
Polynomial Anonymous Dynamic
Distributed Computing

without a Unique Leader

Dariusz R. Kowalski Miguel A. Mosteiro
U. Liverpool (UK) Pace Univ. (USA)

ICALP 2019

• Fixed set of n nodes
– No identifiers or labels

• Synchronous communication : At each round
– a node broadcasts a message to its neighbors
– receives the messages of its neighbors
– executes some local computation

• 1-interval connectivity [1]
– communication links may change from round to round, but
– at each round the network is connected

Anonymous Dynamic Networks

[1] F. Kuhn, N. A. Lynch, R. Oshman. Distributed computation in dynamic networks. STOC 2010.

• Fixed set of n nodes
– No identifiers or labels

• Synchronous communication : At each round
– a node broadcasts a message to its neighbors
– receives the messages of its neighbors
– executes some local computation

• 1-interval connectivity [1]
– communication links may change from round to round, but
– at each round the network is connected

Anonymous Dynamic Networks

[1] F. Kuhn, N. A. Lynch, R. Oshman. Distributed computation in dynamic networks. STOC 2010.

• Fixed set of n nodes
– No identifiers or labels

• Synchronous communication : At each round
– a node broadcasts a message to its neighbors
– receives the messages of its neighbors
– executes some local computation

• 1-interval connectivity [1]
– communication links may change from round to round, but
– at each round the network is connected

Anonymous Dynamic Networks

[1] F. Kuhn, N. A. Lynch, R. Oshman. Distributed computation in dynamic networks. STOC 2010.

How do you count the size of your group,
 if the members are all identical and move?

The Counting Problem

How do you count the size of your group,
 if the members are all identical and move?

The Counting Problem

How do you count the size of your group,
 if the members are all identical and move?

The Counting Problem

You all look the same,

did I already count you?

How do you count the size of your group,
 if the members are all identical and move?

The Counting Problem

You all look the same,

did I already count you?

How do you count the size of your group,
 if the members are all identical and move?

The Counting Problem

You all look the same,

did I already count you?

How do you count the size of your group,
 if the members are all identical and move?

The Counting Problem

You all look the same,

did I already count you?

I don’t know!

You also look the same as

 everyone else!!

The problem is clean, but why do we care?

Why do we care?

The problem is clean, but why do we care?

Why do we care?

Distributed algorithms
need the number of processors to decide termination.

We need a protocol: « Given a system of n nodes,
 all nodes eventually terminate knowing n ».

Why do we care?

Why do we care?

restrictions/
shortcomings

Previous work

[5] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013.
[2] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic networks. ICDCN 2014.
[3] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous dynamic networks under worst-case adversary. ICDCS 2014.
[6] A. Milani and M. A. Mosteiro. A faster counting protocol for anonymous dynamic networks. OPODIS 2015.
[1] R. Baldoni and G. A. Di Luna. Non trivial computations in anonymous dynamic networks. OPODIS 2015.
[4] D. Kowalski and M. A. Mosteiro. Polynomial counting in anonymous dynamic networks with applications to anonymous dynamic algebraic computations. ICALP 2018.

algorithm
needs

computes stops?
complexity

distinguished
nodes

size
upper
bound
N

dynamic
maximum
degree u.b.

dmax

time space

Degree
Counting [5]

1 X O(dnmax) X O(n)

Conscious [2] 1 X X n X O(eN
2

N
3))

O(ed
2n
maxd

3n
max) using [5]

Unconscious [2] 1 n No
No theoretical

bounds

AOP [3] 1
Oracle
for each
node

n Eventually Unknown

EXT [1] 1 n X O(nn+4) EXPSPACE

Incremental
Counting [6]

1 X n X O

⇣
n (2dmax)

n+1 lnn
ln dmax

⌘

Methodical
Counting [4]

