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Leader Election

Some variants: 

• Implicit vs. Explicit (who knows the leader)

• Irrevocable vs. Revocable (whether decision is final)

• Known vs. Unknown n

LEADER



• Static connected network :
– fixed set of n nodes and m links
– there is a path between every pair of nodes

• Network knowledge:
– no identifiers or labels, only port numbers
– we consider known and unknown n

• Synchronous communication : in each round
– a node broadcasts a message to its neighbors
– receives the messages of its neighbors
– executes some local computation

• CONGEST communication : in each round
– O(log n) bits through each link 

Ad-hoc Network Model



Algorithms

• Performance metric? time and message (energy) complexity. 

• Deterministic LE? not possible in anonymous network [Angluin, STOC’80]

• Randomized LE? two scenarios:
− Known n? 
− Unknown n?
» So, how about Revocable LE with unknown n?

Theorem 1. For x ∈ Θ̃
(
min{

√
n logn
Φtmix

, n
tmixΦ logn}

)
,

the leader election algorithm elects a unique leader

and uses Õ(min{
√

ntmix

Φ , n
Φ logn}) point to point mes-

sages/bits of communication in the CONGEST model
with known (a linear upper bound on) n, whp. It works

in time O(tmix logn+ Φ−1 log3 n).

Proof. The time complexity of O(tmix logn +
Φ−1 log3 n), as well as using O(log n) communication
bits per point-to-point message whp, follow directly
from the description of the algorithm; the main
contributor to time performance is Cautious broadcast
O(Φ−1 log2 n) ≤ O(tmix log

2 n), which has to be
pipelined in logarithmic number of time-threads,
and probing territories in O(tmix logn) rounds. The
message/bit complexity of all Cautious broadcasts
is O(log n) times Õ(xtmix), whp by Lemma 1,
and same bound clearly holds for O(log n) times x
random walks, and for the Convergecast (as it reverses
the Cautious broadcast communication processes) –
Õ(xtmix) in total, whp, by the union bound, which is

Õ(min{
√
ntmix/Φ, n/(Φ logn)}). (Here we used the

fact that there are Θ(logn) candidates, whp.)
By Lemma 1 applied to each candidate as source

(there are Θ(logn) of them whp), at least one candidate
succeeds Cautious broadcast whp. By Lemma 2 applied
to each candidate that succeeded Cautious broadcast (and
thus keeps its status), some walk with maximum ID visits
some node in each candidate’s broadcast territory whp.
This ID is propagated to each candidate via the converge-
cast along its broadcast tree. Additionally, Lemma 2
guarantees that exactly one candidate with biggest ID is
heard by all other candidates whp, while the number of
candidates is Θ(logn) whp, therefore the leader election
process is correct whp.

Notice that the factor
√
ntmix/Φ is asymptoti-

cally smaller than
√
ntmix, for tmix = ω(1/Φ),

and never asymptotically larger, due to the known
bounds 1/Φ ≤ tmix ≤ 1/Φ2 [18]. Thus improv-

ing over the O(tmix
√
n log7/2 n) messages in previ-

ous work [4]. Regarding time complexity, for Φ−1 =
o(tmix/ logn) it is asymptotically smaller than the one
in [4], O(tmix log

2 n). Otherwise, it is at most logn
times bigger, with message complexity equivalent up to
polylogarithmic factor.

V. UNKNOWN NETWORK SIZE

A. Impossibility of Leader Election

Recall that an algorithm solves the Leader Election
problem in time T (n) with probability p(n), where n is

an input size, if for any integer n > 0 and network G
of n nodes, the probability that all nodes stop by time
T (n) with the same value and exactly one of them will
have a flag raised with that value, is at least p(n). In this
section, using a probabilistic pumping wheel technique
we prove the following result.

Theorem 2. For any non-decreasing positive integer

function T (n) and any constant 0 < c < 1, there is
no algorithm solving Leader Election problem in time

T (n) with probability c, in the setting without known

number of nodes n.

