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Link Scheduling Problem
• Scenario : 
–  network nodes called senders 

–  network nodes called receivers 
– each sender holds a message to be delivered to some receiver 
– each (sender,receiver,message) called a request 
– successful delivery of a message called a realization of the request

n
n

Link Scheduling
Link Scheduling is about 

realization of requests between pairs of nodes 
while minimizing makespan.

A request is the task of sending a message from some 
transmitter to some receiver. 



Distributed Wireless Link Scheduling
Main challenges: 

• locality 
requests are known only locally by involved nodes

• dependencies among requests 
due to wireless interference

Link Scheduling Problem
• Input : 
– set  of  requestsL n

• Output : 
– transmissions schedule to realize all requests under arbitrary affectance

…

e.g. realization attempts (transmissions) in round  :t



Distributed Wireless Link Scheduling
Main challenges: 

• locality 
requests are known only locally by involved nodes

• dependencies among requests 
due to wireless interference

Link Scheduling Problem
• Input : 
– set  of  requestsL n

• Output : 
– transmissions schedule to realize all requests under arbitrary affectance

affectance

…

e.g. realization attempts (transmissions) in round  :t

some requests attempted are not realized



The Internet of Things

App.: Ad-hoc Wireless Networks
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Randomized or Deterministic?

BUT
• Ad-hoc network nodes: 

access to truly-random bits is physically very limited! 
• Massive networks: 

pseudorandom sequences may be too short! 

It helps to break 
those dependencies!

Most Link Scheduling solutions rely on true randomness 
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Randomized or Deterministic?

BUT
• Ad-hoc network nodes: 

access to truly-random bits is physically very limited! 
• Massive networks: 

pseudorandom sequences may be too short! 

It helps to break 
those dependencies!

Most Link Scheduling solutions rely on true randomness 

In this work we focus on Deterministic DWLS Protocols. 



Distributed Wireless Link Scheduling Problem
Scenario :

•  network nodes called transmitters
•  network nodes called receivers
• Each transmitter holds a message to be delivered to some receiver
• Each (transmitter, receiver, message) is called a request
• Successful delivery of a message is called a realization of the request

n
n

Conditions :
• Realizations implemented through wireless communication

 interference among concurrent attempts of realization
• Adaptiveness: only to realization of own request.
• Unique ID’s, only  is known
• Time slotted in rounds of communication

⇒

n

Goal : Realize all requests



Affectance Model [1,2,3]:

 : real value in  

function quantifying interference 
of communication through link  
on communication through link .

a((u, v), (u′ , v′ )) [0,1]

(u, v)
(u′ , v′ )
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Interference Models

u′ 

v′ 

Radio Network Model [4]:
 : either , depending on  and a((u, v), (u′ , v′ )) {0,1} {u, v′ } ∉ E u ≠ v′ 



SINR Model [5]:

 : ap((u, v), (u′ , v′ )) min {1,
βp(u, v)
d(u, v′ )α /( p(u′ , v′ )

d(u′ , v′ )α
− βN)}

Previous work: 
uniform power, 

constant noise…

… combined with 
Euclidean distance and 

constant attenuation
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Interference Models

u′ 

v′ 

Radio Network Model [4]:
 : either , depending on  and a((u, v), (u′ , v′ )) {0,1} {u, v′ } ∉ E u ≠ v′ 



Graph-metric SINR Model:

 : a((u, v), (u′ , v′ )) min {1,
β

d(u, v′ )α }
 : Attenuation
 : Threshold

Uniform power (overcoming noise)
 : distance in # hops

α
β

d( ⋅ , ⋅ )
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Interference Models

u′ 

v′ 

• Realization: 
Request  
is realized (the message from  is received by ) at time  
if and only if 

»  transmits the message at time  and 

»
,

 : subset of links carrying transmissions at time  . 

(u′ , v′ )
u′ v′ j

u′ j

∑
(u,v)∈L( j):u≠u′ 

a((u, v), (u′ , v′ )) < 1

L( j) j



Performance Metrics
• Length of schedule: number of rounds to realize all requests given 

as a function of the number of requests ,  the maximum average 
affectance  [1], and the metric growth  of the underlying metric 
space.

n
𝒜 ϕ

Intuitively: 
•  is the maximum cumulative affectance an 

average receiver can experience, for any set of 
broadcasting transmitters.

• The topology has metric growth  if every 2-
clique in the network can be covered by at most 

 regular cliques. 

𝒜

ϕ

ϕ

Protocols Studied

• Performance metrics : 
– length of schedule: number of rounds to realize all requests 
– per request min-entropy . That is, the number of bits needed by the 

random variables used by the local algorithm used by each request. 

both given as functions of  and the maximum average affectance [1]:n

A(L) = max
L∈ ⊆L

1
|L∈ | ∑

(u,v)⇒L∈ 
∑

(x,y)⇒L∈ 
a((u, v), (x, y))

[1] Kesselheim and Vöcking. DISC 2010. 



Contributions and Previous WorkTABLE I: Comparison of previous results (those holding whp,
with high probability, use randomization) and our results.

Bound Model features Ref

!

