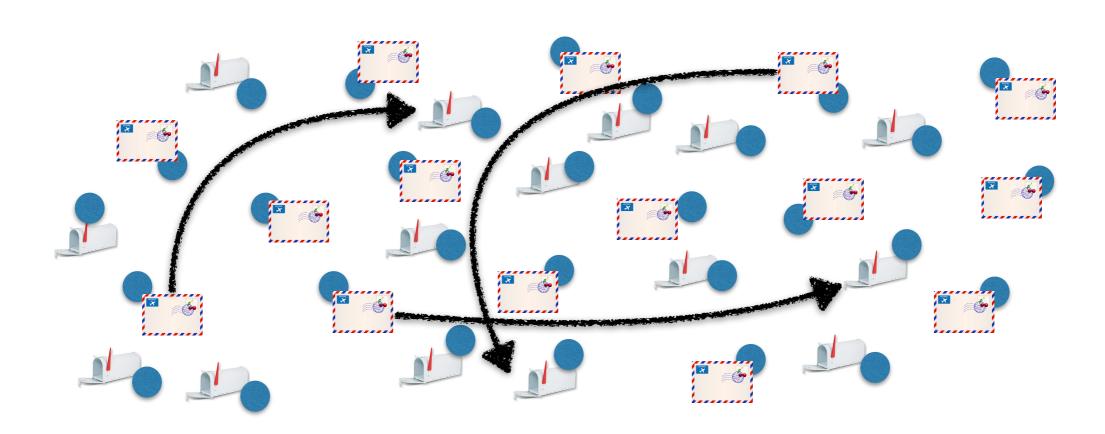
On the Complexity of Deterministic Distributed Wireless Link Scheduling

Dariusz R. Kowalski Augusta University Miguel A. Mosteiro Pace University

Link Scheduling

Link Scheduling is about

realization of requests between pairs of nodes while minimizing makespan.

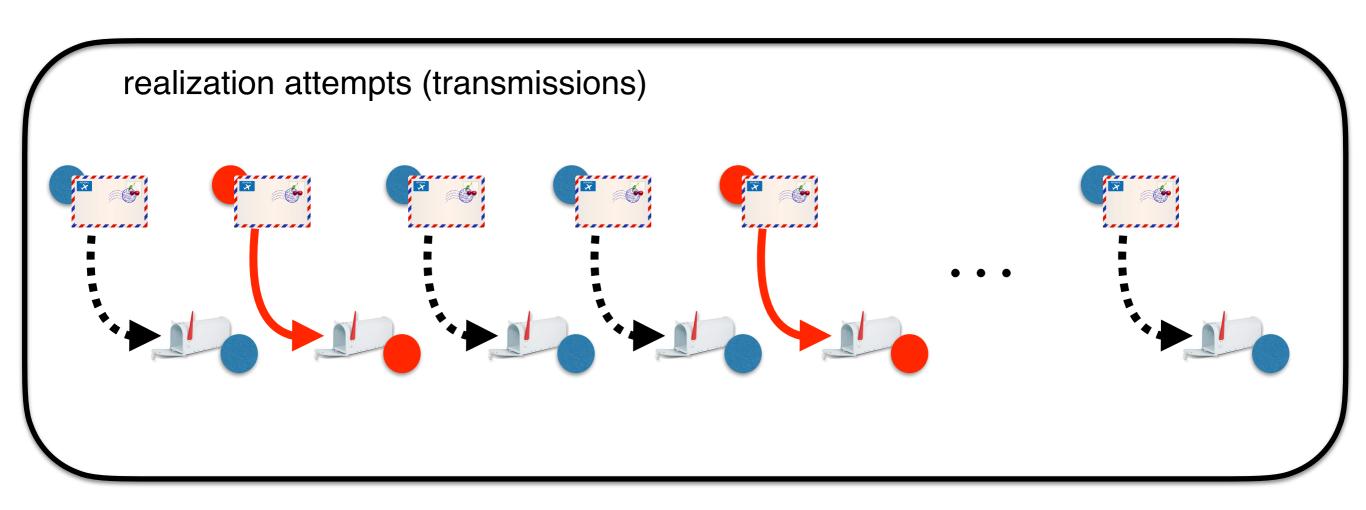


A request is the task of sending a message from some transmitter to some receiver.

Distributed Wireless Link Scheduling

Main challenges:

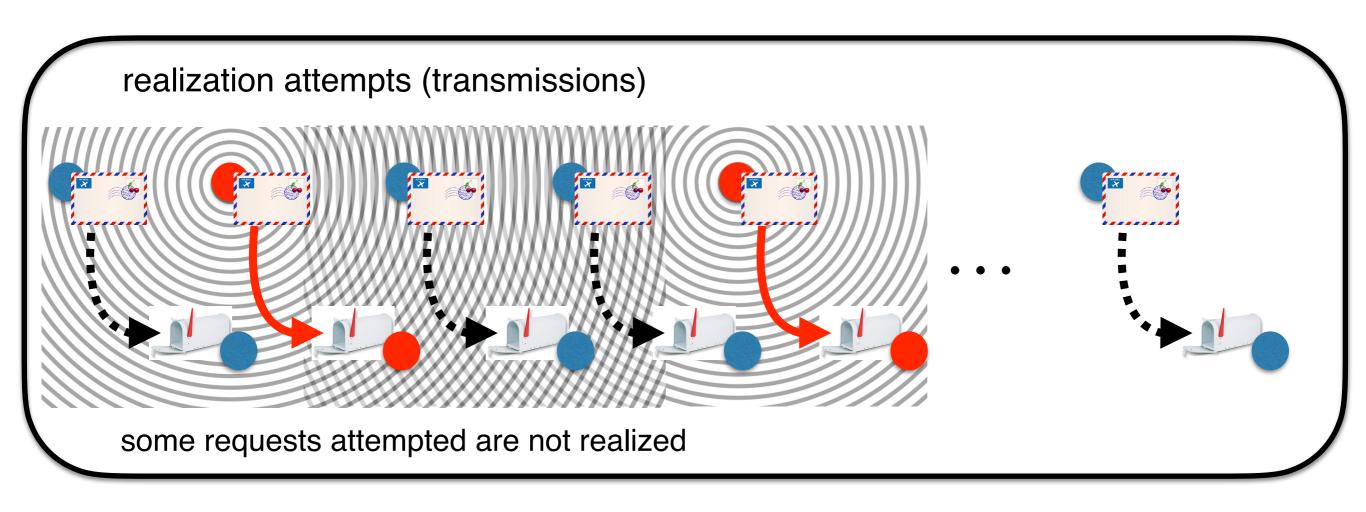
- locality
 requests are known only locally by involved nodes
- dependencies among requests
 due to wireless interference



