Polynomial Anonymous Dynamic
Distributed Computing
without a Unique Leader

Dariusz R. Kowalski Miguel A. Mosteiro
U. Liverpool (UK) Pace Univ. (USA)

ICALP 2019

Anonymous Dynamic Networks
@

* Fixed set of n nodes @
— No identifiers or labels & &
* Synchronous communication : At each round
— a hode broadcasts a message to its neighbors &
— receives the messages of its neighbors @
— executes some local computation ‘
* 1-interval connectivity [1] ‘ &
— communication links may change from round to round, but
— at each round the network is connected

[1] F. Kuhn, N. A. Lynch, R. Oshman. Distributed computation in dynamic networks. STOC 2010.

Anonymous Dynamic Networks

* Fixed set of n nodes .\
@ \

— No identifiers or labels &

* Synchronous communication : At each round x I /‘

— a hode broadcasts a message to its neighbors & ¢

— receives the messages of its neighbors I ‘\
— executes some local computation ‘N 1 o
* 1-interval connectivity [1] ‘ ‘

— communication links may change from round to round, but
— at each round the network is connected

[1] F. Kuhn, N. A. Lynch, R. Oshman. Distributed computation in dynamic networks. STOC 2010.

Anonymous Dynamic Networks

* Fixed set of n nodes
— No identifiers or labels

* Synchronous communication : At each round
— a hode broadcasts a message to its neighbors
— receives the messages of its neighbors
— executes some local computation

* 1-interval connectivity [1]
— communication links may change from round to round, but
— at each round the network is connected

[1] F. Kuhn, N. A. Lynch, R. Oshman. Distributed computation in dynamic networks. STOC 2010.

The Counting Problem

How do you count the size of your group,
If the members are all identical and move?

The Counting Problem

How do you count the size of your group,
If the members are all identical and move?

The Counting Problem

How do you count the size of your group,
If the members are all identical and move?

The Counting Problem

How do you count the size of your group,
If the members are all identical and move?

The Counting Problem

How do you count the size of your group,

If the members are all identical and move?

The Counting Problem

How do you count the size of your group,

If the members are all identical and move?

Why do we care?

The problem is clean, but why do we care?

Why do we care?

The problem is clean, but why do we care?

Distributed algorithms
need the number of processors to decide termination.

We need a protocol: « Given a system of n nodes,
all nodes eventually terminate knowing n ».

Why do we care?

‘ N
\3/ a
4;;# N7 ¢ 1
\J d & Siate O
lil n w 10 @ (0] “’I m @ f
Vehicle,asset person & pet riculture automation — Energy consumption Security & Buildin /
w‘aro@ & confro//ug j e/ faes c’/‘/{xce o i
)) Everyday things for smarter
IRl Embedded _ g
@ S s |nternet Of thlngs get connected tomorrow
@®] ol + ke
g ©@@é© e E Ifr rn] EH _
/’/ e’ o @ SSSSSS _ o B
7o Ipaflle *@=
M2 & wireless

Sensor networt

6%{7&@ Hto'!‘fﬂ‘f

Swart homes & cities Telemedicine & helthcare

1 Gi4 ZEatWP - oo
BILLION TRISIGN MILEION BILLIIN“ TRILLIDN
Connected People Revenue Opportunity Apps P 4 |n5:n,t;i?::e5(;:t1%15 g ;, GBs of Data

=< | u ?;i'»*
il B

—

Source: Mario Morales, IDC

CONNeCT
THS WORWD

Why do we care?

&= 1 V¥ ok & N G
e | Yo% &y, [\ ¢
Vehicle,asset person & pet jrwu/f«fe automation 6new consumption Jecwég & BM/MJ gl
w‘aro@ & confro//ug reavsilleane Y
)) Everyday things for smarter
Embedded : _t
@ - o |nte n et Of th | ngS get connected tomorrow

N\ B = M G @
i @ 2.
G IE il!h-.liﬁ a d@e

6%{7&@ Hto'!‘fﬂ,.f Swart homes & cities Telemedicine & helthcare

M2 & wireless

Sensor networt

Source: Mario Morales, IDC

1 Gi4 ZEatWP - oo
BILLION TRISIGN MILEION BILLIIN“ TRILLIDN
Connected People Revenue Opportunity Apps P . |n5:n,t;i?::e5(;:t1%15 g ;, GBs of Data

da ". | ”w»
, @

.ﬂ. p
1

CONNeCT
THS WORWD

Previous work

algorithm needs computes stops? complexity
size dynamic
distinguished upper maximum tHim
nodes bound degree u.b. e space
N dmax

Degree] Y o) y o)

Counting [5] max
N2 a73
Conscious (2] 1 v v n v dg(e) N3) =
O(e®maxdyft) using [5]
Unconscious [2] 1 n No No l’gl(l)i(;rszlcal -
restrictions/
Oracle .
Aor [3] 1 for each n Eventually Unknown shor"rcommgs
node

EXT [1] 1 n v O(n"+4) EXPSPACE
Incremental n+l Inn
Counting [6] 1 v n v 0 (n (2dmax) M)
Methodical 51..2
Counting [4] 1 n v O(n®In?n) PSPACE

[5] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013.