(
A

logn

)
SINR Euclidean space [19]

O (A logn), whp SINR Euclidean space [19]

O(A logn), whp Arbitrary interference [20]

O(min{n,A2 log3 n}) Arbitrary interference [20]

!
(
min

{
n,

A2

log2 n

})
RN, SINR, metric space Thm 1

O
(
Aω

6 log4 n
)

RN, ω-bounded growth Thm 2

ε

(
1+min

{
n,

min{A,ω}A
log2 n

})
RN, SINR, ω-bound. metric Thm 3

generates interference sufficient to jam any other transmitting
neighbor. In the SINR model, on the other hand, the actual
interference is a sum of fractional interferences generated by
current transmitters (these interferences may depend on the
underlying metric space, typically continuous). For a given
set of realization attempts in the same communication round,
if the total affectance of other requests on a given request ω
reaches a given threshold, the request ω is not realized.
Deterministic and distributed setting. The protocols studied
in this work are deterministic, i.e., nodes do not have access
to random bits, and distributed, i.e., each node runs its own
local algorithm to decide when to transmit (receivers may
also transmit to deliver acknowledgements of reception). The
implicit output of such DLS protocols is then a schedule of
realization attempts, that is, a temporal sequence (in rounds) of
transmissions by each node, called schedule of transmissions.
The goal of such schedule is to realize all input requests.
Our contributions. A summary of our results in comparison
with previous work can be seen in Table I. We present the
bounds as functions of an interference characteristic A =
A(L) of the input set of requests L, called maximum average

affectance, used in previous work. Intuitively, it captures
the maximum cumulative affectance an average receiver can
experience for any set of broadcasting transmitters – formal
definitions can be found in the model section (Section II).

Our main result is a lower bound !
(
min

{
n,A2/ log2 n

})

for both RN and SINR models (Theorem 1 in Sec-
tion III), which matches a known upper bound of
O
(
min

{
n,A2 log3 n

})
in [20] up to polylogarithmic factors.

To the best of our knowledge, this is the first superlinear lower
bound for DLS in the literature. It also implies that RN and
SINR are among asymptotically hardest interference models
for DLS, for some (worst-case) underlying topologies.

We show that DLS can be solved more efficiently if the
metric growth of the underlying metric space is restricted by
some parameter ε. † Specifically, in O(Aε6 log4 n) rounds

†Informally, networks where each set of nodes of pairwise distances at
most 2 (2-bounded set) can be covered by at most ω cliques (1-bounded
sets). A formal definition is given in Section IV. Low-degree graph metrics
and low-dimensional Euclidean spaces are all low-growth metrics (constant).
They extend so called “geometric networks”, such as Unit Disc Graphs. It is
also easy to observe that neither of parameters A,ω directly bounds a node
degree of the metric graph defined by the RN model.

(Theorem 2 in Sec. IV-A), which goes below the general
(nearly quadratic) lower bound formula, for A being a suffi-
ciently large polynomial in ε and log n. We also prove a lower
bound of ϑ

(
min

{
n,min{A,ε}A/ log2 n

})
(Theorem 3 in

Sec. IV-B), which shows, for the first time, that the bounded
growth parameter contributes substantially to the complex-
ity of DLS. Both of our lower bounds are tight with respect to
A, and hold even for wireless networks that provide realiza-
tion acknowledgements. That is, upon realization of a pending
request, the transmitter gets an automatic acknowledgement
(we call it automatic to highlight that the mechanism used to
implement such acknowledgement is irrelevant for the lower
bound proofs).

Comparing with the O(A log n) upper bound achieved by
a randomized algorithm with high probability (whp) in [20],
our lower bounds show a nearly quadratic separation between
deterministic and randomized protocols. Moreover, random-
ization helps more in networks with larger metric growth.
Other related work. The Generalized Affectance model (with
arbitrary interference), which subsumes the RN and SINR
interference models, was introduced by Kesselheim et al. [18],
[19], together with schedules of length O(A log n). This model
was inspired by the affectance parameter introduced in the
SINR setting [14]. Affectance was proved to be a suitable and
tight way to characterize a set of requests. For instance, the
lower bound !

(
A

logn

)
, which is close to the abovementioned

upper bound, was proved for the SINR model in [19]. In [21],
the one-hop affectance characteristic was generalized, called
the maximum average tree-layer affectance, to be applica-
ble to multi-hop communication tasks such as broadcast,
together with another characteristic, called the maximum path

affectance. In a survey [24], various LS algorithms in the
RN model are overviewed, including centralized solutions [23]
and distributed algorithms, the latter only with experimental
results [1], [4], [9], [11], [27], [28]. [15] contains a recent
survey on LS in SINR in a constant-dimension Euclidean
space. To the best of our knowledge, no theoretical study
of DLS under the RN or SINR models in a general graph
metric space has been done – some upper bounds from the
generalized affectance model apply though.

II. MODEL AND PROBLEM

Wireless network. In a wireless network, a link represents
the possibility of communication between two network nodes.
Nodes connected by a link are called neighbors. The topology
of such network is modeled by a graph G = (V,E) where V is
the set of nodes and E is the set of links. We assume that nodes
are identified uniquely by an ID, taken from [2n] where n >
0.‡ Initially, the ID is known only by the node itself, and once
the requests appear at transmitter nodes, they automatically
learn the ID of their corresponding receivers. Nodes know a
polynomial upper bound on the number of requests n. They
work autonomously by executing a given distributed protocol.

‡We have up to 2n instead of n nodes to match the customary definition
of Link Scheduling on n links.
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local algorithm to decide when to transmit (receivers may
also transmit to deliver acknowledgements of reception). The
implicit output of such DLS protocols is then a schedule of
realization attempts, that is, a temporal sequence (in rounds) of
transmissions by each node, called schedule of transmissions.
The goal of such schedule is to realize all input requests.
Our contributions. A summary of our results in comparison
with previous work can be seen in Table I. We present the
bounds as functions of an interference characteristic A =
A(L) of the input set of requests L, called maximum average

affectance, used in previous work. Intuitively, it captures
the maximum cumulative affectance an average receiver can
experience for any set of broadcasting transmitters – formal
definitions can be found in the model section (Section II).
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To the best of our knowledge, this is the first superlinear lower
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metric growth of the underlying metric space is restricted by
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Sec. IV-B), which shows, for the first time, that the bounded
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ity of DLS. Both of our lower bounds are tight with respect to
A, and hold even for wireless networks that provide realiza-
tion acknowledgements. That is, upon realization of a pending
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(we call it automatic to highlight that the mechanism used to
implement such acknowledgement is irrelevant for the lower
bound proofs).
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our lower bounds show a nearly quadratic separation between
deterministic and randomized protocols. Moreover, random-
ization helps more in networks with larger metric growth.
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the maximum average tree-layer affectance, to be applica-
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affectance. In a survey [24], various LS algorithms in the
RN model are overviewed, including centralized solutions [23]
and distributed algorithms, the latter only with experimental
results [1], [4], [9], [11], [27], [28]. [15] contains a recent
survey on LS in SINR in a constant-dimension Euclidean
space. To the best of our knowledge, no theoretical study
of DLS under the RN or SINR models in a general graph
metric space has been done – some upper bounds from the
generalized affectance model apply though.