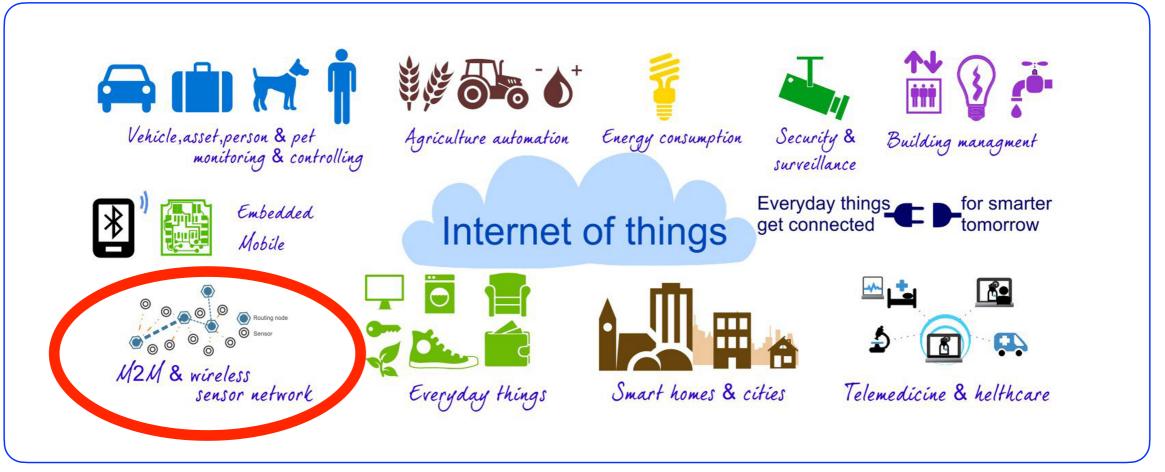
Distributed Wireless Link Scheduling

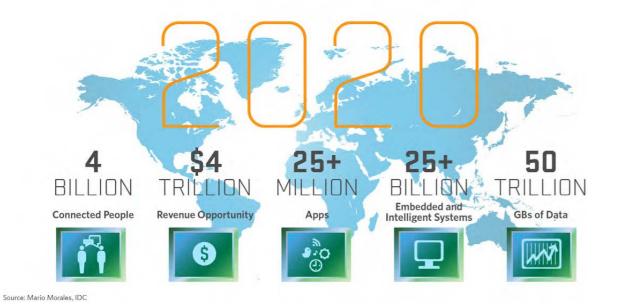
Main challenges:

- locality
 requests are known only locally by involved nodes
- dependencies among requests
 due to wireless interference



App.: Ad-hoc Wireless Networks





Randomized or Deterministic?

Most Link Scheduling solutions rely on true randomness

It helps to break those dependencies!

BUT

Ad-hoc network nodes:

access to truly-random bits is physically very limited!

Massive networks:

pseudorandom sequences may be too short!

Randomized or Deterministic?

Most Link Scheduling solutions rely on true randomness

It helps to break those dependencies!

BUT

Ad-hoc network nodes:

access to truly-random bits is physically very limited!

Massive networks:

pseudorandom sequences may be too short!

In this work we focus on Deterministic DWLS Protocols.

Distributed Wireless Link Scheduling Problem

Scenario:

- *n* network nodes called transmitters
- n network nodes called receivers
- Each transmitter holds a message to be delivered to some receiver
- Each (transmitter, receiver, message) is called a request
- Successful delivery of a message is called a realization of the request

Conditions:

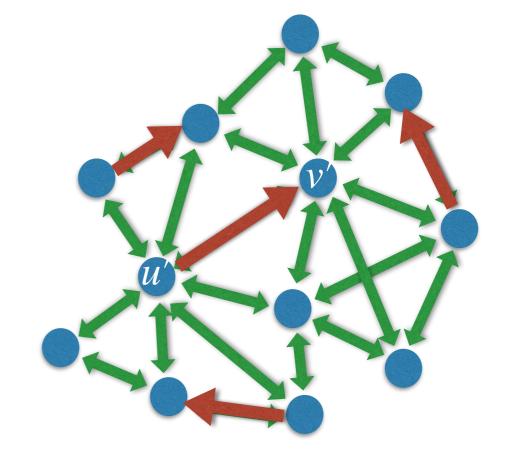
- Realizations implemented through wireless communication
 - ⇒ interference among concurrent attempts of realization
- Adaptiveness: only to realization of own request.
- Unique ID's, only n is known
- Time slotted in rounds of communication

Goal: Realize all requests

Affectance Model [1,2,3]:

$$a((u, v), (u', v'))$$
: real value in [0,1]

function quantifying interference of communication through link (u, v) on communication through link (u', v').



[5] Moscibroda and Wattenhofer. Infocom 2006.

^[1] Halldórsson and Wattenhofer. ICALP 2009.

^[2] Fanghänel, Kesselheim and Vöcking. ICALP 2009.

^[3] Kesselheim and Vöcking. DISC 2010.

^[4] Chlamtac and Kutten. Trans. on Computers. IEEE, 1987.

Affectance Model [1,2,3]:

$$a((u, v), (u', v'))$$
: real value in [0,1]

function quantifying interference of communication through link (u, v) on communication through link (u', v').