1 n X O(n5 ln2 n) PSPACE

Methodical
multi-Counting

[This work]
` � 1 n X O((n4+✏

/`) log3 n)
for any ✏ > 0

PSPACE

Leader-less
Methodical-Counting

[This work]
0

n

prob. � 1� ⇣

for any ⇣ > 0
X O(n4+✏ log3 n)

for any ✏ > 0
PSPACE

1

restrictions/
shortcomings

Previous work

[5] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013.
[2] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic networks. ICDCN 2014.
[3] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous dynamic networks under worst-case adversary. ICDCS 2014.
[6] A. Milani and M. A. Mosteiro. A faster counting protocol for anonymous dynamic networks. OPODIS 2015.
[1] R. Baldoni and G. A. Di Luna. Non trivial computations in anonymous dynamic networks. OPODIS 2015.
[4] D. Kowalski and M. A. Mosteiro. Polynomial counting in anonymous dynamic networks with applications to anonymous dynamic algebraic computations. ICALP 2018.

first
polynomial

algorithm
needs

computes stops?
complexity

distinguished
nodes

size
upper
bound
N

dynamic
maximum
degree u.b.

dmax

time space

Degree
Counting [5]

1 X O(dnmax) X O(n)

Conscious [2] 1 X X n X O(eN
2

N
3))

O(ed
2n
maxd

3n
max) using [5]

Unconscious [2] 1 n No
No theoretical

bounds

AOP [3] 1
Oracle
for each
node

n Eventually Unknown

EXT [1] 1 n X O(nn+4) EXPSPACE

Incremental
Counting [6]

1 X n X O

⇣
n (2dmax)

n+1 lnn
ln dmax

⌘

Methodical
Counting [4]

1 n X O(n5 ln2 n) PSPACE

Methodical
multi-Counting

[This work]
` � 1 n X O((n4+✏

/`) log3 n)
for any ✏ > 0

PSPACE

Leader-less
Methodical-Counting

[This work]
0

n

prob. � 1� ⇣

for any ⇣ > 0
X O(n4+✏ log3 n)

for any ✏ > 0
PSPACE

1

needs at
least one [5]

restrictions/
shortcomings

Previous work

[5] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013.
[2] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic networks. ICDCN 2014.
[3] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous dynamic networks under worst-case adversary. ICDCS 2014.
[6] A. Milani and M. A. Mosteiro. A faster counting protocol for anonymous dynamic networks. OPODIS 2015.
[1] R. Baldoni and G. A. Di Luna. Non trivial computations in anonymous dynamic networks. OPODIS 2015.
[4] D. Kowalski and M. A. Mosteiro. Polynomial counting in anonymous dynamic networks with applications to anonymous dynamic algebraic computations. ICALP 2018.

first
polynomial

algorithm
needs

computes stops?
complexity

distinguished
nodes

size
upper
bound
N

dynamic
maximum
degree u.b.

dmax

time space

Degree
Counting [5]

1 X O(dnmax) X O(n)

Conscious [2] 1 X X n X O(eN
2

N
3))

O(ed
2n
maxd

3n
max) using [5]

Unconscious [2] 1 n No
No theoretical

bounds

AOP [3] 1
Oracle
for each
node

n Eventually Unknown

EXT [1] 1 n X O(nn+4) EXPSPACE

Incremental
Counting [6]

1 X n X O

⇣
n (2dmax)

n+1 lnn
ln dmax

⌘

Methodical
Counting [4]

1 n X O(n5 ln2 n) PSPACE

Methodical
multi-Counting

[This work]
` � 1 n X O((n4+✏

/`) log3 n)
for any ✏ > 0

PSPACE

Leader-less
Methodical-Counting

[This work]
0

n

prob. � 1� ⇣

for any ⇣ > 0
X O(n4+✏ log3 n)

for any ✏ > 0
PSPACE

1

• Can we count deterministically with more than
one special node?

• What information about the special nodes is
needed?

• How “special”? Can the nodes be identical and
just have two different programs?

• Can we let the nodes choose program at random
and make them all identical?

• Can we tighten previous bounds?

Questions

• Can we count deterministically with more than
one special node?

• What information about the special nodes is
needed?

• How “special”? Can the nodes be identical and
just have two different programs?

• Can we let the nodes choose program at random
and make them all identical?

• Can we tighten previous bounds?

Questions

Yes!

Yes!

Yes!