II. MODEL AND PROBLEM

Wireless network. In a wireless network, a link represents
the possibility of communication between two network nodes.
Nodes connected by a link are called neighbors. The topology
of such network is modeled by a graph G = (V,E) where V is
the set of nodes and E is the set of links. We assume that nodes
are identified uniquely by an ID, taken from [2n] where n >
0.‡ Initially, the ID is known only by the node itself, and once
the requests appear at transmitter nodes, they automatically
learn the ID of their corresponding receivers. Nodes know a
polynomial upper bound on the number of requests n. They
work autonomously by executing a given distributed protocol.

‡We have up to 2n instead of n nodes to match the customary definition
of Link Scheduling on n links.

nearly matches
(up to polylog)

1st super-linear 
lower bound
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in this work are deterministic, i.e., nodes do not have access
to random bits, and distributed, i.e., each node runs its own
local algorithm to decide when to transmit (receivers may
also transmit to deliver acknowledgements of reception). The
implicit output of such DLS protocols is then a schedule of
realization attempts, that is, a temporal sequence (in rounds) of
transmissions by each node, called schedule of transmissions.
The goal of such schedule is to realize all input requests.
Our contributions. A summary of our results in comparison
with previous work can be seen in Table I. We present the
bounds as functions of an interference characteristic A =
A(L) of the input set of requests L, called maximum average

affectance, used in previous work. Intuitively, it captures
the maximum cumulative affectance an average receiver can
experience for any set of broadcasting transmitters – formal
definitions can be found in the model section (Section II).

Our main result is a lower bound !
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for both RN and SINR models (Theorem 1 in Sec-
tion III), which matches a known upper bound of
O
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in [20] up to polylogarithmic factors.

To the best of our knowledge, this is the first superlinear lower
bound for DLS in the literature. It also implies that RN and
SINR are among asymptotically hardest interference models
for DLS, for some (worst-case) underlying topologies.

We show that DLS can be solved more efficiently if the
metric growth of the underlying metric space is restricted by
some parameter ε. † Specifically, in O(Aε6 log4 n) rounds

†Informally, networks where each set of nodes of pairwise distances at
most 2 (2-bounded set) can be covered by at most ω cliques (1-bounded
sets). A formal definition is given in Section IV. Low-degree graph metrics
and low-dimensional Euclidean spaces are all low-growth metrics (constant).
They extend so called “geometric networks”, such as Unit Disc Graphs. It is
also easy to observe that neither of parameters A,ω directly bounds a node
degree of the metric graph defined by the RN model.
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ciently large polynomial in ε and log n. We also prove a lower
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(Theorem 3 in

Sec. IV-B), which shows, for the first time, that the bounded
growth parameter contributes substantially to the complex-
ity of DLS. Both of our lower bounds are tight with respect to
A, and hold even for wireless networks that provide realiza-
tion acknowledgements. That is, upon realization of a pending
request, the transmitter gets an automatic acknowledgement
(we call it automatic to highlight that the mechanism used to
implement such acknowledgement is irrelevant for the lower
bound proofs).

Comparing with the O(A log n) upper bound achieved by
a randomized algorithm with high probability (whp) in [20],
our lower bounds show a nearly quadratic separation between
deterministic and randomized protocols. Moreover, random-
ization helps more in networks with larger metric growth.
Other related work. The Generalized Affectance model (with
arbitrary interference), which subsumes the RN and SINR
interference models, was introduced by Kesselheim et al. [18],
[19], together with schedules of length O(A log n). This model
was inspired by the affectance parameter introduced in the
SINR setting [14]. Affectance was proved to be a suitable and
tight way to characterize a set of requests. For instance, the
lower bound !
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upper bound, was proved for the SINR model in [19]. In [21],
the one-hop affectance characteristic was generalized, called
the maximum average tree-layer affectance, to be applica-
ble to multi-hop communication tasks such as broadcast,
together with another characteristic, called the maximum path

affectance. In a survey [24], various LS algorithms in the
RN model are overviewed, including centralized solutions [23]
and distributed algorithms, the latter only with experimental
results [1], [4], [9], [11], [27], [28]. [15] contains a recent
survey on LS in SINR in a constant-dimension Euclidean
space. To the best of our knowledge, no theoretical study
of DLS under the RN or SINR models in a general graph
metric space has been done – some upper bounds from the
generalized affectance model apply though.

II. MODEL AND PROBLEM

Wireless network. In a wireless network, a link represents
the possibility of communication between two network nodes.
Nodes connected by a link are called neighbors. The topology
of such network is modeled by a graph G = (V,E) where V is
the set of nodes and E is the set of links. We assume that nodes
are identified uniquely by an ID, taken from [2n] where n >
0.‡ Initially, the ID is known only by the node itself, and once
the requests appear at transmitter nodes, they automatically
learn the ID of their corresponding receivers. Nodes know a
polynomial upper bound on the number of requests n. They
work autonomously by executing a given distributed protocol.

‡We have up to 2n instead of n nodes to match the customary definition
of Link Scheduling on n links.
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(up to polylog)

1st super-linear 
lower bound

below general lower 
bound for A > > ϕ
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SINR are among asymptotically hardest interference models
for DLS, for some (worst-case) underlying topologies.

