Time and Communication Complexity of Leader Election in Anonymous Networks

Dariusz R. Kowalski Augusta Univ.

Miguel A. Mosteiro Pace Univ.

ICDCS 2021

Leader Election

Some variants:

- Implicit vs. Explicit (who knows the leader)
- Irrevocable vs. Revocable (whether decision is final)
- Known vs. Unknown n

Ad-hoc Network Model

Static connected network :

- fixed set of n nodes and m links
- there is a path between every pair of nodes
- Network knowledge:
 - no identifiers or labels, only port numbers
 - we consider known and unknown n
- Synchronous communication: in each round
 - a node broadcasts a message to its neighbors
 - receives the messages of its neighbors
 - executes some local computation
- CONGEST communication: in each round
 - O(log n) bits through each link

Algorithms

- Performance metric? time and message (energy) complexity.
- Deterministic LE? not possible in anonymous network [Angluin, STOC'80]
- Randomized LE? two scenarios:
 - Known n? ✓
 - Unknown n? X we show that no algorithm stops
 - » So, how about Revocable LE with unknown n?

Theorem 1. For $x \in \widetilde{\Theta}\left(\min\{\sqrt{\frac{n\log n}{\Phi t_{mix}}}, \frac{n}{t_{mix}\Phi\log n}\}\right)$, the leader election algorithm elects a unique leader and uses $\widetilde{O}(\min\{\sqrt{\frac{nt_{mix}}{\Phi}}, \frac{n}{\Phi\log n}\})$ point to point messages/bits of communication in the CONGEST model with known (a linear upper bound on) n, whp. It works in time $O(t_{mix}\log n + \Phi^{-1}\log^3 n)$.

Theorem 2. For any non-decreasing positive integer function T(n) and any constant 0 < c < 1, there is no algorithm solving Leader Election problem in time T(n) with probability c, in the setting without known number of nodes n.

Theorem 3. For $0 < \epsilon \le 1$ and $0 < \xi < 1$, after running Blind Leader Election with Certificates via Diffusion with Thresholds on a network with n > 1 nodes $r(k) = \frac{8k^{2(1+\epsilon)}}{i(G)^2}\log(k^{2(1+\epsilon)}) + k^{1+\epsilon}\log(2k)$, $p(k) = \frac{\ln 2}{k^{1+\epsilon}}$, $\tau(k) = 1 - \frac{1}{k^{1+\epsilon}-1}$, $f(k) = \frac{4\sqrt{2}\ln(k^{1+\epsilon}/\xi)}{\left(\sqrt{2}-1\right)^2}$, the explicit Revocable Leader Election problem is solved with probability at least $1 - 1/n^{\log(8/5)} - 2\xi$, with $O(\frac{n^{4(1+\epsilon)}}{i(G)^2}\log^5 n)$ time and $O(\frac{n^{4(1+\epsilon)}}{i(G)^2}m\log^5 n)$ messages, where m is the number of links.

known	succes wp 1	succes whp	succes wp $1 - o(1)$	succes wp constant
n, D	O(m) exp. msgs, $O(D)$ exp time [14]			
$n,\Phi,\ t_{mix}$		$\widetilde{O}(\min\{\sqrt{nt_{mix}/\Phi},n/(\Phi\log n)\})$ msgs, $O(t_{mix}\log n+\Phi^{-1}\log^3 n)$ time [this work]		
n		$O(t_{mix}\sqrt{n}\log^{7/2}n)$ msgs, $O(t_{mix}\log^2n)$ time [4]	$\exists G: \Omega(\sqrt{n}/\phi^{3/4})$ exp. msgs [4]	$\exists G: \Omega(m)$ exp. msgs [14]
		$O(m \min(\log \log n, D))$ exp. msgs, $O(D)$ time [14]		$\exists G: \Omega(D) \text{ time } [14]$
		$O(m + n \log n)$ msgs, $O(D \log n)$ time [14]		O(m) exp. msgs, $O(D)$ time [14]
-		$O(n^{4(2+\epsilon)}m\log^5 n)$ msgs, $O(n^{4(2+\epsilon)}\log^5 n)$ time [this work] (*)		$orall$ 2-connected $G:\exists$ labeling: $\Omega(m)$ exp. msgs [4] $\forall T(n): \nexists$ LE alg in time $T(n)$ [this work]
i(G)		$O(rac{n^{4(1+\epsilon)}}{i(G)^2}m\log^5 n)$ msgs, $O(rac{n^{4(1+\epsilon)}}{i(G)^2}\log^5 n)$ time [this work] (*)	Dattantina	and massage complexity

Refs:

 Φ : graph conductance (*) Revocable, Explicit *n* : number of nodes

m : number of links t_{mix} : random-walk mixing time $\epsilon > 0$: any arbitrarily

D: diameter i(G): isoperimetric number small constant

[4] S. Gilbert, P. Robinson, and S. Sourav, "Leader election in well-connected graphs," in *PODC* 2018.

