Sensor Network Gossiping or How to Break the Broadcast Lower Bound

Martín Farach-Colton¹ Miguel A. Mosteiro^{1,2}

¹Department of Computer Science Rutgers University

²LADyR (Distributed Algorithms and Networks Lab) Universidad Rey Juan Carlos

ISAAC 2007

Radio Network = abstraction of a radio communication network

Radio Network = abstraction of a radio communication network

κ nodes

- $k = 1 \rightarrow Broadcast$ [BGT'92.KM'98]
- k = n: $\rightarrow Gossiping$ [CGLP'01,LP'02]
- k arbitrary: $\rightarrow k$ -selection [K'05]

We study

Gossiping in Sensor Networks

Radio Network = abstraction of a radio communication network

k nodes

hold a piece of information to diseminate.

- $k = 1 \rightarrow Broadcast [BGI'92,KM'98]$
- $k = n: \rightarrow Gossiping [CGLP'01,LP'02]$
- k arbitrary: $\rightarrow k$ -selection [K'05]

We study

Gossiping in Sensor Networks

Radio Network = abstraction of a radio communication network

hold a piece of information to diseminate $k = 1 \rightarrow Broadcast \text{ [BGI'92,KM'98]}$ $k = n: \rightarrow Gossiping \text{ [CGLP'01,LP'02]}$ $k \text{ arbitrary: } \rightarrow k\text{-selection [K'05]}$

Gossiping in Sensor Networks

Radio Network = abstraction of a radio communication network

 $$k\ {\rm nodes}$$ hold a piece of information to diseminate.

- $k = 1 \rightarrow Broadcast [BGI'92,KM'98]$
- k = n: $\rightarrow Gossiping [CGLP'01,LP'02]$
- k arbitrary: $\rightarrow k$ -selection [K'05]

Radio Network = abstraction of a radio communication network

\$k\$ nodes hold a piece of information to diseminate.

- $k = 1 \rightarrow Broadcast$ [BGI'92,KM'98]
- k = n: $\rightarrow Gossiping [CGLP'01,LP'02]$
- k arbitrary: $\rightarrow k$ -selection [K'05]

Radio Network = abstraction of a radio communication network

 $$k\ {\rm nodes}$$ hold a piece of information to diseminate.

- $k = 1 \rightarrow Broadcast$ [BGI'92,KM'98]
- $\bullet \ k=n \colon \to \operatorname{Gossiping} \ [\text{CGLP'01,LP'02}]$
- k arbitrary: $\rightarrow k$ -selection [K'05]

Radio Network = abstraction of a radio communication network

\$k\$ nodes hold a piece of information to diseminate.

- $k = 1 \rightarrow Broadcast$ [BGI'92,KM'98]
- $\bullet \ k=n \colon \to \operatorname{Gossiping} \ [\text{CGLP'01,LP'02}]$
- k arbitrary: $\rightarrow k$ -selection [K'05]

Radio Network = abstraction of a radio communication network

\$k\$ nodes hold a piece of information to diseminate.

- $k = 1 \rightarrow Broadcast$ [BGI'92,KM'98]
- k = n: $\rightarrow Gossiping [CGLP'01,LP'02]$
- k arbitrary: $\rightarrow k$ -selection [K'05]

Sensor Node Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Sensor Node Capabilities

- processing
- \bullet sensing
- communication

- range
- memory
- life cycle

Sensor Node Capabilities

- processing
- \bullet sensing
- communication

- range
- memory
- life cycle

Sensor Node Capabilities

- processing
- \bullet sensing
- communication

- range
- memory
- life cycle

Sensor Node Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Sensor Node Capabilities

- processing
- \bullet sensing
- communication

- range
- memory
- life cycle

Related Work

Upper Bounds

• Symmetric Radio Networks:

```
BII'93 O(n \log^2 n) expected (BFS tree).
CGLP'01 same, w.h.p.
```

- Asymmetric connected Radio Networks:
- CGR'01 $O(n \log^3 n \log(n/\epsilon))$ with prob 1ϵ and $O(n \log^4 n)$ expected (limited broadcast doubles message copies per phase).
 - LP'02 same, reduced by a log factor (limited broadcast is randomized).
 - CR'03 $O(n \log^2 n)$ w.h.p. (linear randomized broadcast by special distribution).
- CGR'00 $O(n^{3/2} \log^2 n)$ (deterministic, selecting sequences).
 - ALL: globally synchronous, and $\Omega(nm)$ memory size, all but first: $\Omega(nm)$ message size.
 - Sensor Networks
 - R'07 $O(\sqrt{n} \log n)$ w.h.p. in RGGs (claimed optimal using KM's lower bound, but includes pre-coloring).