We show that DLS can be solved more efficiently if the
metric growth of the underlying metric space is restricted by
some parameter ε. † Specifically, in O(Aε6 log4 n) rounds

†Informally, networks where each set of nodes of pairwise distances at
most 2 (2-bounded set) can be covered by at most ω cliques (1-bounded
sets). A formal definition is given in Section IV. Low-degree graph metrics
and low-dimensional Euclidean spaces are all low-growth metrics (constant).
They extend so called “geometric networks”, such as Unit Disc Graphs. It is
also easy to observe that neither of parameters A,ω directly bounds a node
degree of the metric graph defined by the RN model.

(Theorem 2 in Sec. IV-A), which goes below the general
(nearly quadratic) lower bound formula, for A being a suffi-
ciently large polynomial in ε and log n. We also prove a lower
bound of ϑ

(
min

{
n,min{A,ε}A/ log2 n

})
(Theorem 3 in

Sec. IV-B), which shows, for the first time, that the bounded
growth parameter contributes substantially to the complex-
ity of DLS. Both of our lower bounds are tight with respect to
A, and hold even for wireless networks that provide realiza-
tion acknowledgements. That is, upon realization of a pending
request, the transmitter gets an automatic acknowledgement
(we call it automatic to highlight that the mechanism used to
implement such acknowledgement is irrelevant for the lower
bound proofs).

Comparing with the O(A log n) upper bound achieved by
a randomized algorithm with high probability (whp) in [20],
our lower bounds show a nearly quadratic separation between
deterministic and randomized protocols. Moreover, random-
ization helps more in networks with larger metric growth.
Other related work. The Generalized Affectance model (with
arbitrary interference), which subsumes the RN and SINR
interference models, was introduced by Kesselheim et al. [18],
[19], together with schedules of length O(A log n). This model
was inspired by the affectance parameter introduced in the
SINR setting [14]. Affectance was proved to be a suitable and
tight way to characterize a set of requests. For instance, the
lower bound !

(
A

logn

)
, which is close to the abovementioned

upper bound, was proved for the SINR model in [19]. In [21],
the one-hop affectance characteristic was generalized, called
the maximum average tree-layer affectance, to be applica-
ble to multi-hop communication tasks such as broadcast,
together with another characteristic, called the maximum path

affectance. In a survey [24], various LS algorithms in the
RN model are overviewed, including centralized solutions [23]
and distributed algorithms, the latter only with experimental
results [1], [4], [9], [11], [27], [28]. [15] contains a recent
survey on LS in SINR in a constant-dimension Euclidean
space. To the best of our knowledge, no theoretical study
of DLS under the RN or SINR models in a general graph
metric space has been done – some upper bounds from the
generalized affectance model apply though.

II. MODEL AND PROBLEM

Wireless network. In a wireless network, a link represents
the possibility of communication between two network nodes.
Nodes connected by a link are called neighbors. The topology
of such network is modeled by a graph G = (V,E) where V is
the set of nodes and E is the set of links. We assume that nodes
are identified uniquely by an ID, taken from [2n] where n >
0.‡ Initially, the ID is known only by the node itself, and once
the requests appear at transmitter nodes, they automatically
learn the ID of their corresponding receivers. Nodes know a
polynomial upper bound on the number of requests n. They
work autonomously by executing a given distributed protocol.

‡We have up to 2n instead of n nodes to match the customary definition
of Link Scheduling on n links.
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Contributions and Previous WorkTABLE I: Comparison of previous results (those holding whp,
with high probability, use randomization) and our results.

Bound Model features Ref

!

(
A

logn

)
SINR Euclidean space [19]

O (A logn), whp SINR Euclidean space [19]

O(A logn), whp Arbitrary interference [20]

O(min{n,A2 log3 n}) Arbitrary interference [20]

!
(
min

{
n,

A2

log2 n

})
RN, SINR, metric space Thm 1

O
(
Aω

6 log4 n
)

RN, ω-bounded growth Thm 2

ε

(
1+min

{
n,

min{A,ω}A
log2 n

})
RN, SINR, ω-bound. metric Thm 3

generates interference sufficient to jam any other transmitting
neighbor. In the SINR model, on the other hand, the actual
interference is a sum of fractional interferences generated by
current transmitters (these interferences may depend on the
underlying metric space, typically continuous). For a given
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to random bits, and distributed, i.e., each node runs its own
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also transmit to deliver acknowledgements of reception). The
implicit output of such DLS protocols is then a schedule of
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transmissions by each node, called schedule of transmissions.
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bounds as functions of an interference characteristic A =
A(L) of the input set of requests L, called maximum average
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the maximum cumulative affectance an average receiver can
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tion III), which matches a known upper bound of
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in [20] up to polylogarithmic factors.

To the best of our knowledge, this is the first superlinear lower
bound for DLS in the literature. It also implies that RN and
SINR are among asymptotically hardest interference models
for DLS, for some (worst-case) underlying topologies.

We show that DLS can be solved more efficiently if the
metric growth of the underlying metric space is restricted by
some parameter ε. † Specifically, in O(Aε6 log4 n) rounds
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request, the transmitter gets an automatic acknowledgement
(we call it automatic to highlight that the mechanism used to
implement such acknowledgement is irrelevant for the lower
bound proofs).

Comparing with the O(A log n) upper bound achieved by
a randomized algorithm with high probability (whp) in [20],
our lower bounds show a nearly quadratic separation between
deterministic and randomized protocols. Moreover, random-
ization helps more in networks with larger metric growth.
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SINR setting [14]. Affectance was proved to be a suitable and
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survey on LS in SINR in a constant-dimension Euclidean
space. To the best of our knowledge, no theoretical study
of DLS under the RN or SINR models in a general graph
metric space has been done – some upper bounds from the
generalized affectance model apply though.

II. MODEL AND PROBLEM

Wireless network. In a wireless network, a link represents
the possibility of communication between two network nodes.
Nodes connected by a link are called neighbors. The topology
of such network is modeled by a graph G = (V,E) where V is
the set of nodes and E is the set of links. We assume that nodes
are identified uniquely by an ID, taken from [2n] where n >
0.‡ Initially, the ID is known only by the node itself, and once
the requests appear at transmitter nodes, they automatically
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Built incrementally simulating the protocol query by query.