Proof. Suppose to the contrary that such an algorithm
exists, call it A. Consider an arbitrary positive integer n
and a cycle Cn of n nodes and n edges. Algorithm A
stops at all nodes of Cn by time T (n) with probability at
least c. Without loss of generality assume that A draws
one random bit per round of communication. (If more
random bits per round are used, the same argument can
be extended to more outcomes.)

Consider an execution of A on Cn in the first T (n)
rounds. Starting from the initial state where nodes have
no information (recall that nodes do not have labels
and the network size is unknown), in each round a
node makes decisions, based on the random bits drawn
and the received states of its neighbors, to move to
another state. With respect to the random bits drawn,
by time t the node may be in one of 2t states. We
call the states of all network nodes at a given time a
configuration of states. A configuration in Cn where
A stops successfully at all nodes electing a leader is
called a winning configuration. By definition of A, the
probability of ending at winning configuration is at least
c, and that there are 2nT (n) possible configurations.
Hence, there must exist some winning configuration Γ
that occurs in A with probability at least c/2nT (n).
Denote by Γ|t the part of configuration Γ by round t.

Consider a cycle CN , where N will be defined later,
where A is executed. Let a path of length 2T (n) + 2n
in CN be called a witness, the 2n nodes in the middle
of a witness be called the core, and each half of the core
of size n be called a segment (see Figure 1).

n nodes n nodesT (n) nodes T (n) nodes

segmentsegment
core

witness

Fig. 1. Illustration of a witness.

We show now that, for N large enough, after executing
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√

ntmix

Φ , n
Φ logn}) point to point mes-

sages/bits of communication in the CONGEST model
with known (a linear upper bound on) n, whp. It works

in time O(tmix logn+ Φ−1 log3 n).

Proof. The time complexity of O(tmix logn +
Φ−1 log3 n), as well as using O(log n) communication
bits per point-to-point message whp, follow directly
from the description of the algorithm; the main
contributor to time performance is Cautious broadcast
O(Φ−1 log2 n) ≤ O(tmix log

2 n), which has to be
pipelined in logarithmic number of time-threads,
and probing territories in O(tmix logn) rounds. The
message/bit complexity of all Cautious broadcasts
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Õ(xtmix) in total, whp, by the union bound, which is
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by the algorithm is implemented under the restrictions of
the CONGEST model. Color status and detection status
use O(1) bits, whereas ID chosen and estimate to choose
it need O(logn) bits. Potentials on the other hand need
ω(logn) bits in some rounds of communication. Hence,
they are transmitted bit by bit. We leave out of the
pseudocode this detail for clarity, but we take it into
account in the analysis.

C. Analysis

In this section, we analyze our Revocable Leader
Election algorithm for unknown n. Let " be the num-
ber of white nodes after the random choices. That is,
0 ≤ " ≤ n. Throughout the analysis, we use that for
0 < x < 1 it is exp(−x/(1 − x)) ≤ 1 − x ≤ exp(−x).
We denote as ##x$$ the smallest power of 2 that is larger
than x.

The potential of nodes at the beginning of a round r of
the diffusion phase is denoted as a row vector #Φr, where
Φr[i] is the potential of node i ∈ {0, 1, 2, . . . , n − 1}
(nodes are labeled only for the analysis), and ||#Φr|| =∑

i∈V Φr[i]. The subindex r is dropped when it is clear
from context.

For any given estimate k, the fractions of potential
shared are round independent. Thus, the evolution of
potentials during the diffusion phase can be characterized
by a matrix S = (sij)i,j∈V as follows. Let Ni be the
set of neighbors of node i. Then, if i = j it is sii =
1− |Ni|/(2k1+ε), where 0 < ε ≤ 1, and if i &= j, sij =
1/(2k1+ε) if j ∈ Ni or sij = 0 otherwise. Consider the

vector of potentials #Φ1 held by nodes at the beginning
of a diffusion phase where k1+ε ≥ |Ni| for all i ∈ V .

Then, for round r > 0, #Φr = #Φ1Sr is the vector of
potentials at the beginning of round r.