Related Work

• Gossiping:

- CGLP'01 deterministic oblivious (no history): $\geq n^2/2 n/2 + 1$ fair (same p_{trans}) protocols: $\forall n \leq q \leq n^2/2$, \exists asymmetric network s.t. $\Omega(q)$ expected.
 - GP'02 $\Omega(n^2)$ asymmetric networks $\Omega(n \log n)$ symmetric networks not embeddable in GG.
 - Broadcast (no preprocessing):
 - BDP'97 $\Omega(D \log n)$ globally synchronous, nodes know message history.
 - CMS'01 $\Omega(n \log D)$ symmetric networks, nodes are not synchronized.
 - KP'04 $\Omega(n^{1/4})$, diameter 4.
 - KM'98 $\Omega(D \log(n/D))$ expected (best, more on this...)

Related Work Broadcast Lower Bound

[KM'98] proved $\Omega(D\log(n/D))$ expected, showing a layered structure

Crucial assumption:

"...any other processor is inactive"

"until receiving a message for the first time."

Crucial in proof

all layer nodes run same uniform protocol,

upon receiving the broadcast message.

Related Work Broadcast Lower Bound

[KM'98] proved $\Omega(D\log(n/D))$ expected, showing a layered structure

Crucial assumption:

"...any other processor is inactive"

"until receiving a message for t

"until receiving a message for the first time."

Crucial in proof

all layer nodes run same uniform protocol,

Related Work Broadcast Lower Bound

[KM'98] proved $\Omega(D \log(n/D))$ expected, showing a layered structure

Crucial assumption:

"...any other processor is inactive"

"until receiving a message for the first time."

Crucial in proof:

all layer nodes run same uniform protocol, upon receiving the broadcast message.

Node Constraints Model

Sensor Networks

THE WEAK SENSOR MODEL [BGI 92, FCFM 05]

- Local Synchronism.
- Adversarial wake-up schedule.
- Low-info channel contention:
 - Radio TX on a shared Channel.
 - NO COLLISION DETECTION.
 - Non-simultaneous RX and TX.

- Constant memory size.
- Limited life cycle.
- SHORT TRANSMISSION RANGE.
- Discrete TX power range.
- One channel of communication.
- No position information.
- Unreliability.

tx = transmission.rx = reception.

Node Constraints Model

Sensor Networks

THE WEAK SENSOR MODEL [BGI 92, FCFM 05]

- Local Synchronism.
- Adversarial wake-up schedule.
- Low-info channel contention:
 - Radio TX on a shared channel.
 - No collision detection.
 - Non-simultaneous RX and TX.

- Constant memory size.
- Limited life cycle.
- SHORT TRANSMISSION RANGE.
- Discrete TX Power range.
- One channel of communication.
- No position information.
- Unreliability.

tx = transmission.rx = reception.

Our Results

Sensor Network:

- \bullet n nodes
- ullet range of transmission r
- diameter D
- ullet max degree Δ
- nodes only know n.
- \bullet all nodes hold message of size m to disseminate.
- \bullet O(nm) message and memory size.

Gossiping algorithm:

- $O(\Delta + D)$ w.h.p. relaxed-WSM-compatible
- $\Omega(D)$ and $\Omega(\Delta)$ are lower bounds \Rightarrow optimal.

Observations:

- time improvement with no global synchronism (exploits geometry)
- classical broadcast lower bound of KM can be broken (by pre-processing)

Our Results

Sensor Network:

- \bullet n nodes
- ullet range of transmission r
- \bullet diameter D
- ullet max degree Δ
- nodes only know n.
- \bullet all nodes hold message of size m to disseminate.
- O(nm) message and memory size.

Gossiping algorithm:

- $O(\Delta + D)$ w.h.p. relaxed-WSM-compatible
- $\Omega(D)$ and $\Omega(\Delta)$ are lower bounds \Rightarrow optimal.

Observations:

- time improvement with no global synchronism (exploits geometry)
- classical broadcast lower bound of KM can be broken (by pre-processing)

Our Results

Sensor Network:

- \bullet n nodes
- \bullet range of transmission r
- \bullet diameter D
- ullet max degree Δ
- nodes only know n.
- \bullet all nodes hold message of size m to disseminate.
- \bullet O(nm) message and memory size.