RN Lower Bound

Then, for each query, the adversary adds more links to produce interference:
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“large” : block connecting to  other transmitters 
(chosen at random)

d
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“high” frequency requests allowed

(hard to block with limited degree)

Initial graph  containing 
only the set of requests .
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E1 = L



Adversarial network 
Built incrementally simulating the protocol query by query.

RN Lower Bound

Graph  at 
the beginning of some 
round .

Gj = (V, Ej)

j



Adversarial network 
Built incrementally simulating the protocol query by query.

RN Lower Bound

Graph  at 
the beginning of some 
round .

Gj = (V, Ej)

j

Query 
. 

Without additional links, 
 would be 

realized. Let  
be “large”.

Lj(Gj) = {t3, t4, tn−1}

(t4, r4)
|Lj(Gj) |



Adversarial network 
Built incrementally simulating the protocol query by query.

RN Lower Bound

Graph  at 
the beginning of some 
round .

Gj = (V, Ej)

j

Query 
. 

Without additional links, 
 would be 

realized. Let  
be “large”.

Lj(Gj) = {t3, t4, tn−1}

(t4, r4)
|Lj(Gj) |

Graph 
after adding (red) links 
from  (random) 
transmitters in   to 
interfere at .

Gj+1 = (V, Ej+1)

d = 2
Lj(Gj)

r4



Adversarial network 
Built incrementally simulating the protocol query by query.

RN Lower Bound

Graph  at 
the beginning of some 
round .

Gj = (V, Ej)

j



Adversarial network 
Built incrementally simulating the protocol query by query.

RN Lower Bound

Graph  at 
the beginning of some 
round .

Gj = (V, Ej)

j

Query . 
Without additional links, 
both requests would be 
realized. Let  be low 
frequency and  not.

Lj(Gj) = {t2, tn}

t2
tn



Adversarial network 
Built incrementally simulating the protocol query by query.

RN Lower Bound

Graph  at 
the beginning of some 
round .

Gj = (V, Ej)

j

Query . 
Without additional links, 
both requests would be 
realized. Let  be low 
frequency and  not.

Lj(Gj) = {t2, tn}

t2
tn

Graph  
after adding link  
to interfere at . 

 is allowed to be 
realized. 

Gj+1 = (V, Ej+1)
(tn, r2)

r2
(tn, rn)



Adversarial network 
Built incrementally simulating the protocol query by query.

RN Lower Bound

Graph  at 
the beginning of some 
round .

Gj = (V, Ej)

j



Adversarial network 
Built incrementally simulating the protocol query by query.

RN Lower Bound

Graph  at 
the beginning of some 
round .

Gj = (V, Ej)

j

Query . 
Without additional links, 

 would be 
realized.

Lj(Gj) = {t4}

(t4, r4)



Adversarial network 
Built incrementally simulating the protocol query by query.

RN Lower Bound

Graph  at 
the beginning of some 
round .

Gj = (V, Ej)

j

Query . 
Without additional links, 

 would be 
realized.
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Proof sketch: 
•  is an upper bound on 
• adversarial network has max degree 
• prove that within the claimed time function (of )

- low frequency requests in small queries not realized
- requests in large queries are not realized whp
- requests in singleton queries plus high frequency requests 

in small queries are a fraction of total
• applying probabilistic method, we show existence of 

adversarial network for each protocol

Δ A
Δ

Δ

RN Lower Bound

For SINR: similar, time differs by a constant only.



RN and SINR Lower Bounds

interference from other simultaneous transmissions and it is
successfully received only if it satisfies the definition above.

For our lower bounds, we consider algorithms that are adap-

tive to realization acknowledgements. That is, transmissions
through links that are not in the input set of requests do not
originate an acknowledgment from the receiver, or otherwise
are ignored by the algorithm.

In this work, we evaluate algorithm performance in number
of rounds as a function of the number of requests n, the max-
imum average affectance A, and the metric growth parameter

ω of the underlying metric space, where ω is roughly defined
as an ability of covering any 2-bounded set by at most ω 1-
bounded sets, see Definition 1 in Section IV.

III. GENERAL LOWER BOUND

In this section we prove a lower bound for DLS in wireless
networks of arbitrary topology with uniform power assign-
ment. This bound is only a polylogarithmic factor away
from the upper bound of O

(
min

{
n,A2 log3 n

})
for arbitrary

topology and affectance function [20]. Our lower bound
is existential – we show that for each protocol there is an
adversarial network such that the claimed bound holds. The
need of constructing a potentially different adversarial network
for each DLS protocol is motivated by the following fact.

Observation 1. There is no universal adversarial network

where any DLS protocol runs in time ε(A log n).

Proof. Consider the randomized protocol in [19], where it was
proved a running time of O(A log n) with high probability for
any input.

Our main result below shows how to find “pessimistic” net-
works and sets of requests for any deterministic protocol, and
how “pessimistic” they are. This lower bound applies even if
the protocol is adaptive to realization acknowledgments.

Theorem 1. Consider any deterministic adaptive protocol P

that solves DLS on a set of n requests embedded in a wireless

network with maximum average affectance A under the RN

model. Let ϑ = ϑ(n,A) be the number of rounds required by

P in the worst case. Then, there exists an adversarial network

such that ϑ → !
(
min

{
n, A

2

log2 n

})
.

The above holds also for the SINR model of interference

with attenuation ϖ → !(log n/(log log n ↑ log logA)) in a

graph metric space.