Given that S is stochastic, the characterization above
can be seen as a Markov chain X where the state space
is V and the transition matrix is S. Thus, for a diffusion
phase where k1+ε is larger than the number of neigh-
boring nodes, we analyze the evolution of potentials
leveraging previous work on convergence of Markov
chains (e.g. for load balancing [22], [23], gossip-based
aggregates [24], [25], and mass-distribution [26]).

The main result of this section is the following.

Theorem 3. For 0 < ε ≤ 1 and 0 < ξ < 1, after running
Blind Leader Election with Certificates via Diffusion

with Thresholds on a network with n > 1 nodes r(k) =
8k2(1+ε)

i(G)2 log(k2(1+ε)) + k1+ε log(2k), p(k) = ln 2
k1+ε ,

τ(k) = 1 − 1
k1+ε−1 , f(k) = 4

√
2 ln(k1+ε/ξ)

(
√
2−1)2

, the explicit

Revocable Leader Election problem is solved with proba-

bility at least 1−1/nlog(8/5)−2ξ, with O(n
4(1+ε)

i(G)2 log5 n)

time and O(n
4(1+ε)

i(G)2 m log5 n) messages, where m is the

number of links.

The following corollary is a direct consequence of the
theorem and the trivial i(G) ≥ 2/n lower bound on the
isoperimetric number.

Corollary 1. For 0 < ε ≤ 1 and 0 < ξ < 1,

after running Blind Leader Election with Certificates via
Diffusion with Thresholds on a network with n > 1
nodes r(k) = 2k2(2+ε) log(k2(1+ε)) + k1+ε log(2k),

p(k) = ln 2
k1+ε , τ(k) = 1− 1

k1+ε−1 , f(k) = 4
√
2 ln(k1+ε/ξ)

(
√
2−1)2

,

the explicit Revocable Leader Election problem is solved

with probability at least 1 − 1/nlog(8/5) − 2ξ, with
O(n4(2+ε) log5 n) time and O(n4(2+ε)m log5 n) mes-

sages, where m is the number of links.

To prove Theorem 3 we first need to prove a series
of intermediate results. The general structure is the
following. Lemma 3 shows that the diffusion process
converges to the average potential at each node. That
is, for any arbitrarily small γ > 0, after nodes carry on
the diffusion for enough time, all nodes have a potential
with relative error γ. Lemma 4 upper bounds the time for
such convergence. The upper bound is a function of the
conductance of the matrix underlying the diffusion pro-
cess, the network size, and the relative error. Lemmas 5
and 6 show that two of our detection methods are correct.
Namely, when the estimate is close to the network size
and there are some white nodes, the potential of all nodes
is below some threshold after diffusion (Lemma 5), and
whp at least half of the iterations in the certification
phase do not have white nodes (Lemma 6). Lemmas 7
and 8 show the correctness of our certification method.
That is, that until the estimate is close to the network
size, there is always some node that does not choose ID
(Lemma 7), and that after the estimate is close to the
network size, there is some iteration with some white
node detected (Lemma 8). The latter lemma implies that
potentials are not above threshold, which together with
Lemma 7 implies that some node will choose ID within
the appropriate range, as we argue in Theorem 3. Both
lemmas relate the number of iterations of the certification
phase with the probability of error. The proofs of the
following lemmas is left to the full version of this paper
in [17] for succinctness.

First, we show that under the above conditions each
node converges to the average over the whole network.

Lemma 3. Consider a diffusion phase where k1+ε ≥
|Ni| for all i ∈ V , and 0 < ε ≤ 1. For any γ > 0
there exists r(γ) ≥ 0 such that, for any r ≥ r(γ) and

10

by the algorithm is implemented under the restrictions of
the CONGEST model. Color status and detection status
use O(1) bits, whereas ID chosen and estimate to choose
it need O(logn) bits. Potentials on the other hand need
ω(logn) bits in some rounds of communication. Hence,
they are transmitted bit by bit. We leave out of the
pseudocode this detail for clarity, but we take it into
account in the analysis.