[2] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic networks. ICDCN 2014.
[3] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous dynamic networks under worst-case adversary. ICDCS 2014.
[6] A. Milani and M. A. Mosteiro. A faster counting protocol for anonymous dynamic networks. OPODIS 20135.

[1] R. Baldoni and G. A. Di Luna. Non trivial computations in anonymous dynamic networks. OPODIS 2015.

[4] D. Kowalski and M. A. Mosteiro. Polynomial counting in anonymous dynamic networks with applications to anonymous dynamic algebraic computations. [CALP 2018.

Previous work

algorithm needs computes stops? complexity
size dynamic
distinguished upper maximum tHim
nodes bound degree u.b. e space
N dmax

Counting [5] max
N2 a73

Conscious [2] 1 v v n v dg(e) N*) :>

O(e®maxdyft) using [5]
Unconscious [2] 1 n No No l’gl(l)i(;rszlcal -
Oradl restrictions/
racle
Aor [3] 1 for each n Eventually Unknown shor"rcommgs
node
EXT [1] 1 n v O(n"+4) EXPSPACE

Incremental n+l Inn

Counting [6] L 4 " v 0 (n (2max) M)

Methodical 51,2

Counting [4] 1 n v O(n®In?n) PSPACE
first

polynomial

[5] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013.

[2] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic networks. ICDCN 2014.
[3] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous dynamic networks under worst-case adversary. ICDCS 2014.
[6] A. Milani and M. A. Mosteiro. A faster counting protocol for anonymous dynamic networks. OPODIS 20135.

[1] R. Baldoni and G. A. Di Luna. Non trivial computations in anonymous dynamic networks. OPODIS 2015.

[4] D. Kowalski and M. A. Mosteiro. Polynomial counting in anonymous dynamic networks with applications to anonymous dynamic algebraic computations. [CALP 2018.

Previous work

algorithm needs computes stops? complexity
size dynamic
distinguished upper maximum i
nodes bound degree u.b. 1me space
N dmax

Degree "

Counting [5] 1 v O(diax) v O(n)
N?ar3
Conscious (2] 1 v v n v dg(e) N3) =
O(e®maxdy) using [5]
Unconscious [2] 1 n No No l’gl(l)(il(;rszlcal -
restrictions/
Oracle .
Aor [3] 1 for each n Eventually Unknown shor"rcommgs
node

EXT [1] 1 n v O(n"+4) EXPSPACE
Incremental n+l Inn
Counting [6] 1 v n v 0 (n (2dmax) M)

Methodical 51,2
Counting [4] 1 n v O(n°In"n) PSPACE

heeds at first
least one [5] polynomial

[5] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013.

[2] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic networks. ICDCN 2014.
[3] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous dynamic networks under worst-case adversary. ICDCS 2014.
[6] A. Milani and M. A. Mosteiro. A faster counting protocol for anonymous dynamic networks. OPODIS 20135.

[1] R. Baldoni and G. A. Di Luna. Non trivial computations in anonymous dynamic networks. OPODIS 2015.

[4] D. Kowalski and M. A. Mosteiro. Polynomial counting in anonymous dynamic networks with applications to anonymous dynamic algebraic computations. [CALP 2018.

Questions

Can we count deterministically with more than
one special node?

What information about the special nodes is
needed?

How “special’? Can the nodes be identical and
just have two different programs?

Can we let the nodes choose program at random
and make them all identical?

Can we tighten previous bounds?

Questions

Can we count deterministically with more than

- |
one special hode? Yes!
What information about the special nodes is
needed? Count
How “special’? Can the nodes be identical and
just have two different programs? Yes!

Can we let the nodes choose program at random

and make them all identical? Yes!

Can we tighten previous bounds? Yes!