The remainder of this section contains the proof of Theorem 1.
Notation. For a given protocol P , we refer to the set of
requests whose realization is attempted in a round as a query,
and to the cardinality of such set as query size. We will
classify queries according to their size in singleton, small,
and large queries. Specifically, for a query Lj of round j,
|Lj | = 1, 1 < |Lj | < ϱ, or |Lj | ↓ ϱ respectively, where
ϱ = 1 + c(n/d) lnn, for some 0 < d < n(1 ↑ 1/g),
where c ↓ 3 and g > 1 are constants. Also, let the
frequency of request (ti, ri), denoted as f((ti, ri)), be the
number of rounds in small requests that include (ti, ri), that

TABLE II: Notation.

ω : length of schedule
L = {(tu, ru)|u → [n]}: set of requests to realize
T = {tu|u → [n]}: set of network nodes with transmitter role
R = {ru|u → [n]}: set of network nodes with receiver role
V = T ↑R: set of network nodes
Ej = {{tu, rv}|u, v → [n]}: set of network links in round j

E: set of network links if E1 = · · · = Eω

Gj = (V,Ej): network topology graph in round j

G = (V,E): network topology graph if G1 = · · · = Gω

query: set of requests to attempt realization
Lj : query in round j

Lj(Gj): Lj on Gj , with removed realizations before j

Lj(G): Lj(Gj) if G1 = · · · = Gω

ε: query size threshold
f((tu, ru)): frequency of request (tu, rv)

is f((ti, ri)) = |{j : j → [ϑ ] ↔ (ti, ri) → Lj ↔ 1 < |Lj | < ϱ}|.
Then, for each round j such that 1 < Lj < ϱ, and for each
request (ti, ri) → Lj , we say that (ti, ri) has low frequency if
f((ti, ri)) < 2g(c+ 1)d lnn, or high frequency otherwise.

To prove our lower bound we will define an adversarial
wireless network. Let the topology of such network be rep-
resented as a bipartite graph G = (V,E), where {T,R} is
a partition of the set of nodes V with T = {ti|i → [n]}
being the transmitters and R = {ri|i → [n]} the receivers
of the n requests, for n > 0, and E is a set of undirected
links between T and R over which the set of input requests
must be realized to solve Link Scheduling.

Recall that we denote the schedule of transmissions given
by protocol P as a temporal sequence of sets of requests
L1, L2, . . . , Lω so that, for each round j → [ϑ ] and each request
(ti, ri) → Lj , transmitter ti transmits in round j. Thanks to
acknowledgments, a transmitter ti may stop transmitting after
its request (ti, ri) is realized during an execution of P . Thus,
in order to distinguish a request before and after realization we
say that (ti, ri) is pending until it is realized. We define nota-
tion for the sequence of actual transmissions while executing
protocol P on topology G as a sequence of subsets of pending

requests L1(G), L2(G), . . . , Lω (G). Clearly, L1(G) = L1

because no request has been realized at that point. Whereas,
for any round j > 1, Lj(G) is an intersection of set Lj and
the set of pending requests in the beginning of round j. That
is, Lj(G) ↗ Lj for any G and j → [ϑ ].

In our proof we will define the set of links E incrementally
while we simulate protocol P . Let G1 = (V,E1), G2 =
(V,E2), . . . , Gω = (V,Eω ) be the sequence of graphs Gj

obtained during such construction before adding links in the
simulated round j, and let Gω+1 = (V,Eω+1) be the graph ob-
tained after the simulation is completed at the end of round ϑ .

In Table II, we summarize the notation used in the analysis.
Proof outline. We start from defining an adversarial wireless
network and the set of requests. We define the adversarial
network incrementally simulating the protocol round by round.
Initially, we include in the network only the set of n links
corresponding to the input set of requests. Then, for each round
j simulated, we add interfering links depending on query size.
For large queries adding interfering links at random is enough
to show that those requests are not realized whp. For small

For bounded growth: similar ideas, laying out nodes in 
multidimensional  space to limit  and different thresholds.ϕ



DWLS Algorithm for RNs
Algorithm 1: DLS algorithm for each request (t, r).
/* Algorithm for transmitter t */

1 S(k, x) → a (2n, k, x)-avoiding-selector for any
k ↑ x ↑ n being powers of 2

2 for each j = 1, 2, 3, . . . do

3 for each k = 1, 2, 4, 8, 16, . . . , n do

4 for each x = k, 2k, 4k, 8k, 16k, . . . , n do

5 if t ↓ S(k, x)j then

6 transmit request (t, r) in round
2j · (1 + log k) · (1 + log(x/k))↔ 1

7 if acknowledgment is received from r in

round 2j · (1 + log k) · (1 + log(x/k))
then stop

/* Algorithm for receiver r */
8 for each j = 1, 2, . . . do

9 if transmission with a request (t, r), for some t, is

received in round 2j ↔ 1 then

10 transmit acknowledgement to t in round 2j
11 stop

Definition 2 (Avoiding Selectors [7], [8]). A sequence S =
S(k, x) = ↗S1, S2, . . . , Sm↘ of subsets of the set of nodes

[2n] is called a (2n, k, x)-avoiding-selector of length m =
m(2n, k, x) if for any subset K ≃ [2n] of size k ↑ |K| < 2k
and any subset X ≃ [2n] of size at most x and such that

K ⇐X = ⇒, there is an element v ↓ K and a set S ↓ S such

that K ⇐ S = {v} and X ⇐ S = ⇒.

In Definition 2, the property K ⇐ S = {v} is called a
selection (of element v), while the property X⇐S = ⇒ is called
avoiding (of set X). We denote set Sj in S(k, x) by S(k, x)j .

The intuition of how these selectors are used in our DLS
algorithm is the following. For each pair of parameters k, x we
have a different selector, i.e. a sequence S(k, x) of subsets of
[2n], as defined. For each round of communication, some sub-
set from some selector (both carefully chosen) indicates which
nodes transmit (i.e. attempt realization). Specifically, consider
the execution of the algorithm conceptually divided in phases
j = 1, 2, 3, . . . , each composed of ⇑log n(1+log n)/2⇓ rounds.
Then, for each phase j, the jth subset of each of the sequences
S(k, x), for k = 1, 2, 4, . . . , n and x = k, 2k, 4k, . . . , n, is
used to specify which nodes transmit in each round of such
phase. Our analysis below shows that, given the properties of
the selectors chosen, all requests are realized.