Radio Network Model [4]:

a((u, v), (u', v')): either $\{0,1\}$, depending on $\{u, v'\} \notin E$ and $u \neq v'$

^[1] Halldórsson and Wattenhofer. ICALP 2009.

^[2] Fanghänel, Kesselheim and Vöcking. ICALP 2009.

^[3] Kesselheim and Vöcking. DISC 2010.

^[4] Chlamtac and Kutten. Trans. on Computers. IEEE, 1987.

^[5] Moscibroda and Wattenhofer. Infocom 2006.

Affectance Model [1,2,3]:

$$a((u, v), (u', v'))$$
: real value in [0,1]

function quantifying interference of communication through link (u, v) on communication through link (u', v').

$$a((u, v), (u', v'))$$
: either $\{0,1\}$, depending on $\{u, v'\} \notin E$ and $u \neq v'$

SINR Model [5]:

$$a_p((u, v), (u', v'))$$
: min $\left\{1, \frac{\beta p(u, v)}{d(u, v')^{\alpha}} \middle/ \left(\frac{p(u', v')}{d(u', v')^{\alpha}} - \beta N\right)\right\}$

Previous work: uniform power, constant noise..

[1] Halldórsson and Wattenhofer. ICALP 2009.

[2] Fanghänel, Kesselheim and Vöcking. ICALP 2009.

[3] Kesselheim and Vöcking. DISC 2010.

[4] Chlamtac and Kutten. Trans. on Computers. IEEE, 1987.

[5] Moscibroda and Wattenhofer. Infocom 2006.

... combined with Euclidean distance and constant attenuation

Affectance Model [1,2,3]:

$$a((u, v), (u', v'))$$
: real value in [0,1]

function quantifying interference of communication through link (u, v)on communication through link (u', v').

Radio Network Model [4]:

$$a((u, v), (u', v'))$$
: either $\{0,1\}$, depending on $\{u, v'\} \notin E$ and $u \neq v'$

Graph-metric SINR Model:

$$a((u,v),(u',v'))$$
: min $\left\{1,\frac{\beta}{d(u,v')^{\alpha}}\right\}$ β : Threshold Uniform power (overcoming noise)

 α : Attenuation

 $d(\cdot, \cdot)$: distance in # hops

^[1] Halldórsson and Wattenhofer, ICALP 2009.

^[2] Fanghänel, Kesselheim and Vöcking. ICALP 2009.

^[3] Kesselheim and Vöcking. DISC 2010.

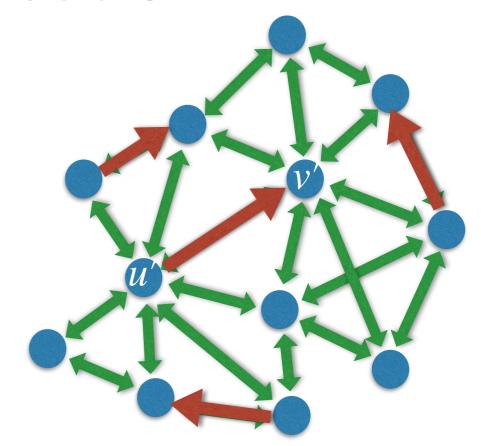
^[4] Chlamtac and Kutten. Trans. on Computers. IEEE, 1987.

^[5] Moscibroda and Wattenhofer. Infocom 2006.

Affectance Model [1,2,3]:

$$a((u, v), (u', v'))$$
: real value in [0,1]

function quantifying interference of communication through link (u, v) on communication through link (u', v').



· Realization:

Request (u', v')

is realized (the message from u' is received by v') at time j if and only if

» u' transmits the message at time j and

$$\sum_{(u,v)\in L(j): u\neq u'} a((u,v),(u',v')) < 1,$$

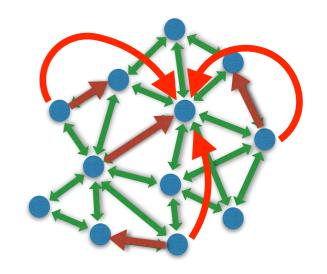
L(j): subset of links carrying transmissions at time j.

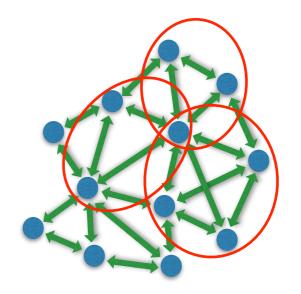
Performance Metrics

• Length of schedule: number of rounds to realize all requests given as a function of the number of requests n, the maximum average affectance \mathcal{A} [1], and the metric growth ϕ of the underlying metric space.

Intuitively:

- A is the maximum cumulative affectance an average receiver can experience, for any set of broadcasting transmitters.
- The topology has metric growth φ if every 2-clique in the network can be covered by at most φ regular cliques.





Bound	Model features	Ref
$\Omega\left(\frac{\mathcal{A}}{\log n}\right)$	SINR Euclidean space	[19]
$O(A \log n)$, whp	SINR Euclidean space	[19]
$O(A \log n)$, whp	Arbitrary interference	[20]
$O(\min\{n, \mathcal{A}^2 \log^3 n\})$	Arbitrary interference	[20]
$\Omega\left(\min\left\{n, \frac{\mathcal{A}^2}{\log^2 n}\right\}\right)$	RN, SINR, metric space	Thm 1
$O\left(\mathcal{A}\phi^6\log^4 n\right)$	RN, ϕ -bounded growth	Thm 2
$\omega\left(1+\min\left\{n,\frac{\min\{\mathcal{A},\phi\}\mathcal{A}}{\log^2 n}\right\}\right)$	RN, SINR, ϕ -bound. metric	Thm 3