Results

¢ black nodes and - white nodes:
* Impossiblility:
- Deterministic counting: not possible if £is unknown

- Randomized counting: if £is unknown or zero, exist
executions that do not stop

Results

¢ black nodes and - white nodes:
* Impossiblility:
- Deterministic counting: not possible if £is unknown

- Randomized counting: if £is unknown or zero, exist
executions that do not stop

* Methodical Multi-Counting (MMC) algorithm:
- allnodes obtain ~ and terminate

- no network info needed except ¢

* Leader-less Methodical Counting (LLMC) algorithm:
- first algorithm applicable to ADNs with all identical nodes

Results

algorithm needs computes stops? complexity
size dynamic
distinguished upper maximum .
nodes bound degree u.b. e Space
N dmax
Degree n
Counting [5] L v Oldinax) v On)
N2 ar3
Conscious [2] 1 v v n v dg(e 3nN) :>
O(e%maxd2™) using [5]
Unconscious (2] 1 n No No theoretical
bounds
Oracle
Aor [3] 1 for each n Eventually Unknown
node
EXT [1] 1 n v O(n™4) EXPSPACE
Incremental n+l Inn
Counting [6] 1 v " v 0 (n (2dmax) In dmax>
Methodical 512
Counting [4] 1 n v O(n°In"n) PSPACE
METHODICAL Ate 3
MULTI-COUNTING (>1 n v O(f(n /6) ligo n) PSPACE
[This work] or any e
LEADER-LESS n O(n**<log” n)
METHODICAL-COUNTING 0 prob. > 1—(v for any € > 0 PSPACE
[This work] for any ¢ > 0 and n = max{n, [[12/{]]}

Results

algorithm needs computes stops? complexity
size dynamic
distinguished upper maximum .
nodes bound degree u.b. e Space
N dmax
Degree n
Counting [5] L v Oldinax) v On)
N2 ar3
Conscious [2] 1 v v n v dg(e 3 N):>
O(e%maxd2™) using [5]
Unconscious (2] 1 n No No theoretical
bounds
Oracle
Aor [3] 1 for each n Eventually Unknown
node
EXT [1] 1 n v O(n™4) EXPSPACE
Incremental n+l Inn
Counting [6] 1 v " v 0 (n (2dmax) In dmax)
Methodical 512
Counting [4] 1 n v O(n°In“ n) PSPACE
METHODICAL Ate 3
MULTI-COUNTING (>1 n v O(f(n /t) ligo) PSPACE
[This work] or any e
LEADER-LESS n O(n**+<log” n)
METHODICAL-COUNTING 0 prob. > 1—(v for any € > 0 PSPACE
[This work] for any ¢ > 0 and n = max{n, [[12/{]]}

first with £ #1

~nl | log n speedup (for ¢ € Q(1/n)),

faster than MC even for £ =1

Deterministic Counting

Even knowing ¢, trivial application of Zinstances of MC not clear:
- How the black nodes communicate?
- How do they compare/combine final results?
- Black nodes are all identical!

Deterministic Counting

Even knowing ¢, trivial application of Zinstances of MC not clear:

- How the black nodes communicate?
- How do they compare/combine final results?
- Black nodes are all identical!

MMC Key Ingredients:

e try network size estimates k =/ +1, 2(/+1), 4(£+1), ... binary
search after estimate k >~

e share some potential values iteratively

¢ all nodes (black and white) share potential

¢ black nodes remove potential from the system every now and then
e carefully designed alarms allow to detect correct or wrong estimate

MMC Structure

epochs:
— one for each estimate k=I+1,2(I+1),4(l1+1),...
— initially, “potential” value: ®white=l, Pblack=0

<
ﬂ@\ of

(7)
N

X

MMC Structure

MMC Structure

epochs:
— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

epochs:
— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

MMC Epoch Example

epochs:
— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

-8
®< o)

MMC Epoch Example

epochs:
— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

MMC Epoch Example

epochs:
— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

MMC Epoch Example

epochs:
— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

MMC Epoch Example

epochs:
— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

MMC Epoch Example

epochs:
— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

MMC Epoch Example

epochs:
— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

MMC Epoch Example

epochs:
— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

MMC Epoch Example

epochs:
— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

MMC Epoch Example

epochs: After p(k) phases...

— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

— blacks decide according to p
— blacks notify if k >=n p=
— try next k if needed

MMC Alarms

n

MMC Alarms

MMC Alarms

n

MMC Alarms

1+k/2 K K1+€

MMC Alarms

n

1+k/2 K K1+€

MMC Alarms

1+k/2 K K1+€

VYT
If nis “far” from k then not
“many” nodes have “low”

potential after phase 1,

~—

(.)
S0, blacks receive alarm from

nodes with “high” potential

“soon” after phase 1.
-~

MMC Alarms

k1 +€

If nis “close” to k
from above
then blacks remove

“too much” potential.

VYT
If nis “far” from k then not
“many” nodes have “low”

potential after phase 1,

.~

(.)
S0, blacks receive alarm from

nodes with “high” potential

“soon” after phase 1.
-

MMC Alarms

k1 +€

If n below k then
blacks remove

“too little” potential.
e

If nis “close” to k
from above
then blacks remove

“too much” potential.

