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Anonymous Dynamic Networks
@

* Fixed set of n nodes @
— No identifiers or labels & &
* Synchronous communication : At each round
— a hode broadcasts a message to its neighbors &
— receives the messages of its neighbors @
— executes some local computation ‘
* 1-interval connectivity [1] ‘ &
— communication links may change from round to round, but
— at each round the network is connected

[1] F. Kuhn, N. A. Lynch, R. Oshman. Distributed computation in dynamic networks. STOC 2010.
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The problem is clean, but why do we care?

Distributed algorithms
need the number of processors to decide termination.

We need a protocol: « Given a system of n nodes,
all nodes eventually terminate knowing n ».
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executions that do not stop



Results

¢ black nodes and - white nodes:
* Impossiblility:
- Deterministic counting: not possible if £is unknown

- Randomized counting: if £is unknown or zero, exist
executions that do not stop

* Methodical Multi-Counting (MMC) algorithm:
- allnodes obtain ~ and terminate

- no network info needed except ¢

* Leader-less Methodical Counting (LLMC) algorithm:
- first algorithm applicable to ADNs with all identical nodes
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Even knowing ¢, trivial application of Zinstances of MC not clear:

- How the black nodes communicate?
- How do they compare/combine final results?
- Black nodes are all identical!

MMC Key Ingredients:

e try network size estimates k =/ +1, 2(/+1), 4(£+1), ... binary
search after estimate k >~

e share some potential values iteratively

¢ all nodes (black and white) share potential

¢ black nodes remove potential from the system every now and then
e carefully designed alarms allow to detect correct or wrong estimate




MMC Structure

epochs:
— one for each estimate k=I+1,2(I+1),4(l1+1),...
— initially, “potential” value: ®white=l, Pblack=0
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MMC Epoch Example

epochs: After p(k) phases...

— one for each estimate k=I+1,2(l+1),4(I+1),...
— initially, “potential” value: ®ynite=l, Pplack=0

— blacks decide according to p
— blacks notify if k >=n p=
— try next k if needed
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VYT
If nis “far” from k then not
“many” nodes have “low”

potential after phase 1,

~—

( . )
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nodes with “high” potential

“soon” after phase 1.
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k1 +€

If n below k then
blacks remove

“too little” potential.
e

If nis “close” to k
from above
then blacks remove

“too much” potential.

VYT
If nis “far” from k then not
“many” nodes have “low”

potential after phase 1,

~—

( . )
S0, blacks receive alarm from

nodes with “high” potential

“soon” after phase 1.
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Randomized Counting

As we showed, if Zis unknown or zero, 3 executions that do not stop

— we need black nodes, and we need to know how many,

we aim (stochastically) for £=1.



Randomized Counting
LLMC Key Ingredients:

® consider consecutive powers of 2 as values of K
e foreach K

e each node chooses to be black with probability inverse of K
e run MMC for /=1 and k=K

e if K= n and there is one black node = done
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e |f /=0 no count, but whatif />1 ?



Randomized Counting
LLMC Key Ingredients:

® consider consecutive powers of 2 as values of K
e foreach K

e each node chooses to be black with probability inverse of K
e run MMC for /=1 and k=K

e if K= n and there is one black node = done

Two additional techniques:
* Run parallel threads:
- if # threads with /=0 is large enough, K = n is likely

e Take max count over threads:
- count with Z>1 is smaller than with /=1



LLMC

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

while Count = () or EmptyThreads < f(K)/2 do
Count < 0, EmptyThreads < 0

K 2K

Initiate f(K) = 64% parallel threads
for each thread do

for each node do

end for
k< MMC(K,1)
if £ > 0 then
‘ Count < Count U {k}
end if
if no black node detected then
‘ Increase EmptyT hreads by 1
end if
end for

end while

: end procedure

~

: procedure
K+ [[12/(e)]] // [[x]]: the smallest power of 2 bigger than «x
Count + ) // set of potentially "good" estimates computed in threads
EmptyThreads < 0 // number of threads with no black node detected

// parallel computation and messages sharing same resources/medium

‘ Select to be a black node with probability 1/¢(K), where g(K) = K/2

// refer to Figure 2

return max(Count) // Output the maximum number in Count as the size n.




if Ktoo small =

LLMC prob of black too high =

# black nodes too big =

# empty threads too small
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10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
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: procedure 3
K« [[12/(e)]] /] [[x]]: fnallest power of 2 bigger than z
Count < // set of potentially Wfood" estimates computed in threads
EmptyThreads < 0 // number & ireads with no black node detected

while Count = () or EmptyThreads < f(K)/2 do
Count < 0, EmptyThreads < 0
K < 2K
Initiate f(K) = 64% parallel threads
// parallel computation and messages sharing same resources/medium
for each thread do
for each node do
‘ Select to be a black node with probability 1/¢(K), where g(K) = K/2
end for
k< MMC(K,1) // refer to Figure 2
if £ > 0 then
‘ Count < Count U {k}
end if
if no black node detected then
‘ Increase EmptyT hreads by 1
end if

end for

end while

return max(Count) // Output the maximum number in Count as the size n.

: end procedure




~
when K gets close ton =

LLMC

evenif /=1, while K<n =

itisk=K<n=

no count
\_

if Ktoo small =

prob of black too high =

# black nodes too big =

# empty threads too small

~

J

/] Tzl

: end procedure

,a‘llest power of 2 bigger than x

T 7/ set of potentially #450d" estimates computed in threads

~
2:
3:
4: EmptyThr& s < 0 // number ¢ iifreads with no black node detected
5: while Count = () or EmptyThreads < f(K)/2 do
6: Count < 0, EmptyThreads < 0
7 K 2K
8: Initiate f(K) = 64% parallel threads
// parallel computation and messages sharing same resources/medium
9: for each thread do
10: for each node do
11: ‘ Select to be a black node with probability 1/g(K), where g(K) = K/2
12: end for
13: k< MMC(K,1) // refer to Figure 2
14: if £ > 0 then
15: ‘ Count < Count U {k}
16: end if
17: if no black node detected then
18: ‘ Increase EmptyT hreads by 1
19: end if
20: end for
21: end while
22: return max(Count) // Output the maximum number in Count as the size n.

N
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Other computations in ADNs (beyond sum, avg,
etc.).

Asynchronous protocol.
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. 1,306... 1,307... | |...

BAAA

D
4’?’_—@

—

32,767 32,78

BaAa BAAAA Bwa
" g
\/\ﬁé/