Bound	Model features	Ref
$\Omega\left(\frac{\mathcal{A}}{\log n}\right)$	SINR Euclidean space	[19]
$O\left(\mathcal{A}\log n\right)$, whp	SINR Euclidean space	[19]
$O(A \log n)$, whp	Arbitrary interference	[20]
$O(\min\{n, \mathcal{A}^2 \log^3 n\})$	Arbitrary interference	[20]
$\Omega\left(\min\left\{n, \frac{\mathcal{A}^2}{\log^2 n}\right\}\right)$	RN, SINR, metric space	Thm 1
$O\left(\mathcal{A}\phi^6\log^4 n\right)$	RN, ¢-bounded growth	Thm 2
$\omega\left(1+\min\left\{n,\frac{\min\{\mathcal{A},\phi\}\mathcal{A}}{\log^2 n}\right\}\right)$	RN, SINR, ϕ -bound. metric	Thm 3

1st super-linear lower bound

nearly matches (up to polylog)

Bound	Model features	Ref		
$\Omega\left(\frac{\mathcal{A}}{\log n}\right)$	SINR Euclidean space	[19]		
$O\left(\mathcal{A}\log n\right)$, whp	SINR Euclidean space	[19]		
$O(A \log n)$, whp	Arbitrary interference	[20]		
$O(\min\{n, \mathcal{A}^2 \log^3 n\})$	Arbitrary interference	[20]		
$\Omega\left(\min\left\{n, \frac{\mathcal{A}^2}{\log^2 n}\right\}\right)$	RN, SINR, metric space	Thm 1		
$O\left(\mathcal{A}\phi^6\log^4 n\right)$	RN, ¢-bounded growth	Thm 2		
$\omega \left(1 + \min\left\{n, \frac{\min\{\mathcal{A}, \phi\}\mathcal{A}}{\log^2 n}\right\}\right)$	RN, SINR, ϕ -bound. metric	Thm 3		

1st super-linear lower bound

below general lower bound for $A>>\phi$

nearly matches (up to polylog)

Bound	Model features	Ref
$\Omega\left(\frac{\mathcal{A}}{\log n}\right)$	SINR Euclidean space	[19]
$O(A \log n)$, whp	SINR Euclidean space	[19]
$O(A \log n)$, whp	Arbitrary interference	[20]
$O(\min\{n, \mathcal{A}^2 \log^3 n\})$	Arbitrary interference	[20]
$\Omega\left(\min\left\{n, \frac{\mathcal{A}^2}{\log^2 n}\right\}\right)$	RN, SINR, metric space	Thm 1
$O\left(\mathcal{A}\phi^6\log^4 n\right)$	RN, ø-bounded growth	Thm 2
$\omega \left(1 + \min\left\{n, \frac{\min\{\mathcal{A}, \phi\}\mathcal{A}}{\log^2 n}\right\}\right)$	RN, SINR, ϕ -bound. metric	Thm 3

1st lower bound showing dependency on ϕ

lower bound

below general lower bound for $A >> \phi$

nearly matches (up to polylog)

1st super-linear

Bound	Model features	Ref		
$\Omega\left(\frac{\mathcal{A}}{\log n}\right)$	SINR Euclidean space	[19]		
$O(A \log n)$, whp	SINR Euclidean space	[19]		
$O(A \log n)$, whp	Arbitrary interference	[20]		
$O(\min\{n, \mathcal{A}^2 \log^3 n\})$	Arbitrary interference	[20]		
$\Omega\left(\min\left\{n, \frac{\mathcal{A}^2}{\log^2 n}\right\}\right)$	RN, SINR, metric space	Thm 1		
$O\left(\mathcal{A}\phi^6\log^4 n\right)$	RN, ¢-bounded growth	Thm 2		
$\omega\left(1+\min\left\{n,\frac{\min\{\mathcal{A},\phi\}\mathcal{A}}{\log^2 n}\right\}\right)$	RN, SINR, ϕ -bound. metric	Thm 3		

1st lower bound showing dependency on ϕ

both lower bounds hold even with realization acks

below general lower bound for $A>>\phi$

1st super-linear lower bound

nearly matches (up to polylog)

Protocol

Schedule of transmissions for each transmitter

Can be viewed as a sequence of "queries" (subsets of transmitters)

include in query or not

Each query is a column

Query	1	2	3	4	5	6	7	
Transmitter 1	0	1	0	1	1	1	0	
Transmitter 2	\ 1	1	0	0	1	0	1	
Transmitter 3	0	0	1	0	1	1	1	
Transmitter 4	0	1	0	1	0	0	0	
Transmitter n	1	1	0	1	0	1	1	

Depends on input graph (adaptive to realizations)

Each transmissions schedule is a row

Protocol

Schedule of transmissions for each transmitter

Can be viewed as a sequence of "queries" (subsets of transmitters)

include in query or not

query $L_6(G_6) = \{t_1, t_3, ..., t_n\}$ query size $|L_6(G_6)|$

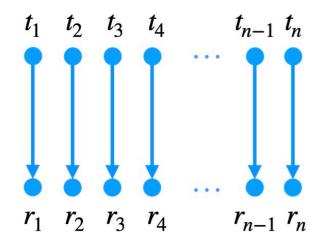
Query	1	2	3	4	5	6	7	
Transmitter 1	0	1	0	1	1	1	0	
Transmitter 2	1	1	0	0	1	0	1	
Transmitter 3	0	0	1	0	1	1	1	
Transmitter 4	0	1	0	1	0	0	0	
Transmitter n	1	1	0	1	0	1	1	

Depends on input graph (adaptive to realizations)

frequency =
number of 1's
in "small" queries

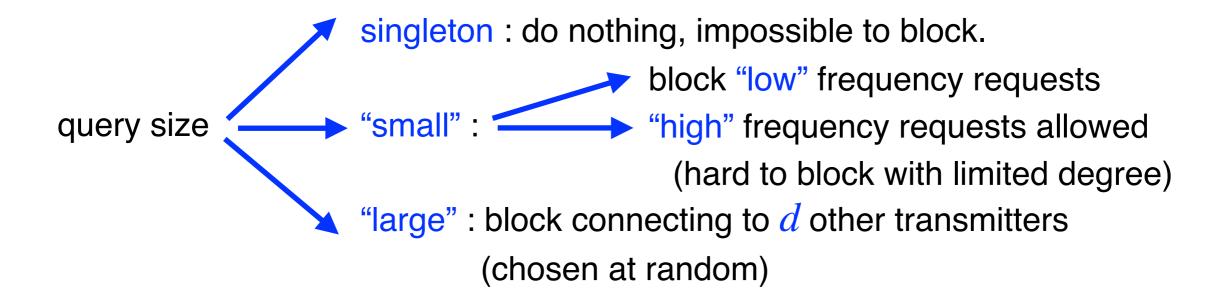
Adversarial network

Built incrementally simulating the protocol query by query.