[14] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan, "On the complexity of universal leader election," J. ACM, 2015.

Better time and message complexity for $\Phi^{-1} = o(t_{mix} / \log n)$. Otherwise, up to log and polylog factor larger.

known	succes wp 1	succes whp	succes wp $1 - o(1)$	succes wp constant
n, D	O(m) exp. msgs, $O(D)$ exp time [14]			
$n,\Phi,\ t_{mix}$		$\widetilde{O}(\min\{\sqrt{nt_{mix}/\Phi},n/(\Phi\log n)\})$ msgs, $O(t_{mix}\log n+\Phi^{-1}\log^3 n)$ time [this work]		
n		$O(t_{mix}\sqrt{n}\log^{7/2}n)$ msgs, $O(t_{mix}\log^2n)$ time [4]	$\exists G: \Omega(\sqrt{n}/\phi^{3/4})$ exp. msgs [4]	$\exists G:\Omega(m)$ exp. msgs [14]
		$O(m \min(\log \log n, D))$ exp. msgs, $O(D)$ time [14]		$\exists G: \Omega(D) \text{ time } [14]$
		$O(m + n \log n)$ msgs, $O(D \log n)$ time [14]		O(m) exp. msgs, $O(D)$ time [14]
-		$O(n^{4(2+\epsilon)}m\log^5 n)$ msgs, $O(n^{4(2+\epsilon)}\log^5 n)$ time [this work] (*)		$orall$ 2-connected $G:\exists$ labeling: $\Omega(m)$ exp. msgs [4] $\forall T(n): \nexists$ LE alg in time $T(n)$ [this work]
i(G)		$O(rac{n^{4(1+\epsilon)}}{i(G)^2}m\log^5 n)$ msgs, $O(rac{n^{4(1+\epsilon)}}{i(G)^2}\log^5 n)$ time [this work] (*)	Nagaly	optimal for reasonable

Refs:

(*) Revocable, Explicit n: number

n: number of nodes

 $\boldsymbol{\Phi}$: graph conductance

 $\epsilon > 0$: any arbitrarily

m: number of links

D: diameter

 t_{mix} : random-walk mixing time

small constant

i(G): isoperimetric number

[4] S. Gilbert, P. Robinson, and S. Sourav, "Leader election in well-connected graphs," in *PODC* 2018.

[14] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan, "On the complexity of universal leader election," J. ACM, 2015.

Nearly optimal for reasonable expansion $t_{mix} = \widetilde{\Theta}(\Phi^{-1}) \leq \widetilde{O}(D)$, yielding $O(n^{1/2}/\Phi)$ msgs.

known	succes wp 1	succes whp	succes wp $1 - o(1)$	succes wp constant
n, D	O(m) exp. msgs, $O(D)$ exp time [14]			
$n,\Phi,\ t_{mix}$		$\widetilde{O}(\min\{\sqrt{nt_{mix}/\Phi},n/(\Phi\log n)\})$ msgs, $O(t_{mix}\log n+\Phi^{-1}\log^3 n)$ time [this work]		
n		$O(t_{mix}\sqrt{n}\log^{7/2}n)$ msgs, $O(t_{mix}\log^2n)$ time [4]	$\exists G: \Omega(\sqrt{n}/\phi^{3/4})$ exp. msgs [4]	$\exists G: \Omega(m)$ exp. msgs [14]
		$O(m \min(\log \log n, D))$ exp. msgs, $O(D)$ time [14]		$\exists G: \Omega(D) \text{ time [14]}$
		$O(m + n \log n)$ msgs, $O(D \log n)$ time [14]		O(m) exp. msgs, $O(D)$ time [14]
-		$O(n^{4(2+\epsilon)}m\log^5 n)$ msgs, $O(n^{4(2+\epsilon)}\log^5 n)$ time [this work] (*)		$orall$ 2-connected $G:\exists$ labeling: $\Omega(m)$ exp. msgs [4] $\forall T(n): \nexists$ LE alg in time $T(n)$ [this work]
i(G)		$O(rac{n^{4(1+\epsilon)}}{i(G)^2}m\log^5 n)$ msgs, $O(rac{n^{4(1+\epsilon)}}{i(G)^2}\log^5 n)$ time [this work] (*)		

Refs:

(*) Revocable, Explicit n: number of nodes Φ : graph conductance

 $\epsilon > 0$: any arbitrarily m: number of links t_{mix} : random-walk mixing time

small constant D: diameter i(G): isoperimetric number

For unknown n, no algorithm stops even with constant probability.