Count

Yes!

l black nodes and n-l white nodes:
• Impossibility:

- Deterministic counting: not possible if l is unknown
- Randomized counting: if l is unknown or zero, exist

executions that do not stop

Results

l black nodes and n-l white nodes:
• Impossibility:

- Deterministic counting: not possible if l is unknown
- Randomized counting: if l is unknown or zero, exist

executions that do not stop

Results

• Methodical Multi-Counting (MMC) algorithm:
- all nodes obtain n and terminate
- no network info needed except l

• Leader-less Methodical Counting (LLMC) algorithm:
- first algorithm applicable to ADNs with all identical nodes

Results
algorithm

needs
computes stops?

complexity

distinguished
nodes

size
upper
bound
N

dynamic
maximum
degree u.b.

dmax

time space

Degree
Counting [5]

1 X O(dnmax) X O(n)

Conscious [2] 1 X X n X O(eN
2

N
3))

O(ed
2n
maxd

3n
max) using [5]

Unconscious [2] 1 n No
No theoretical

bounds

AOP [3] 1
Oracle
for each
node

n Eventually Unknown

EXT [1] 1 n X O(nn+4) EXPSPACE

Incremental
Counting [6]

1 X n X O

⇣
n (2dmax)

n+1 lnn
ln dmax

⌘

Methodical
Counting [4]

1 n X O(n5 ln2 n) PSPACE

Methodical
multi-Counting

[This work]
` � 1 n X O((n4+✏

/`) log3 n)
for any ✏ > 0

PSPACE

Leader-less
Methodical-Counting

[This work]
0

n

prob. � 1� ⇣

for any ⇣ > 0
X

O(⌘4+✏ log3 ⌘)
for any ✏ > 0

and ⌘ = max{n, dd12/⇣ee}
PSPACE

1

Results

first with l ≠1 ~ nl / log n speedup (for 𝜻 ∈ 𝝮(1/n)),
 faster than MC even for l =1

algorithm
needs

computes stops?
complexity

distinguished
nodes

size
upper
bound
N

dynamic
maximum
degree u.b.

dmax

time space

Degree
Counting [5]

1 X O(dnmax) X O(n)

Conscious [2] 1 X X n X O(eN
2

N
3))

O(ed
2n
maxd

3n
max) using [5]

Unconscious [2] 1 n No
No theoretical

bounds

AOP [3] 1
Oracle
for each
node

n Eventually Unknown

EXT [1] 1 n X O(nn+4) EXPSPACE

Incremental
Counting [6]

1 X n X O

⇣
n (2dmax)

n+1 lnn
ln dmax

⌘

Methodical
Counting [4]

1 n X O(n5 ln2 n) PSPACE

Methodical
multi-Counting

[This work]
` � 1 n X O((n4+✏

/`) log3 n)
for any ✏ > 0

PSPACE

Leader-less
Methodical-Counting

[This work]
0

n

prob. � 1� ⇣

for any ⇣ > 0
X

O(⌘4+✏ log3 ⌘)
for any ✏ > 0

and ⌘ = max{n, dd12/⇣ee}
PSPACE

1

Deterministic Counting
Even knowing l, trivial application of l instances of MC not clear:

- How the black nodes communicate?
- How do they compare/combine final results?
- Black nodes are all identical!

MMC Key Ingredients:
• try network size estimates k = l +1, 2(l +1), 4(l +1), … binary

search after estimate k > n

• share some potential values iteratively
• all nodes (black and white) share potential
• black nodes remove potential from the system every now and then

• carefully designed alarms allow to detect correct or wrong estimate

Deterministic Counting
Even knowing l, trivial application of l instances of MC not clear:

- How the black nodes communicate?
- How do they compare/combine final results?
- Black nodes are all identical!

MMC Structure
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

k?

k?

k?

k?

k?
k?

k?

MMC Structure
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

k?

k?

k?

k?

k?
k?

p(k) phases:
(to let blacks remove “enough” potential ρ)

k?

MMC Structure
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

k?

k?

k?

k?

k?
k?

p(k) phases:
(to let blacks remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ) k?

k?

k?

k?

k?

k?
k?

ρ=

epochs:
– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

p(k) phases:
(to let blacks remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ) k?

k?

k?

k?

k?

k?
k?