C. Analysis

In this section, we analyze our Revocable Leader
Election algorithm for unknown n. Let " be the num-
ber of white nodes after the random choices. That is,
0 ≤ " ≤ n. Throughout the analysis, we use that for
0 < x < 1 it is exp(−x/(1 − x)) ≤ 1 − x ≤ exp(−x).
We denote as ##x$$ the smallest power of 2 that is larger
than x.

The potential of nodes at the beginning of a round r of
the diffusion phase is denoted as a row vector #Φr, where
Φr[i] is the potential of node i ∈ {0, 1, 2, . . . , n − 1}
(nodes are labeled only for the analysis), and ||#Φr|| =∑

i∈V Φr[i]. The subindex r is dropped when it is clear
from context.

For any given estimate k, the fractions of potential
shared are round independent. Thus, the evolution of
potentials during the diffusion phase can be characterized
by a matrix S = (sij)i,j∈V as follows. Let Ni be the
set of neighbors of node i. Then, if i = j it is sii =
1− |Ni|/(2k1+ε), where 0 < ε ≤ 1, and if i &= j, sij =
1/(2k1+ε) if j ∈ Ni or sij = 0 otherwise. Consider the

vector of potentials #Φ1 held by nodes at the beginning
of a diffusion phase where k1+ε ≥ |Ni| for all i ∈ V .

Then, for round r > 0, #Φr = #Φ1Sr is the vector of
potentials at the beginning of round r.

Given that S is stochastic, the characterization above
can be seen as a Markov chain X where the state space
is V and the transition matrix is S. Thus, for a diffusion
phase where k1+ε is larger than the number of neigh-
boring nodes, we analyze the evolution of potentials
leveraging previous work on convergence of Markov
chains (e.g. for load balancing [22], [23], gossip-based
aggregates [24], [25], and mass-distribution [26]).

The main result of this section is the following.

Theorem 3. For 0 < ε ≤ 1 and 0 < ξ < 1, after running
Blind Leader Election with Certificates via Diffusion

with Thresholds on a network with n > 1 nodes r(k) =
8k2(1+ε)

i(G)2 log(k2(1+ε)) + k1+ε log(2k), p(k) = ln 2
k1+ε ,

τ(k) = 1 − 1
k1+ε−1 , f(k) = 4

√
2 ln(k1+ε/ξ)

(
√
2−1)2

, the explicit

Revocable Leader Election problem is solved with proba-

bility at least 1−1/nlog(8/5)−2ξ, with O(n
4(1+ε)

i(G)2 log5 n)

time and O(n
4(1+ε)

i(G)2 m log5 n) messages, where m is the

number of links.

The following corollary is a direct consequence of the
theorem and the trivial i(G) ≥ 2/n lower bound on the
isoperimetric number.

Corollary 1. For 0 < ε ≤ 1 and 0 < ξ < 1,

after running Blind Leader Election with Certificates via
Diffusion with Thresholds on a network with n > 1
nodes r(k) = 2k2(2+ε) log(k2(1+ε)) + k1+ε log(2k),

p(k) = ln 2
k1+ε , τ(k) = 1− 1

k1+ε−1 , f(k) = 4
√
2 ln(k1+ε/ξ)

(
√
2−1)2

,

the explicit Revocable Leader Election problem is solved

with probability at least 1 − 1/nlog(8/5) − 2ξ, with
O(n4(2+ε) log5 n) time and O(n4(2+ε)m log5 n) mes-

sages, where m is the number of links.

To prove Theorem 3 we first need to prove a series
of intermediate results. The general structure is the
following. Lemma 3 shows that the diffusion process
converges to the average potential at each node. That
is, for any arbitrarily small γ > 0, after nodes carry on
the diffusion for enough time, all nodes have a potential
with relative error γ. Lemma 4 upper bounds the time for
such convergence. The upper bound is a function of the
conductance of the matrix underlying the diffusion pro-
cess, the network size, and the relative error. Lemmas 5
and 6 show that two of our detection methods are correct.
Namely, when the estimate is close to the network size
and there are some white nodes, the potential of all nodes
is below some threshold after diffusion (Lemma 5), and
whp at least half of the iterations in the certification
phase do not have white nodes (Lemma 6). Lemmas 7
and 8 show the correctness of our certification method.
That is, that until the estimate is close to the network
size, there is always some node that does not choose ID
(Lemma 7), and that after the estimate is close to the
network size, there is some iteration with some white
node detected (Lemma 8). The latter lemma implies that
potentials are not above threshold, which together with
Lemma 7 implies that some node will choose ID within
the appropriate range, as we argue in Theorem 3. Both
lemmas relate the number of iterations of the certification
phase with the probability of error. The proofs of the
following lemmas is left to the full version of this paper
in [17] for succinctness.