Applying the above definition |K|↔ k+1 times, each time
removing the selected element from set K, one can prove:

Corollary 2. Consider a (2n, k, x)-avoiding-selector S =
↗S1, S2, . . . , Sm↘. Then, for any subset K ≃ [2n] of size

k ↑ |K| < 2k and any subset X ≃ [2n] of size at most

x and such that K ⇐ X = ⇒, there are at least |K| ↔ k + 1
elements v in K for which there is a set Sj = Sj(v) ↓ S such

that K ⇐ Sj = {v} and X ⇐ Sj = ⇒.

De Bonis, Gasieniec and Vaccaro [8] proved that

m(2n, k, x) = O
(

x2

k log(2n)
)

, and later Indyk [16] and Chle-
bus and Kowalski [6] showed polynomial-time constructions
based on superimposed codes [17] and dispersers [25], with
length m(2n, k, x) = O

(
x2

k polylog (2n)
)

.
1) Analysis of Algorithm DLS: Consider an input set of

n requests ω1 = (t1, r1), . . . , ωn = (tn, rn) with maximum
average affectance at most A in the Radio Network model
defined by a graph G on the set of 2n nodes, whose induced
metric satisfies a ε-bounded growth.

For the analysis that follows, we define a symmetric (un-
weighted) graph H whose vertices are requests, and two re-
quests (t, r), (t→, r→) are connected if and only if the affectance
between one of them to the other is 1. Note that the affectance
of the latter to the former could be 0.

Lemma 1. The graph metric defined by graph H on the set

of all n links has growth at most ε3
.

Proof. Consider any 2-bounded set in graph H , call it H →.
Consider any pair of requests in H →, call them ω = (t, r) and
ω→ = (t→, r→). We first prove that the transmitter t→ and the
receiver r→ of request ω→ are of distance at most 4 from the
receiver r of link ω in graph G. Indeed, if ω→ is the neighbor of
ω in H then, by definition, t→, r→ are within distance 2 from r
in graph G. The complementary case is when ω→ is of distance
2 from ω in H . Then, there is another link, ω↑ = (t↑, r↑),
which is a neighbor of both ω, ω→ in H . We already argued
that, because of being neighbors in H , both vertices t↑, r↑ are
of distance at most 2 from r in graph G, and both vertices
t→, r→ are of distance at most 2 from r↑ in graph G. Hence, in
such case, r→ is of distance at most 4 from r in graph G.

Consider any link ω = (t, r) and a maximal 4-bounded set
in graph G containing receiver r, call it G→→ (recall that in
a 4-bounded set all pairs of nodes are at distance at most 4
so, such a 4-bounded set exists). By Corollary 1, G→→ can be
covered by some x ↑ ε3 1-bounded sets in G. For each of
those x 1-bounded sets choose a node, call them v1, . . . , vx.
Let ω1, . . . , ωx be the corresponding links for which v1, . . . , vx
are the transmitter or the receiver. (Note that links ω1, . . . , ωx
do not have to be pairwise different.) We argue that the 1-
bounded sets of ω1, . . . , ωx cover any 2-bounded set of link ω in
graph H induced by the nodes of G→→, call it H →→. Consider any
link ω→→ = (t→→, r→→) in H →→ that is different from ω1, . . . , ωx (if
there is none the claim follows). We have to prove that ω→ is a
neighbor of some of the links ω1, . . . , ωx. Because ω and ω→→ are
in the 2-bounded set H →→, we know that t→→, r→→ are of distance
at most 4 from r in G. Hence they are both in the 4-bounded
set G→→. Therefore, they both must be in the neighborhood(s)
of some node(s) v1, . . . , vx and the claim follows.

Lemma 2. If a receiver r received a request (t, r) from some

transmitter t in a round, then t (successfully) receives an

acknowledgment from the receiver r in the next round.

Proof. Recall that transmitters could transmit only in odd
rounds, while receivers only in even rounds. Assume some
transmitter t transmits a message addressed to some receiver

Based on 
Selectors [1,2,3]

[1] De Bonis, Gasieniec and Vaccaro. Siam J. Comp. 2005. 
[2] Chlebus and Kowalski. FCT 2005.
[3] Indyk. SODA 2002. 

No knowledge of 
 or A ϕ

Independent for 
each request



Avoiding Selectors

Round 1 2 3 4 5 6 7 …
Transmitter 1 0 1 0 1 1 1 0 …
Transmitter 2 1 1 0 0 1 0 1 …
Transmitter 3 0 0 1 0 1 1 1 …
Transmitter 4 0 1 0 1 0 0 0 …

… … … … … … … … …
Transmitter n 1 1 0 1 0 1 1 …

For any subset of nodes ... 
"selects" some number of 

elements while avoiding others.

OBLIVIOUS 
Transmission SchedulesTransmit or not

[1] De Bonis, Gasieniec and Vaccaro. Siam J. Comp. 2005. 
[2] Chlebus and Kowalski. FCT 2005.
[3] Indyk. SODA 2002. 



Bounded-growth RN Upper Bound

To upper bound the sum
∑

j:(tj ,rj)→L→ d(tj , ri)↑ω, we group
the terms of the summation according to distance h to re-
ceiver ri. Let the number of transmitters at distance h from ri
be nh. Then, the overall affectance of those nodes in receiver
ri is at most nh/hω

→ !h/hω, by the SINR interference
formula and by upper bounding the number of nodes at
distance h from ri by !h. Observe also that given that it
is a bipartite graph, the distance from any transmitter to ri
is an odd number. We could also assume that h → ↑log! n↓,
as beyond that distance the interference becomes negligible
(inversely polynomial in n). Then, we have the following:

A → ω max
L→↓L





1

|L↔|

∑

i:(ti,ri)→L→

∑

h=1,3,5,...,↗log! n↘

!h

hω




 . (4)

We now identify a value of the attenuation ε such that hω
↔

(2!)h↑1, for every h = 1, 3, 5, . . . , ↑log! n↓. For which it is
enough to have ε ↔

↗log! n↘↑1
log↗log! n↘ log(2!) . Replacing ε in

Equation (4) by this lower bound, we get

A → ω max
L→↓L





1

|L↔|

∑

i:(ti,ri)→L→

∑

h=1,3,5,...,↗log! n↘

!