ρ=

MMC Epoch Example
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

p(k) phases:
(to let blacks remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

mass distribution:
– broadcast Φ and receive neighbors’ Φi

– Φ = Φ + 𝝨i∈N Φi/d(k) - |N|Φ/d(k)

k?

k?

k?

k?

k?

k?
k?

ρ=

MMC Epoch Example
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

p(k) phases:
(to let blacks remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

– blacks “remove” their potential: ρ=ρ+Φ, Φ=0

mass distribution:
– broadcast Φ and receive neighbors’ Φi

– Φ = Φ + 𝝨i∈N Φi/d(k) - |N|Φ/d(k)

k?

MMC Epoch Example
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

p(k) phases:
(to let blacks remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

k?

k?

k?

k?

k?
k?

ρ=

k?

MMC Epoch Example
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

p(k) phases:
(to let blacks remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

mass distribution:
– broadcast Φ and receive neighbors’ Φi

– Φ = Φ + 𝝨i∈N Φi/d(k) - |N|Φ/d(k)

k?

k?

k?

k?

k?
k?

ρ=

k?

MMC Epoch Example
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

p(k) phases:
(to let blacks remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

– blacks “remove” their potential: ρ=ρ+Φ, Φ=0

mass distribution:
– broadcast Φ and receive neighbors’ Φi

– Φ = Φ + 𝝨i∈N Φi/d(k) - |N|Φ/d(k)

k?

k?

k?

k?

k?
k?

ρ=

k?

MMC Epoch Example
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

p(k) phases:
(to let blacks remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

k?

k?

k?

k?

k?
k?

ρ=

k?

MMC Epoch Example
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

p(k) phases:
(to let blacks remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

mass distribution:
– broadcast Φ and receive neighbors’ Φi

– Φ = Φ + 𝝨i∈N Φi/d(k) - |N|Φ/d(k)

k?

k?

k?

k?

k?
k?

ρ=

k?

MMC Epoch Example
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

p(k) phases:
(to let blacks remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

– blacks “remove” their potential: ρ=ρ+Φ, Φ=0

mass distribution:
– broadcast Φ and receive neighbors’ Φi

– Φ = Φ + 𝝨i∈N Φi/d(k) - |N|Φ/d(k)

k?

k?

k?

k?

k?
k?

ρ=

k?

MMC Epoch Example
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

p(k) phases:
(to let blacks remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

ρ=

k?

k?

k?

k?

k?
k?

k?

MMC Epoch Example
epochs:

– one for each estimate k=l+1,2(l+1),4(l+1),…
– initially, “potential” value: Φwhite=l, Φblack=0

p(k) phases:
(to let blacks remove “enough” potential ρ)

r(k) rounds:
(to “average” the current potentials Φ)

– blacks “remove” their potential: ρ=ρ+Φ, Φ=0

mass distribution:
– broadcast Φ and receive neighbors’ Φi

– Φ = Φ + 𝝨i∈N Φi/d(k) - |N|Φ/d(k)

ρ=
– blacks decide according to ρ
– blacks notify if k >= n
– try next k if needed

k?

k?

k?

k?

k?
k?

After p(k) phases…

k?

MMC Alarms

k1+ϵk

n

MMC Alarms

k1+ϵk1+k/2

n

MMC Alarms

k1+ϵk

n

MMC Alarms

k1+ϵk1+k/2

n

MMC Alarms

k1+ϵk1+k/2

n

MMC Alarms

If n is “far” from k then not
“many” nodes have “low”
potential after phase 1,

so, blacks receive alarm from
nodes with “high” potential

“soon” after phase 1.

k1+ϵk1+k/2

n

MMC Alarms

If n is “close” to k
from above

then blacks remove
“too much” potential.

If n is “far” from k then not
“many” nodes have “low”
potential after phase 1,

so, blacks receive alarm from
nodes with “high” potential

“soon” after phase 1.

k1+ϵk1+k/2

n

MMC Alarms

If n is “close” to k
from above

then blacks remove
“too much” potential.