First, we show that under the above conditions each
node converges to the average over the whole network.

Lemma 3. Consider a diffusion phase where k1+ε ≥
|Ni| for all i ∈ V , and 0 < ε ≤ 1. For any γ > 0
there exists r(γ) ≥ 0 such that, for any r ≥ r(γ) and

10

✔

✗ we show that no algorithm stops
✔



Randomized Leader Election

known succes wp 1 succes whp succes wp 1− o(1) succes wp constant

n,D
O(m) exp. msgs,

O(D) exp time [14]

n,Φ,
tmix

Õ(min{
√

ntmix/Φ, n/(Φ logn)}) msgs,

O(tmix logn+ Φ−1 log3 n) time
[this work]

n
O(tmix

√
n log7/2 n) msgs,

O(tmix log2 n) time [4]
∃G : Ω(

√
n/φ3/4)

exp. msgs [4]
∃G : Ω(m)

exp. msgs [14]

O(mmin(log logn,D))
exp. msgs, O(D) time [14]

∃G : Ω(D) time [14]

O(m+ n logn) msgs,
O(D logn) time [14]

O(m) exp. msgs,
O(D) time [14]

-
O(n4(2+ε)m log5 n) msgs,

O(n4(2+ε) log5 n) time
[this work] (*)

∀ 2-connected G : ∃ labeling :
Ω(m) exp. msgs [4]
∀T (n) : ! LE alg

in time T (n) [this work]

i(G)

O(n
4(1+ε)

i(G)2
m log5 n) msgs,

O(n
4(1+ε)

i(G)2
log5 n) time

[this work] (*)

TABLE I
RELEVANT PREVIOUS WORK AND RESULTS IN THIS WORK FOR RANDOMIZED LEADER ELECTION AND (*) RANDOMIZED REVOCABLE

LEADER ELECTION.

the nodes could assign arbitrary 4c logn executions to
available rounds – we will show in the analysis that there
are at most 4c logn such parallel Cautious broadcasts,
whp, therefore no node will ever need to assign arbitrar-
ily a subset of executions to rounds, and thus each of
these executions will be run correctly in the number of
super-rounds upper bounded by time complexity of the
Cautious broadcast method, all with whp. A candidate
that succeeds Cautious broadcast remains candidate,
otherwise revokes this status. We call the nodes informed
by a candidate (ID) during the execution of Cautious
broadcast its broadcast territory. We omit these time-
partitioning details in the pseudocode included in the
full version of this paper [17] for clarity (they only cause
O(log n) delay).
Candidate probe territories by random walks, larger

wins:
Each candidate node issues x independent random walks
of length c · tmix logn, carrying its ID. A random walk,
used by our algorithm, propagates the source ID of the
walk to a randomly (uniformly) selected neighbor of the
current walk node, while staying in the same node with
probability 1/2. If two or more walks meet at the same
node, a decision about next destination is made inde-
pendently for each walk. In order to be implemented in
the CONGEST model, note that there are only O(log n)
different IDs of the walks, whp, therefore by each link
there is only sent an information about ID of the walk
and the number of copies of the walk that chose that link
to propagate (which is encoded by log x = O(log n) bits.
Further, once two different IDs meet, the smaller of the
IDs is substituted by the larger one, so that at most one
ID is sent by a link each round. Each visited node stores

the largest random walk ID ever seen.
Convergecast of winning candidate IDs along the

spanning tree of each broadcast territory:
For each candidate, each node in its tree spanned in the
execution of Cautious broadcast in the beginning of the
algorithm sends to its parent the largest walk ID seen.
This is repeated c ·Φ−1 log2 n times, thus at the end the
candidate (the source of that previously done cautious-
broadcast) gets the largest walk ID that hit its broadcast
territory. Note that the partition of time into super-
rounds, as was done to accommodate parallel executions
of Cautious broadcast in the beginning of the algorithm,
is not required, as during the convergecast a node passes
only the largest walk ID ever seen. The candidate who
did not hear a bigger candidate ID becomes a leader. !