[4] S. Gilbert, P. Robinson, and S. Sourav, "Leader election in well-connected graphs," in *PODC* 2018.

[14] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan, "On the complexity of universal leader election," J. ACM, 2015.

known	succes wp 1	succes whp	succes wp $1 - o(1)$	succes wp constant
n, D	O(m) exp. msgs, $O(D)$ exp time [14]			
$n,\Phi,\ t_{mix}$		$\widetilde{O}(\min\{\sqrt{nt_{mix}/\Phi},n/(\Phi\log n)\})$ msgs, $O(t_{mix}\log n+\Phi^{-1}\log^3 n)$ time [this work]		
n		$O(t_{mix}\sqrt{n}\log^{7/2}n)$ msgs, $O(t_{mix}\log^2n)$ time [4]	$\exists G: \Omega(\sqrt{n}/\phi^{3/4})$ exp. msgs [4]	$\exists G: \Omega(m)$ exp. msgs [14]
		$O(m \min(\log \log n, D))$ exp. msgs, $O(D)$ time [14]		$\exists G: \Omega(D) \text{ time } [14]$
		$O(m + n \log n)$ msgs, $O(D \log n)$ time [14]		O(m) exp. msgs, $O(D)$ time [14]
-		$O(n^{4(2+\epsilon)}m\log^5 n)$ msgs, $O(n^{4(2+\epsilon)}\log^5 n)$ time [this work] (*)		$orall$ 2-connected $G:\exists$ labeling: $\Omega(m)$ exp. msgs [4] $\forall T(n): \nexists$ LE alg in time $T(n)$ [this work]
i(G)		$O(rac{n^{4(1+\epsilon)}}{i(G)^2}m\log^5 n)$ msgs, $O(rac{n^{4(1+\epsilon)}}{i(G)^2}\log^5 n)$ time [this work] (*)		

Refs:

(*) Revocable, Explicit n: number of nodes Φ : graph conductance

 $\epsilon > 0$: any arbitrarily m: number of links t_{mix} : random-walk mixing time

small constant D: diameter i(G): isoperimetric number

Explicit Revocable Leader Election with unknown *n*

[4] S. Gilbert, P. Robinson, and S. Sourav, "Leader election in well-connected graphs," in *PODC* 2018.

[14] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan, "On the complexity of universal leader election," J. ACM, 2015.

Leader Election Algorithm

Known *n*:

- 1. Each node chooses ID at random.
- 2. Each node chooses to be candidate at random.
- 3. Each candidate spans a "territory" tree by Cautious Broadcast, only nodes in less populated branches extend the tree.
- Each candidate probes its territory by multiple Lazy Random Walks, larger ID wins.
- 5. Convergecast along the spanning tree of each territory of winning candidate ID (largest ID that hit the territory).

Our analysis shows:

candidates learn IDs of other candidates,

candidate that does not receive any larger ID becomes the leader, all with high probability.

Leader Election Algorithm

Known *n*:

Cautious Broadcast key ingredients:

- -The candidate spans a tree broadcasting its ID.
- Tree nodes choose new neighbors at random to expand the tree, but only in sparse branches.
- -Tree nodes maintain: parent and children port numbers, number of nodes in subtree, and spanning status (active or passive).
- The candidate "controls" the size of the tree by activating or de-activating the expansion as needed.

Revocable Leader Election Algorithm

Unknown *n*:

Blind Leader Election with Certificates

via Diffusion with Thresholds key ingredients:

For each size estimate k=1,2,4,8,...

- 1. Certification: to check if k is still too low to choose ID.
 - A. Diffusion: nodes share some potential values for a number of rounds to decide if *k* is low if some thresholds are reached.
 - B. Dissemination: of status for a number of rounds, if *k* is large enough all nodes receive.

2. Decision:

- each node that did not choose ID and did not detect k as low chooses ID, storing k as "certificate".
- each node updates leader ID and certificate (initially self) if a larger certificate or same with smaller ID is received.

Our analysis shows:

some node will not choose ID until the estimate is large enough (we use the estimate as a "certificate" of uniqueness).

Open Questions

- Remove knowledge of Φ and/or t_{mix}
- Improve upper and/or lower bounds.
- Asynchronous protocol.