently).

(Diy Vi, Vi1, Vioy e v )

Apply same algorithm to each vj independently, as well as to the potential.

Store the vj’s at the end of each first phase, call them Vv’;.

At the end of each epoch while k<n, reset to the original vj/s.
« At the end of last epoch (k=n), compute Z(nvgjwj .

. j J

Others: AVG, Boolean (AND, OR, XOR, etc.), some

database queries.




Future and Ongoing Work

Many leaders.

Improve upper and lower bounds.
Other computations in ADNS.
Asynchronous protocol.
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