2h↑1




 (5)

→ 3ω!/2 = 3ω(1 + d(1 + 2g(c+ 1) lnn))/2 .

Thus, it is ε ↗ ”(log n/(log log n↘ log logA)), for c, g and ω
being constants. In order to prove the claim of the Theorem for
SINR model, it is enough to show that if ϑ ↗ o(min{n, d2})
some request is not realized, which can be done exactly the
same as in the proof for the RN model.

IV. BOUNDED-GROWTH METRICS

In this section we study Distributed Link Scheduling in
networks where the interference model is defined by graph
metrics of bounded growth. We consider arbitrary graphs of
ϖ-bounded-growth, for any ϖ ↔ 1 (see Definition 1 below).
Preliminaries. For any graph G = (V,E), where V is the set
of nodes and E is the set of links, let the distance d(u, v)
between a pair of nodes u, v ↗ V be the length in links of a
shortest path between u and v, where d(u, v) = ≃ if u and
v are not connected. Also, for any subset of nodes V ↔

⇐ V
we say that V ↔ is an i-bounded set if, for every pair of nodes
u, v ↗ V ↔, the distance d(u, v) is at most i. Also, for any
subset of nodes V ↔

⇐ V we say that a family of subsets of
nodes V(V ↔) = {Vi|Vi ⇐ V ↔

} covers V ↔ if, for every node
v ↗ V ↔, there exists a set Vi ↗ V(V ↔) such that v ↗ Vi. The
graph G with the distance function induce a metric space; we
focus on the following ϖ-bounded-growth property:

Definition 1. For any ϖ > 1, a network with topology graph

G = (V,E) is said to have ϖ-bounded-growth if the following

holds. For any 2-bounded set V ↔
⇐ V , there exists a set of ϖ

1-bounded sets V(V ↔) = {V1, V2, . . . , Vε} that covers V ↔
.

Notice that the latter definition applies also to directed
graphs, where link directions are ignored for the purpose of
the definition. Also note that, by an inductive argument on i,
we can extend Definition 1 to any i-bounded set as follows.

Corollary 1. For any ϖ > 1 and i > 1, if a network with

topology graph G = (V,E) has ϖ-bounded-growth, then: For

any i-bounded set V ↔↔
⇐ V , there exists a family of ϖi↑1 1-

bounded sets V(V ↔↔) =
{
V1, V2, . . . , Vεi↑1

}
that covers V ↔↔

.

Results in Section IV. In Section IV-A, we present our DLS
algorithm and prove the following.

Theorem 2. DLS is a deterministic distributed algorithm that

solves the Link Scheduling problem in O(Aϖ6 log4 n) rounds,

for any set of requests of maximum average affectance at most

A in any Radio Network model with ϖ-bounded-growth. This

holds even without initial knowledge of the parameters A,ϖ.

Theorem 2, compared with the lower bound for any graph

metric in Theorem 1, ”
(
min

{
n, A

2

log2 n

})
, implies that small

growth of the metric improves the time of DLS.
In Sec. IV-B, we prove that the complexity of DLS depends,

at least linearly, on the metric growth ϖ. This result holds even
if the protocol is adaptive to realization acknowledgments:

Theorem 3. Consider any deterministic adaptive protocol P

solving DLS on a set of n requests in a wireless network

with maximum average affectance A under the RN model

of interference in a graph metric space. Let ϑ = ϑ(n,A)
be the number of rounds required by P in the worst case.

Then, for any ϖ > 1, there exists an adversarial network

with bounded growth ϖ, such that

ϑ ↗ ϱ

(
1 + min


n,min {A,ϖ}

A

log2 n


.

The above also holds in the SINR model of interference with

attenuation ε ↗ ”(log n/(log log n↘log logA)) and ω → 2/3.

A. Upper Bound – DLS Algorithm 1 to Prove Theorem 2

To prove Theorem 2, we design DLS Algorithm 1. We
assume that a node t knows whether it has a request (t, r)
to realize in link {t, r} as a transmitter. We do not assume,
though, that the node knows the bounded growth parame-
ter ϖ or the maximum average affectance A of the set of
links to be realized. A description of our algorithm follows.

Each pending transmitter t (i.e., not yet realized) broadcasts
its request in some odd rounds defined by certain families of
sets, called avoiding selectors. The detailed definition of these
selectors, parameterized by k and x, is given in Definition 2.
The specific way they are interleaved, for parameters k and
x ↔ k (all being powers of 2), is given as a pseudo-code in
Algorithm 1. If the transmitter t receives an acknowledgment
from a receiver r in an even round 2j, right after t broadcasted
the message of a request (t, r) in the preceding odd round
2j↘ 1, then t stops. We will show in the analysis that indeed,
at that point, the request (t, r) has been realized.

A receiver r simply broadcasts an acknowledgement to the
request (t, r), received in an odd round, in the next (even)
round. The acknowledgment is addressed to the corresponding
transmitter t. After that, the receiver stops.

The avoiding-selectors are specified in the next definition.

Proved showing how the selectors used are carefully combined to 
eventually realize all requests. 



Open Directions

More sophisticated local communication, such as multicast? 

Link scheduling with forwarding? (for problems where the order of 
realizations matter) Global point-to-point routing?

More adversarial environment with jamming (some nodes controlled by 
adversary could jam in some limited number of rounds)?

More efficient constructions of the used types of selectors?
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