Procedure Cautious broadcast is as follows. The
broadcast source performs a broadcast of its ID by
spanning a tree, in a distributed way, in c · Φ−1 log2 n
rounds, using randomization for choosing new neighbors
but only in sparse branches. More precisely, in each
round t of the broadcast, each node w that received the
source ID maintains the following knowledge and takes
action accordingly:

• its parent (originally it is the node who sent the source
ID to w as first, and in case of many such nodes – one
of them arbitrarily selected by w); the parent cannot
be revoked until the end of the broadcast;

• its children – each node who sets w as its parent sends
a message to w confirming that it has chosen w as its
parent; then w adds it to the set of its children;

• the confirmed number of nodes in its subtree (i.e.,
nodes from whom the “parent” relation leads to w),
where confirmed means the sum of confirmed numbers

5

[4] S. Gilbert, P. Robinson, and S. Sourav, “Leader election in well-connected graphs,” in PODC 2018. 
[14] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan, “On the complexity of universal leader election,” J. ACM, 2015. 

Refs:

n : number of nodes
m : number of links
D : diameter

! : graph conductance

tmix : random-walk mixing time
i(G) : isoperimetric number

(*) Revocable, Explicit

" > 0 : any arbitrarily 
small constant

Better time and message complexity 
for !-1 = o(tmix / log n). Otherwise, 
up to log and polylog factor larger.
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[this work] (*)
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the nodes could assign arbitrary 4c logn executions to
available rounds – we will show in the analysis that there
are at most 4c logn such parallel Cautious broadcasts,
whp, therefore no node will ever need to assign arbitrar-
ily a subset of executions to rounds, and thus each of
these executions will be run correctly in the number of
super-rounds upper bounded by time complexity of the
Cautious broadcast method, all with whp. A candidate
that succeeds Cautious broadcast remains candidate,
otherwise revokes this status. We call the nodes informed
by a candidate (ID) during the execution of Cautious
broadcast its broadcast territory. We omit these time-
partitioning details in the pseudocode included in the
full version of this paper [17] for clarity (they only cause
O(log n) delay).
Candidate probe territories by random walks, larger

wins:
Each candidate node issues x independent random walks
of length c · tmix logn, carrying its ID. A random walk,
used by our algorithm, propagates the source ID of the
walk to a randomly (uniformly) selected neighbor of the
current walk node, while staying in the same node with
probability 1/2. If two or more walks meet at the same
node, a decision about next destination is made inde-
pendently for each walk. In order to be implemented in
the CONGEST model, note that there are only O(log n)
different IDs of the walks, whp, therefore by each link
there is only sent an information about ID of the walk
and the number of copies of the walk that chose that link
to propagate (which is encoded by log x = O(log n) bits.
Further, once two different IDs meet, the smaller of the
IDs is substituted by the larger one, so that at most one
ID is sent by a link each round. Each visited node stores

the largest random walk ID ever seen.
Convergecast of winning candidate IDs along the

spanning tree of each broadcast territory:
For each candidate, each node in its tree spanned in the
execution of Cautious broadcast in the beginning of the
algorithm sends to its parent the largest walk ID seen.
This is repeated c ·Φ−1 log2 n times, thus at the end the
candidate (the source of that previously done cautious-
broadcast) gets the largest walk ID that hit its broadcast
territory. Note that the partition of time into super-
rounds, as was done to accommodate parallel executions
of Cautious broadcast in the beginning of the algorithm,
is not required, as during the convergecast a node passes
only the largest walk ID ever seen. The candidate who
did not hear a bigger candidate ID becomes a leader. !