VYT
If nis “far” from k then not
“many” nodes have “low”

potential after phase 1,

~—

(.)
S0, blacks receive alarm from

nodes with “high” potential

“soon” after phase 1.
-

Randomized Counting

As we showed, if Zis unknown or zero, 3 executions that do not stop

— we need black nodes, and we need to know how many,

we aim (stochastically) for £=1.

Randomized Counting
LLMC Key Ingredients:

® consider consecutive powers of 2 as values of K
e foreach K

e each node chooses to be black with probability inverse of K
e run MMC for /=1 and k=K

e if K= n and there is one black node = done

Randomized Counting
LLMC Key Ingredients:

® consider consecutive powers of 2 as values of K
e foreach K

e each node chooses to be black with probability inverse of K
e run MMC for /=1 and k=K

e if K= n and there is one black node = done

Challenges:
e How to detectthat K=n ?
e |f /=0 no count, but whatif />1 ?

Randomized Counting
LLMC Key Ingredients:

® consider consecutive powers of 2 as values of K
e foreach K

e each node chooses to be black with probability inverse of K
e run MMC for /=1 and k=K

e if K= n and there is one black node = done

Two additional techniques:
* Run parallel threads:
- if # threads with /=0 is large enough, K = n is likely

e Take max count over threads:
- count with Z>1 is smaller than with /=1

LLMC

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

while Count = () or EmptyThreads < f(K)/2 do
Count < 0, EmptyThreads < 0

K 2K

Initiate f(K) = 64% parallel threads
for each thread do

for each node do

end for
k< MMC(K,1)
if £ > 0 then
‘ Count < Count U {k}
end if
if no black node detected then
‘ Increase EmptyT hreads by 1
end if
end for

end while

: end procedure

~

: procedure
K+ [[12/(e)]] // [[x]]: the smallest power of 2 bigger than «x
Count +) // set of potentially "good" estimates computed in threads
EmptyThreads < 0 // number of threads with no black node detected

// parallel computation and messages sharing same resources/medium

‘ Select to be a black node with probability 1/¢(K), where g(K) = K/2

// refer to Figure 2

return max(Count) // Output the maximum number in Count as the size n.

if Ktoo small =

LLMC prob of black too high =

black nodes too big =

empty threads too small

4)

J

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

N

: procedure 3
K« [[12/(e)]] /] [[x]]: fnallest power of 2 bigger than z
Count < // set of potentially Wfood" estimates computed in threads
EmptyThreads < 0 // number & ireads with no black node detected

while Count = () or EmptyThreads < f(K)/2 do
Count < 0, EmptyThreads < 0
K < 2K
Initiate f(K) = 64% parallel threads
// parallel computation and messages sharing same resources/medium
for each thread do
for each node do
‘ Select to be a black node with probability 1/¢(K), where g(K) = K/2
end for
k< MMC(K,1) // refer to Figure 2
if £ > 0 then
‘ Count < Count U {k}
end if
if no black node detected then
‘ Increase EmptyT hreads by 1
end if

end for

end while

return max(Count) // Output the maximum number in Count as the size n.

: end procedure

~
when K gets close ton =

LLMC

evenif /=1, while K<n =

itisk=K<n=

no count
_

if Ktoo small =

prob of black too high =

black nodes too big =

empty threads too small

~

J

/] Tzl

: end procedure

,a‘llest power of 2 bigger than x

T 7/ set of potentially #450d" estimates computed in threads

~
2:
3:
4: EmptyThr& s < 0 // number ¢ iifreads with no black node detected
5: while Count = () or EmptyThreads < f(K)/2 do
6: Count < 0, EmptyThreads < 0
7 K 2K
8: Initiate f(K) = 64% parallel threads
// parallel computation and messages sharing same resources/medium
9: for each thread do
10: for each node do
11: ‘ Select to be a black node with probability 1/g(K), where g(K) = K/2
12: end for
13: k< MMC(K,1) // refer to Figure 2
14: if £ > 0 then
15: ‘ Count < Count U {k}
16: end if
17: if no black node detected then
18: ‘ Increase EmptyT hreads by 1
19: end if
20: end for
21: end while
22: return max(Count) // Output the maximum number in Count as the size n.

N

ICALP 2018 Open Questions

Many distinguished nodes.
Improve upper and/or lower bounds.

Other computations in ADNs (beyond sum, avg,
etc.).

Asynchronous protocol.

ICALP 28%8 Open Questions

Many distinguished nodes.
Improve upper and/or lower bounds.

Other computations in ADNs (beyond sum, avg,
etc.).

Asynchronous protocol.

Thank you!

. 1,306... 1,307... | |...

BAAA

D
4’?’_—@

—

32,767 32,78

BaAa BAAAA Bwa
" g
\/\ﬁé/