If n is “far” from k then not
“many” nodes have “low”
potential after phase 1,

so, blacks receive alarm from
nodes with “high” potential

“soon” after phase 1.

k1+ϵk1+k/2

If n below k then
blacks remove

“too little” potential.

n

Randomized Counting
As we showed, if l is unknown or zero, ∃ executions that do not stop

⇒ we need black nodes, and we need to know how many,

we aim (stochastically) for l =1.

LLMC Key Ingredients:
• consider consecutive powers of 2 as values of K
• for each K

• each node chooses to be black with probability inverse of K

• run MMC for l =1 and k⪕K

• if K ⩾ n and there is one black node ⇒ done

Randomized Counting

LLMC Key Ingredients:
• consider consecutive powers of 2 as values of K
• for each K

• each node chooses to be black with probability inverse of K

• run MMC for l =1 and k⪕K

• if K ⩾ n and there is one black node ⇒ done

Randomized Counting

Challenges:
• How to detect that K ⩾ n ?

• If l = 0 no count, but what if l >1 ?

LLMC Key Ingredients:
• consider consecutive powers of 2 as values of K
• for each K

• each node chooses to be black with probability inverse of K

• run MMC for l =1 and k⪕K

• if K ⩾ n and there is one black node ⇒ done

Randomized Counting

Two additional techniques:
• Run parallel threads:

− if # threads with l = 0 is large enough, K ⩾ n is likely

• Take max count over threads:
− count with l >1 is smaller than with l =1

LLMC
XXX:12 Counting in ADN’s without Unique Leader

Figure 1 LLMC algorithm. ‘ œ (0, 1)

1: procedure

2: K Ω ÁÁ12/(‘)ËË // ÁÁxËË: the smallest power of 2 bigger than x

3: Count Ω ÿ // set of potentially "good" estimates computed in threads

4: EmptyThreads Ω 0 // number of threads with no black node detected

5: while Count = ÿ or EmptyThreads Æ f(K)/2 do

6: Count Ω ÿ, EmptyThreads Ω 0
7: K Ω 2K

8: Initiate f(K) = 64 log(K/‘)
log(e/(e≠2)) parallel threads

// parallel computation and messages sharing same resources/medium

9: for each thread do

10: for each node do

11: Select to be a black node with probability 1/g(K), where g(K) = K/2
12: end for

13: k Ω MMC(K, 1) // refer to Figure 2

14: if k > 0 then

15: Count Ω Count fi {k}
16: end if

17: if no black node detected then

18: Increase EmptyThreads by 1
19: end if

20: end for

21: end while

22: return max(Count) // Output the maximum number in Count as the size n.

23: end procedure

Figure 2 Subroutine of LLMC

Input: number of black nodes ¸, max size estimate K.
1: procedure MMC (K,¸)
2: Run MMC modified as follows:
3: – Stop iterations when size estimate k > K

4: – If estimate k < K, remain idle until end of phase K // for synchronization

5: – Include a Boolean pj in each node j as follows:
6: — Initially:
7: if node j is black then pj Ω true else pj Ω false

8: — In each iteration:
9: Broadcast and Receive messages including pj

10: if pi = true received from some neighbor i then pj Ω true

11: Upon completion:
12: if status = done return k else return 0
13: end procedure

starting value of K, functions f(K) and g(K), could be substantially lowered, as we set them458

high to avoid too many cases in the analysis (so making it focused on main arguments).459

The proofs of the following lemmata are left to the full version of this paper for brevity.460

I Lemma 16. The probability that for some epoch K, where K < n, the value of461

LLMC
XXX:12 Counting in ADN’s without Unique Leader

Figure 1 LLMC algorithm. ‘ œ (0, 1)

1: procedure

2: K Ω ÁÁ12/(‘)ËË // ÁÁxËË: the smallest power of 2 bigger than x

3: Count Ω ÿ // set of potentially "good" estimates computed in threads

4: EmptyThreads Ω 0 // number of threads with no black node detected

5: while Count = ÿ or EmptyThreads Æ f(K)/2 do

6: Count Ω ÿ, EmptyThreads Ω 0
7: K Ω 2K

8: Initiate f(K) = 64 log(K/‘)
log(e/(e≠2)) parallel threads

// parallel computation and messages sharing same resources/medium

9: for each thread do

10: for each node do

11: Select to be a black node with probability 1/g(K), where g(K) = K/2
12: end for

13: k Ω MMC(K, 1) // refer to Figure 2

14: if k > 0 then

15: Count Ω Count fi {k}
16: end if

17: if no black node detected then

18: Increase EmptyThreads by 1
19: end if

20: end for

21: end while

22: return max(Count) // Output the maximum number in Count as the size n.