Procedure Cautious broadcast is as follows. The
broadcast source performs a broadcast of its ID by
spanning a tree, in a distributed way, in c · Φ−1 log2 n
rounds, using randomization for choosing new neighbors
but only in sparse branches. More precisely, in each
round t of the broadcast, each node w that received the
source ID maintains the following knowledge and takes
action accordingly:

• its parent (originally it is the node who sent the source
ID to w as first, and in case of many such nodes – one
of them arbitrarily selected by w); the parent cannot
be revoked until the end of the broadcast;

• its children – each node who sets w as its parent sends
a message to w confirming that it has chosen w as its
parent; then w adds it to the set of its children;

• the confirmed number of nodes in its subtree (i.e.,
nodes from whom the “parent” relation leads to w),
where confirmed means the sum of confirmed numbers
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otherwise revokes this status. We call the nodes informed
by a candidate (ID) during the execution of Cautious
broadcast its broadcast territory. We omit these time-
partitioning details in the pseudocode included in the
full version of this paper [17] for clarity (they only cause
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Candidate probe territories by random walks, larger

wins:
Each candidate node issues x independent random walks
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used by our algorithm, propagates the source ID of the
walk to a randomly (uniformly) selected neighbor of the
current walk node, while staying in the same node with
probability 1/2. If two or more walks meet at the same
node, a decision about next destination is made inde-
pendently for each walk. In order to be implemented in
the CONGEST model, note that there are only O(log n)
different IDs of the walks, whp, therefore by each link
there is only sent an information about ID of the walk
and the number of copies of the walk that chose that link
to propagate (which is encoded by log x = O(log n) bits.
Further, once two different IDs meet, the smaller of the
IDs is substituted by the larger one, so that at most one
ID is sent by a link each round. Each visited node stores

the largest random walk ID ever seen.
Convergecast of winning candidate IDs along the

spanning tree of each broadcast territory:
For each candidate, each node in its tree spanned in the
execution of Cautious broadcast in the beginning of the
algorithm sends to its parent the largest walk ID seen.
This is repeated c ·Φ−1 log2 n times, thus at the end the
candidate (the source of that previously done cautious-
broadcast) gets the largest walk ID that hit its broadcast
territory. Note that the partition of time into super-
rounds, as was done to accommodate parallel executions
of Cautious broadcast in the beginning of the algorithm,
is not required, as during the convergecast a node passes
only the largest walk ID ever seen. The candidate who
did not hear a bigger candidate ID becomes a leader. !

Procedure Cautious broadcast is as follows. The
broadcast source performs a broadcast of its ID by
spanning a tree, in a distributed way, in c · Φ−1 log2 n
rounds, using randomization for choosing new neighbors
but only in sparse branches. More precisely, in each
round t of the broadcast, each node w that received the
source ID maintains the following knowledge and takes
action accordingly:

• its parent (originally it is the node who sent the source
ID to w as first, and in case of many such nodes – one
of them arbitrarily selected by w); the parent cannot
be revoked until the end of the broadcast;

• its children – each node who sets w as its parent sends
a message to w confirming that it has chosen w as its
parent; then w adds it to the set of its children;

• the confirmed number of nodes in its subtree (i.e.,
nodes from whom the “parent” relation leads to w),
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available rounds – we will show in the analysis that there
are at most 4c logn such parallel Cautious broadcasts,
whp, therefore no node will ever need to assign arbitrar-
ily a subset of executions to rounds, and thus each of
these executions will be run correctly in the number of
super-rounds upper bounded by time complexity of the
Cautious broadcast method, all with whp. A candidate
that succeeds Cautious broadcast remains candidate,
otherwise revokes this status. We call the nodes informed
by a candidate (ID) during the execution of Cautious
broadcast its broadcast territory. We omit these time-
partitioning details in the pseudocode included in the
full version of this paper [17] for clarity (they only cause
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Candidate probe territories by random walks, larger
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Each candidate node issues x independent random walks
of length c · tmix logn, carrying its ID. A random walk,
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walk to a randomly (uniformly) selected neighbor of the
current walk node, while staying in the same node with
probability 1/2. If two or more walks meet at the same
node, a decision about next destination is made inde-
pendently for each walk. In order to be implemented in
the CONGEST model, note that there are only O(log n)
different IDs of the walks, whp, therefore by each link
there is only sent an information about ID of the walk
and the number of copies of the walk that chose that link
to propagate (which is encoded by log x = O(log n) bits.
Further, once two different IDs meet, the smaller of the
IDs is substituted by the larger one, so that at most one
ID is sent by a link each round. Each visited node stores