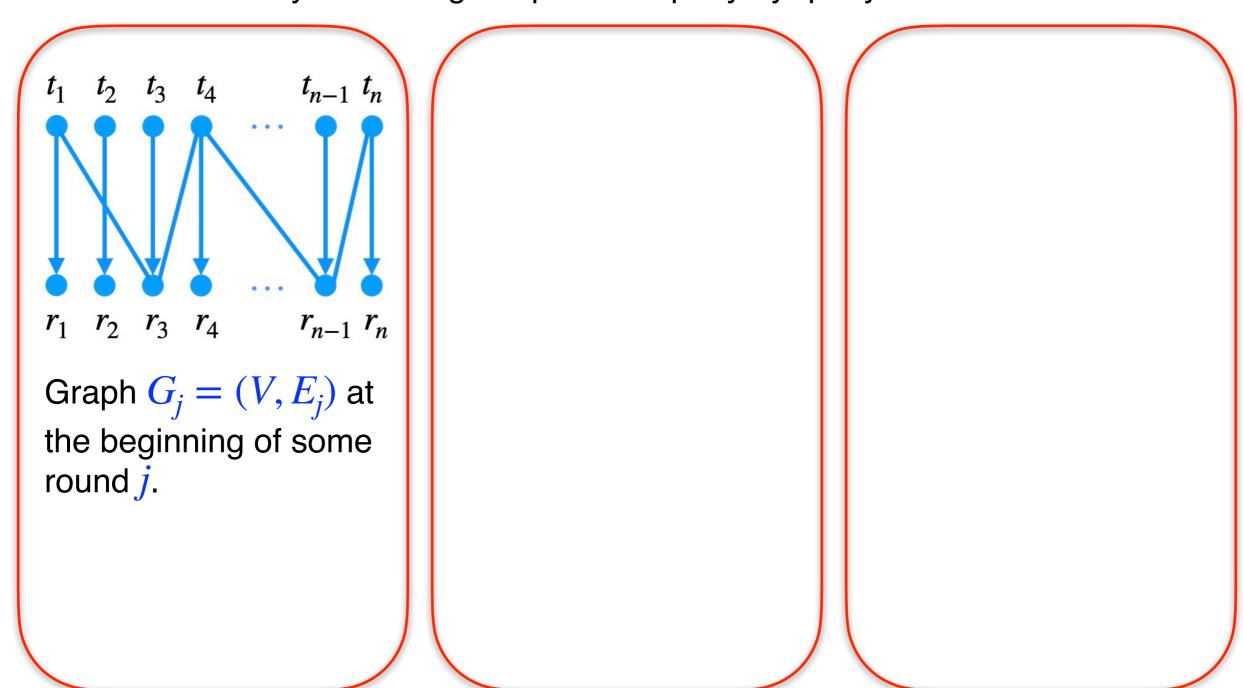
Initial graph $G_1 = (V, E_1)$ containing only the set of requests $E_1 = L$.

Then, for each query, the adversary adds more links to produce interference:



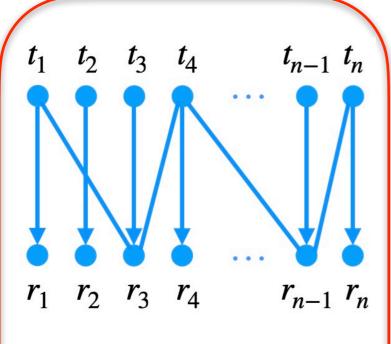
Adversarial network

Built incrementally simulating the protocol query by query.

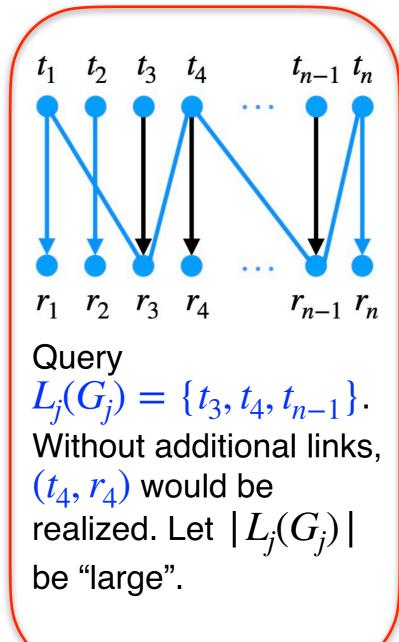


Adversarial network

Built incrementally simulating the protocol query by query.

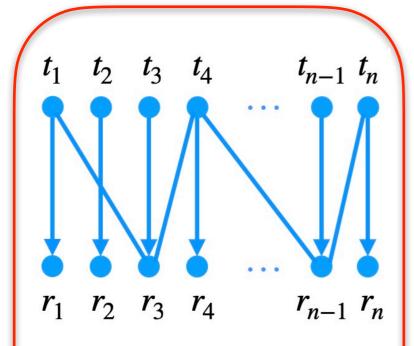


Graph $G_j = (V, E_j)$ at the beginning of some round j.