Gossiping algorithm:

- $O(\Delta + D)$ w.h.p. relaxed-WSM-compatible
- $\Omega(D)$ and $\Omega(\Delta)$ are lower bounds \Rightarrow optimal.

Observations:

- time improvement with no global synchronism (exploits geometry)
- classical broadcast lower bound of KM can be broken (by pre-processing)

- Partition nodes in masters and slaves
 - every slave is at $d \leq ar$ from some master (0 < a < 1/3)
 - every pair of masters are at d > ar
 - $\rightarrow MIS(ar)$
- Every master reserves blocks of time steps for local use
 - master and slaves communicate without collisions within
 - \rightarrow Coloring(r), using counter (achives local synch. and coll. detection

- Partition nodes in masters and slaves
 - every slave is at $d \leq ar$ from some master (0 < a < 1/3)
 - every pair of masters are at d > ar
 - $\rightarrow MIS(ar)$
- Every master reserves blocks of time steps for local use
 - master and slaves communicate without collisions within
 - \rightarrow Coloring(r), using counter (achives local synch. and coll. detection

- Partition nodes in masters and slaves
 - every slave is at $d \leq ar$ from some master (0 < a < 1/3)
 - every pair of masters are at d > ar
 - $\rightarrow MIS(ar)$
- Every master reserves blocks of time steps for local use
 - \bullet master and slaves communicate without collisions within r
 - \rightarrow Coloring(r), using counter (achives local synch. and coll. detection)

- Partition nodes in masters and slaves
 - every slave is at $d \leq ar$ from some master (0 < a < 1/3)
 - every pair of masters are at d > ar
 - $\rightarrow MIS(ar)$
- Every master reserves blocks of time steps for local use
 - \bullet master and slaves communicate without collisions within r
 - \rightarrow Coloring(r), using counter (achives local synch. and coll. detection)

- Partition nodes in masters and slaves
 - every slave is at $d \leq ar$ from some master (0 < a < 1/3)
 - every pair of masters are at d > ar
 - $\rightarrow MIS(ar)$
- Every master reserves blocks of time steps for local use
 - master and slaves communicate without collisions within r
 - \rightarrow Coloring(r), using counter (achives local synch. and coll. detection)
- Every master maintains set of messages received
 - initially set contains own message only
 - slaves pass message to master (using reserved blocks and radius ar)
 - master adds messages to set
 - \rightarrow window back-on/back-off + $O(\log^2 n)$ times $p_{trans} = 1/\log n$
- Every master disseminates local set (using reserved blocks)
 - masters deterministically pass set to neighboring masters (radius r)
 masters add messages received from other masters to local set
 → flooding among masters

- Partition nodes in masters and slaves
 - every slave is at $d \leq ar$ from some master (0 < a < 1/3)
 - every pair of masters are at d > ar
 - $\rightarrow MIS(ar)$
- Every master reserves blocks of time steps for local use
 - master and slaves communicate without collisions within r
 - \rightarrow Coloring(r), using counter (achives local synch. and coll. detection)
- Every master maintains set of messages received
 - initially set contains own message only
 - slaves pass message to master (using reserved blocks and radius ar)
 - master adds messages to set
 - \rightarrow window back-on/back-off + $O(\log^2 n)$ times $p_{trans} = 1/\log n$
- Every master disseminates local set (using reserved blocks)
 - masters deterministically pass set to neighboring masters (radius r)
 masters add messages received from other masters to local set
 flooding among masters

- Partition nodes in masters and slaves
 - every slave is at $d \le ar$ from some master (0 < a < 1/3)
 - every pair of masters are at d > ar
 - $\rightarrow MIS(ar)$
- Every master reserves blocks of time steps for local use
 - master and slaves communicate without collisions within r
 - \rightarrow Coloring(r), using counter (achives local synch. and coll. detection)
- Every master maintains set of messages received
 - initially set contains own message only
 - slaves pass message to master (using reserved blocks and radius ar)
 - master adds messages to set
 - \rightarrow window back-on/back-off + $O(\log^2 n)$ times $p_{trans} = 1/\log n$
- Every master disseminates local set (using reserved blocks)
 - \bullet masters deterministically pass set to neighboring masters (radius r)
 - masters add messages received from other masters to local set
 - → flooding among masters