the largest random walk ID ever seen.
Convergecast of winning candidate IDs along the

spanning tree of each broadcast territory:
For each candidate, each node in its tree spanned in the
execution of Cautious broadcast in the beginning of the
algorithm sends to its parent the largest walk ID seen.
This is repeated c ·Φ−1 log2 n times, thus at the end the
candidate (the source of that previously done cautious-
broadcast) gets the largest walk ID that hit its broadcast
territory. Note that the partition of time into super-
rounds, as was done to accommodate parallel executions
of Cautious broadcast in the beginning of the algorithm,
is not required, as during the convergecast a node passes
only the largest walk ID ever seen. The candidate who
did not hear a bigger candidate ID becomes a leader. !

Procedure Cautious broadcast is as follows. The
broadcast source performs a broadcast of its ID by
spanning a tree, in a distributed way, in c · Φ−1 log2 n
rounds, using randomization for choosing new neighbors
but only in sparse branches. More precisely, in each
round t of the broadcast, each node w that received the
source ID maintains the following knowledge and takes
action accordingly:

• its parent (originally it is the node who sent the source
ID to w as first, and in case of many such nodes – one
of them arbitrarily selected by w); the parent cannot
be revoked until the end of the broadcast;

• its children – each node who sets w as its parent sends
a message to w confirming that it has chosen w as its
parent; then w adds it to the set of its children;

• the confirmed number of nodes in its subtree (i.e.,
nodes from whom the “parent” relation leads to w),
where confirmed means the sum of confirmed numbers
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Explicit Revocable Leader Election 
with unknown n



Known n :
1. Each node chooses ID at random.

2. Each node chooses to be candidate at random.

3. Each candidate spans a “territory” tree by Cautious Broadcast, 
only nodes in less populated branches extend the tree.  

4. Each candidate probes its territory by multiple Lazy Random 
Walks, larger ID wins.

5. Convergecast along the spanning tree of each territory of 
winning candidate ID (largest ID that hit the territory).

Our analysis shows: 
candidates learn IDs of other candidates, 

candidate that does not receive any larger ID becomes the leader, 
all with high probability. 

Leader Election Algorithm



Known n :
Cautious Broadcast key ingredients:  
−The candidate spans a tree broadcasting its ID.
−Tree nodes choose new neighbors at random to expand 

the tree, but only in sparse branches.
−Tree nodes maintain: parent and children port numbers, 

number of nodes in subtree, and spanning status (active 
or passive). 

−The candidate “controls” the size of the tree by activating 
or de-activating the expansion as needed. 

 

Leader Election Algorithm



Unknown n :
Blind Leader Election with Certificates
                                          via Diffusion with Thresholds key ingredients:
For each size estimate k=1,2,4,8,… 

1. Certification: to check if k is still too low to choose ID.
A. Diffusion: nodes share some potential values for a number of 

rounds to decide if k is low if some thresholds are reached.
B. Dissemination: of status for a number of rounds, if k is large 

enough all nodes receive.
2. Decision: 

− each node that did not choose ID and did not detect k as low 
chooses ID, storing k as “certificate”.

− each node updates leader ID and certificate (initially self) if a larger 
certificate or same with smaller ID is received.

Our analysis shows: 
some node will not choose ID until the estimate is large enough 

(we use the estimate as a “certificate” of uniqueness). 

Revocable Leader Election Algorithm



Open Questions

• Remove knowledge of ! and/or tmix

• Improve upper and/or lower bounds. 
• Asynchronous protocol.