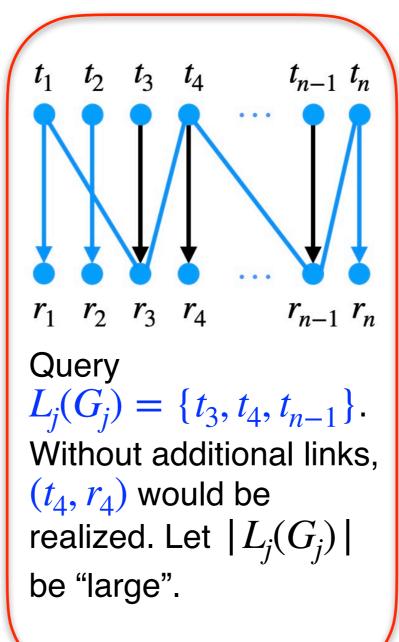


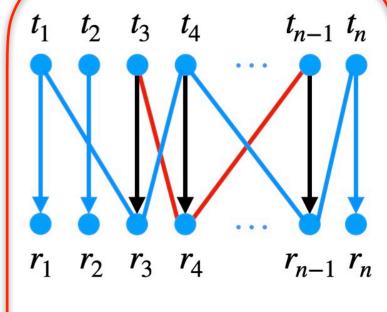
Adversarial network

Built incrementally simulating the protocol query by query.



Graph $G_j = (V, E_j)$ at the beginning of some round j.

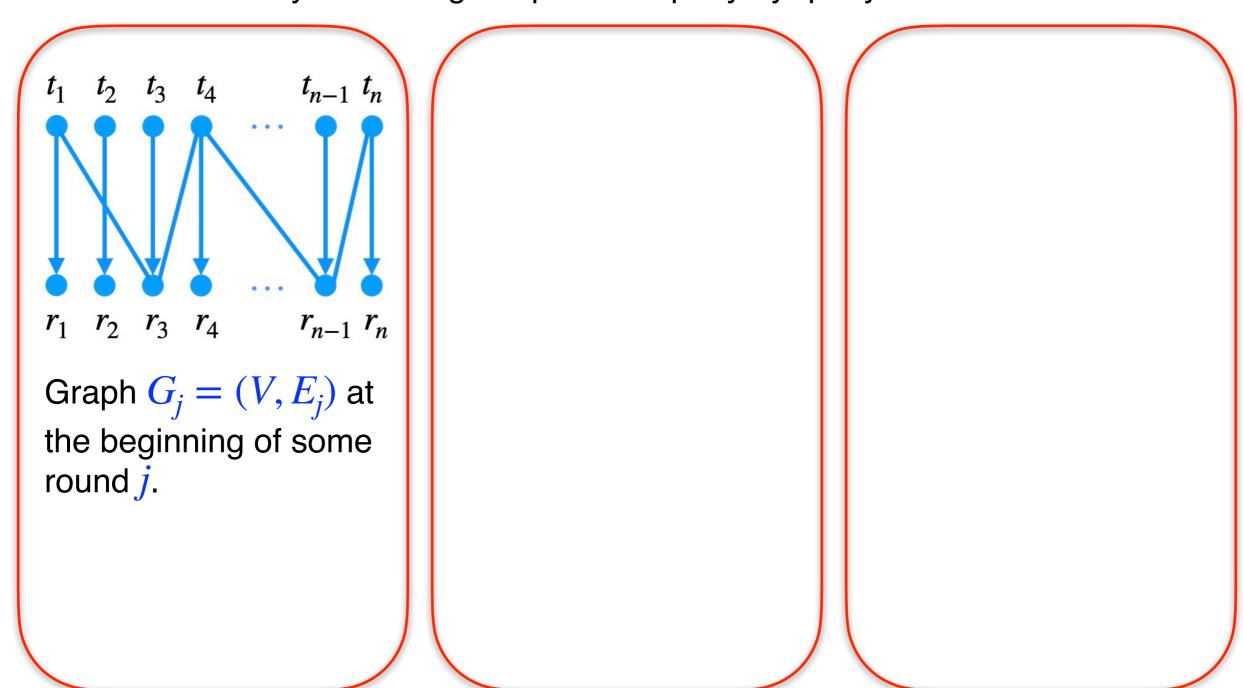




Graph $G_{j+1} = (V, E_{j+1})$ after adding (red) links from d = 2 (random) transmitters in $L_j(G_j)$ to interfere at r_4 .

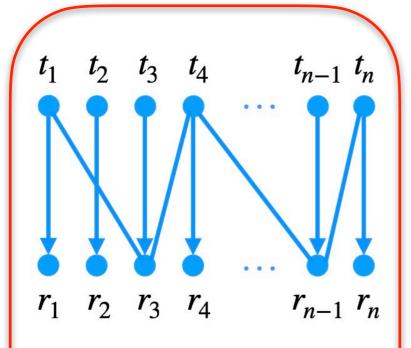
Adversarial network

Built incrementally simulating the protocol query by query.

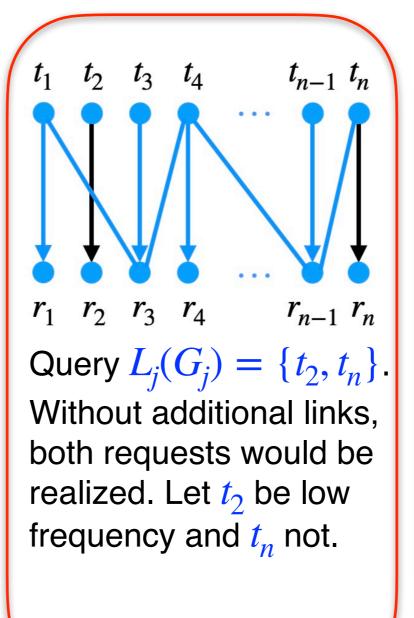


Adversarial network

Built incrementally simulating the protocol query by query.

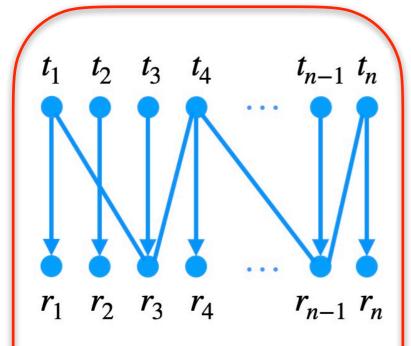


Graph $G_j = (V, E_j)$ at the beginning of some round j.