- Partition nodes in masters and slaves
 - every slave is at $d \le ar$ from some master (0 < a < 1/3)
 - every pair of masters are at d > ar
 - $\rightarrow MIS(ar)$
- Every master reserves blocks of time steps for local use
 - master and slaves communicate without collisions within r
 - \rightarrow Coloring(r), using counter (achives local synch. and coll. detection)
- Every master maintains set of messages received
 - initially set contains own message only
 - slaves pass message to master (using reserved blocks and radius ar)
 - master adds messages to set
 - \rightarrow window back-on/back-off + $O(\log^2 n)$ times $p_{trans} = 1/\log n$
- Every master disseminates local set (using reserved blocks)
 - masters deterministically pass set to neighboring masters (radius r)
 - masters add messages received from other masters to local set
 - \rightarrow flooding among masters

Assume phase synchronism

- ② Partition nodes in masters and slaves \Rightarrow MIS $\rightarrow O(\log^2 n)$
- ② Every master reserves blocks of time steps for local use \Rightarrow Coloring $\rightarrow O(\log n)$
- ② Every master maintains set of messages received ⇒ window back-on/back-off → $O(\Delta + \log^2 n \log \Delta)$
- Every master disseminates local set \Rightarrow flooding among masters $\rightarrow O(D)$

Overall

$$O(\log^2 n + \log n + \Delta + \log^2 n \log \Delta + D) \in O(\Delta + D)$$

Time efficiency

Assume phase synchronism

- Partition nodes in masters and slaves ⇒ MIS $\rightarrow O(\log^2 n)$
- ② Every master reserves blocks of time steps for local use \Rightarrow Coloring $\rightarrow O(\log n)$
- ① Every master disseminates local set \Rightarrow flooding among masters $\rightarrow O(D)$

Overall

$$O(\log^2 n + \log n + \Delta + \log^2 n \log \Delta + D) \in O(\Delta + D)$$

Time emclency

Assume phase synchronism

- Partition nodes in masters and slaves \Rightarrow MIS $\rightarrow O(\log^2 n)$
- **②** Every master reserves blocks of time steps for local use \Rightarrow Coloring $\rightarrow O(\log n)$
- Severy master maintains set of messages received \Rightarrow window back-on/back-off $\rightarrow O(\Delta + \log^2 n \log \Delta)$
- ① Every master disseminates local set \Rightarrow flooding among masters $\rightarrow O(D)$

Overall

$$O(\log^2 n + \log n + \Delta + \log^2 n \log \Delta + D) \in O(\Delta + D)$$

Assume phase synchronism

- Partition nodes in masters and slaves ⇒ MIS $\rightarrow O(\log^2 n)$
- **②** Every master reserves blocks of time steps for local use \Rightarrow Coloring $\rightarrow O(\log n)$
- **③** Every master maintains set of messages received ⇒ window back-on/back-off $\rightarrow O(\Delta + \log^2 n \log \Delta)$
- Every master disseminates local set \Rightarrow flooding among masters $\rightarrow O(D)$

Overall

$$O(\log^2 n + \log n + \Delta + \log^2 n \log \Delta + D) \in O(\Delta + D)$$

Assume phase synchronism

- Partition nodes in masters and slaves ⇒ MIS $\rightarrow O(\log^2 n)$
- **②** Every master reserves blocks of time steps for local use \Rightarrow Coloring $\rightarrow O(\log n)$
- **③** Every master maintains set of messages received ⇒ window back-on/back-off $\rightarrow O(\Delta + \log^2 n \log \Delta)$
- Every master disseminates local set \Rightarrow flooding among masters $\rightarrow O(D)$

Overall:

$$O(\log^2 n + \log n + \Delta + \log^2 n \log \Delta + D) \in O(\Delta + D)$$

Assume phase synchronism

- Partition nodes in masters and slaves \Rightarrow MIS $\rightarrow O(\log^2 n)$
- **②** Every master reserves blocks of time steps for local use \Rightarrow Coloring $\rightarrow O(\log n)$
- **③** Every master maintains set of messages received ⇒ window back-on/back-off $\rightarrow O(\Delta + \log^2 n \log \Delta)$
- Every master disseminates local set \Rightarrow flooding among masters $\rightarrow O(D)$

Overall:

$$O(\log^2 n + \log n + \Delta + \log^2 n \log \Delta + D) \in O(\Delta + D)$$

Thank you