23: end procedure

Figure 2 Subroutine of LLMC

Input: number of black nodes ¸, max size estimate K.
1: procedure MMC (K,¸)
2: Run MMC modified as follows:
3: – Stop iterations when size estimate k > K

4: – If estimate k < K, remain idle until end of phase K // for synchronization

5: – Include a Boolean pj in each node j as follows:
6: — Initially:
7: if node j is black then pj Ω true else pj Ω false

8: — In each iteration:
9: Broadcast and Receive messages including pj

10: if pi = true received from some neighbor i then pj Ω true

11: Upon completion:
12: if status = done return k else return 0
13: end procedure

starting value of K, functions f(K) and g(K), could be substantially lowered, as we set them458

high to avoid too many cases in the analysis (so making it focused on main arguments).459

The proofs of the following lemmata are left to the full version of this paper for brevity.460

I Lemma 16. The probability that for some epoch K, where K < n, the value of461

if K too small ⇒
prob of black too high ⇒
black nodes too big ⇒

empty threads too small

LLMC
XXX:12 Counting in ADN’s without Unique Leader

Figure 1 LLMC algorithm. ‘ œ (0, 1)

1: procedure

2: K Ω ÁÁ12/(‘)ËË // ÁÁxËË: the smallest power of 2 bigger than x

3: Count Ω ÿ // set of potentially "good" estimates computed in threads

4: EmptyThreads Ω 0 // number of threads with no black node detected

5: while Count = ÿ or EmptyThreads Æ f(K)/2 do

6: Count Ω ÿ, EmptyThreads Ω 0
7: K Ω 2K

8: Initiate f(K) = 64 log(K/‘)
log(e/(e≠2)) parallel threads

// parallel computation and messages sharing same resources/medium

9: for each thread do

10: for each node do

11: Select to be a black node with probability 1/g(K), where g(K) = K/2
12: end for

13: k Ω MMC(K, 1) // refer to Figure 2

14: if k > 0 then

15: Count Ω Count fi {k}
16: end if

17: if no black node detected then

18: Increase EmptyThreads by 1
19: end if

20: end for

21: end while

22: return max(Count) // Output the maximum number in Count as the size n.

23: end procedure

Figure 2 Subroutine of LLMC

Input: number of black nodes ¸, max size estimate K.
1: procedure MMC (K,¸)
2: Run MMC modified as follows:
3: – Stop iterations when size estimate k > K

4: – If estimate k < K, remain idle until end of phase K // for synchronization

5: – Include a Boolean pj in each node j as follows:
6: — Initially:
7: if node j is black then pj Ω true else pj Ω false

8: — In each iteration:
9: Broadcast and Receive messages including pj

10: if pi = true received from some neighbor i then pj Ω true

11: Upon completion:
12: if status = done return k else return 0
13: end procedure

starting value of K, functions f(K) and g(K), could be substantially lowered, as we set them458

high to avoid too many cases in the analysis (so making it focused on main arguments).459

The proofs of the following lemmata are left to the full version of this paper for brevity.460

I Lemma 16. The probability that for some epoch K, where K < n, the value of461

if K too small ⇒
prob of black too high ⇒
black nodes too big ⇒

empty threads too small

when K gets close to n ⇒
even if l =1, while K < n ⇒
it is k ⩽ K < n ⇒
no count

ICALP 2018 Open Questions

• Many distinguished nodes.
• Improve upper and/or lower bounds.
• Other computations in ADNs (beyond sum, avg,

etc.).
• Asynchronous protocol.

ICALP 2018 Open Questions

• Many distinguished nodes.
• Improve upper and/or lower bounds.
• Other computations in ADNs (beyond sum, avg,

etc.).
• Asynchronous protocol.

✔
✔

2019

Thank you!