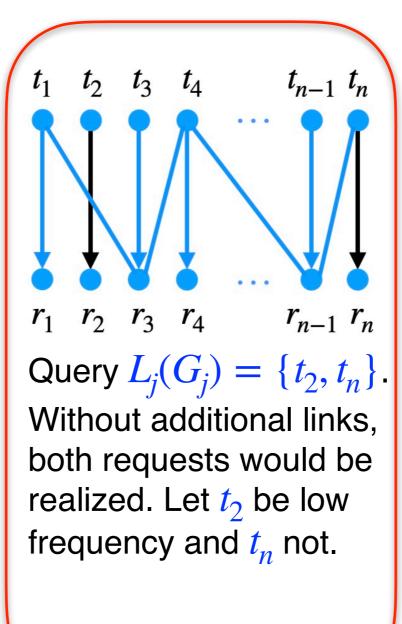


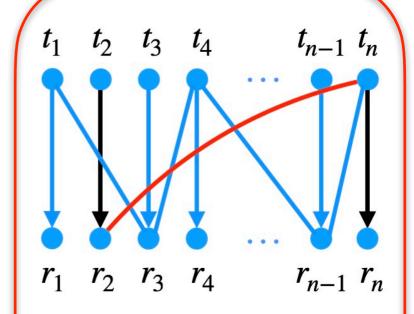
Adversarial network

Built incrementally simulating the protocol query by query.



Graph $G_j = (V, E_j)$ at the beginning of some round j.

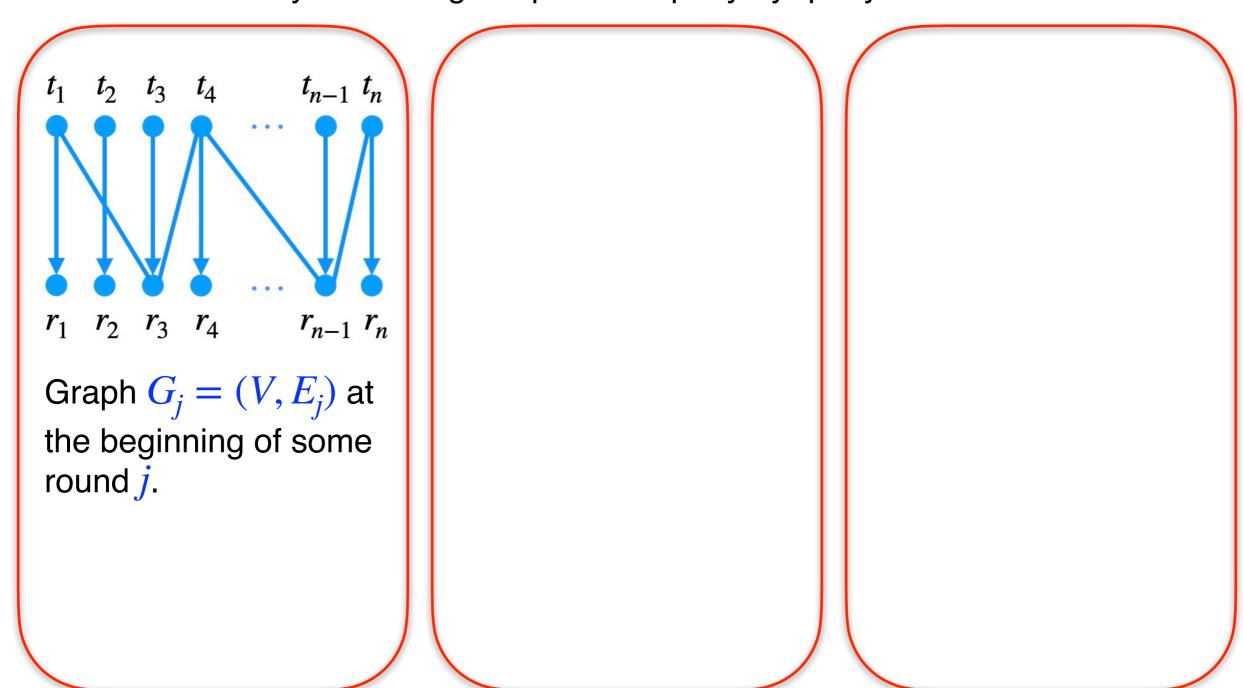




Graph $G_{j+1} = (V, E_{j+1})$ after adding link (t_n, r_2) to interfere at r_2 . (t_n, r_n) is allowed to be realized.

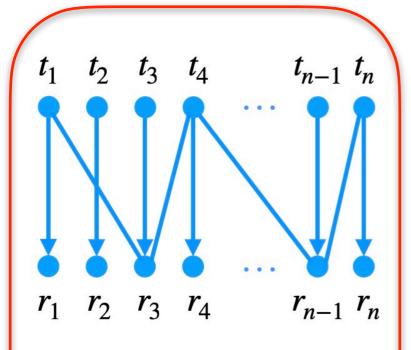
Adversarial network

Built incrementally simulating the protocol query by query.

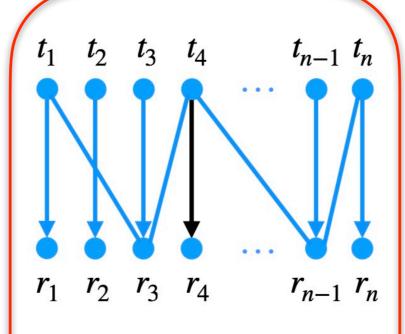


Adversarial network

Built incrementally simulating the protocol query by query.



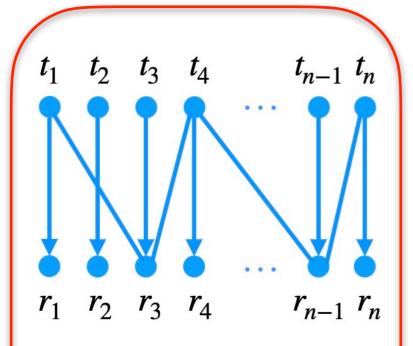
Graph $G_j = (V, E_j)$ at the beginning of some round j.



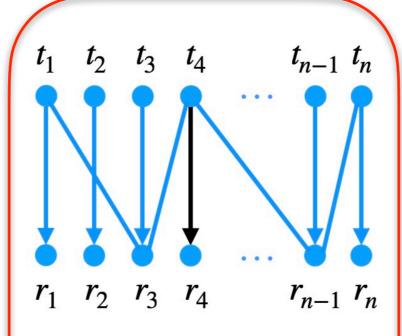
Query $L_j(G_j) = \{t_4\}$. Without additional links, (t_4, r_4) would be realized.

Adversarial network

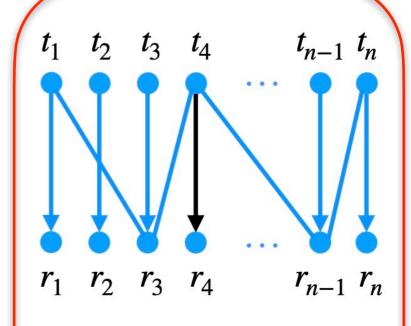
Built incrementally simulating the protocol query by query.



Graph $G_j = (V, E_j)$ at the beginning of some round j.



Query $L_j(G_j) = \{t_4\}$. Without additional links, (t_4, r_4) would be realized.



Graph $G_{j+1} = (V, E_{j+1})$ without additional links because it is not possible to interfere at r_4 with $|L_j(G_j)| = 1$.

Proof sketch:

- \triangle is an upper bound on A
- adversarial network has max degree
- prove that within the claimed time function (of Δ)
 - low frequency requests in small queries not realized
 - requests in large queries are not realized whp
 - requests in singleton queries plus high frequency requests in small queries are a fraction of total
- applying probabilistic method, we show existence of adversarial network for each protocol

For SINR: similar, time differs by a constant only.

RN and SINR Lower Bounds

Theorem 1. Consider any deterministic adaptive protocol \mathcal{P} that solves DLS on a set of n requests embedded in a wireless network with maximum average affectance \mathcal{A} under the RN model. Let $\tau = \tau(n, \mathcal{A})$ be the number of rounds required by \mathcal{P} in the worst case. Then, there exists an adversarial network such that $\tau \in \Omega\left(\min\left\{n, \frac{\mathcal{A}^2}{\log^2 n}\right\}\right)$.

The above holds also for the SINR model of interference with attenuation $\alpha \in \Omega(\log n/(\log \log n - \log \log A))$ in a graph metric space.

For bounded growth: similar ideas, laying out nodes in multidimensional space to limit ϕ and different thresholds.

DWLS Algorithm for RNs

Independent for each request

Based on Selectors [1,2,3]

No knowledge of A or ϕ

```
Algorithm 1: DLS algorithm for each request (t, r).
```

```
/\star Algorithm for transmitter t
1 S(k,x) \leftarrow a (2n,k,x)-avoiding-selector for any
    k \le x \le n being powers of 2
2 for each j = 1, 2, 3, ... do
      for each k = 1, 2, 4, 8, 16, \ldots, n do
3
          for each x = k, 2k, 4k, 8k, 16k, ..., n do
              if t \in \mathcal{S}(k,x)_i then
                  transmit request (t, r) in round
 6
                   2j \cdot (1 + \log k) \cdot (1 + \log(x/k)) - 1
                  if acknowledgment is received from r in
 7
                   round 2j \cdot (1 + \log k) \cdot (1 + \log(x/k))
                   then stop
   /\star Algorithm for receiver r
8 for each j = 1, 2, ... do
      if transmission with a request (t, r), for some t, is
        received in round 2j-1 then
          transmit acknowledgement to t in round 2j
10
          stop
11
```

- [1] De Bonis, Gasieniec and Vaccaro. Siam J. Comp. 2005.
- [2] Chlebus and Kowalski. FCT 2005.
- [3] Indyk. SODA 2002.

Avoiding Selectors

Transmit or not

OBLIVIOUS
Transmission Schedules

Round	1	2	3	4	5	6	7	
Transmitter 1	0	1	0	1	1	1	0	
Transmitter 2	1	1	0	0	1	0	1	
Transmitter 3	0	0	1	0	1	1	1	
Transmitter 4	0	1	0	1	0	0	0	
Transmitter n	1	1	0	1	0	1	1	

For any subset of nodes ...
"selects" some number of elements while avoiding others.

- [1] De Bonis, Gasieniec and Vaccaro. Siam J. Comp. 2005.
- [2] Chlebus and Kowalski. FCT 2005.
- [3] Indyk. SODA 2002.

Bounded-growth RN Upper Bound

Theorem 2. DLS is a deterministic distributed algorithm that solves the Link Scheduling problem in $O(A\phi^6 \log^4 n)$ rounds, for any set of requests of maximum average affectance at most A in any Radio Network model with ϕ -bounded-growth. This holds even without initial knowledge of the parameters A, ϕ .

Proved showing how the selectors used are carefully combined to eventually realize all requests.

Open Directions

More sophisticated local communication, such as multicast?

Link scheduling with forwarding? (for problems where the order of realizations matter) Global point-to-point routing?

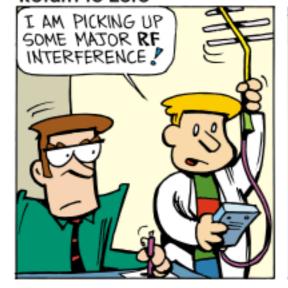
More adversarial environment with jamming (some nodes controlled by adversary could jam in some limited number of rounds)?

More efficient constructions of the used types of selectors?

Thank you!

Miguel A. Mosteiro Pace University mmosteiro@pace.edu

Return to Zero



EEWeb.com