

Deterministic Local Problems in Radio Networks: On the Impact of Local Domination and a Bit of Advice

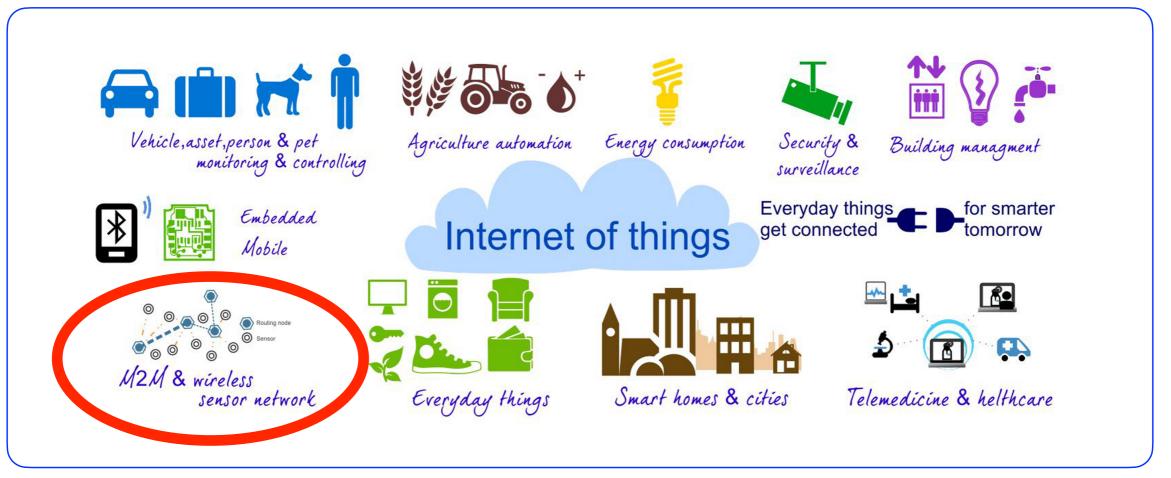
Miguel A. Mosteiro Pace University

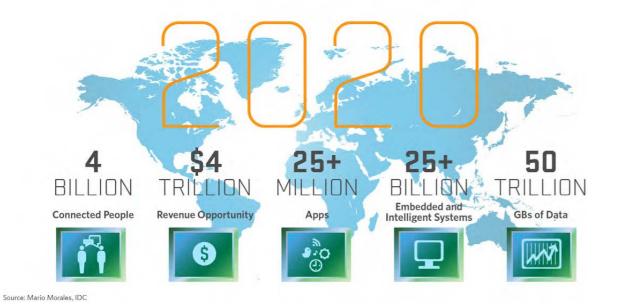
Paweł Garncarek Univ. of Wrocław

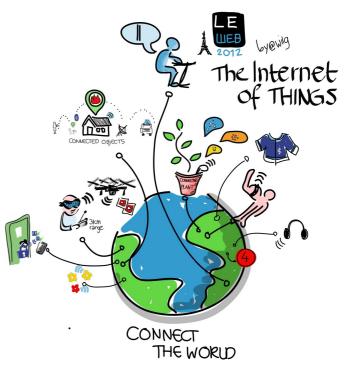
Tomasz Jurdzinski Univ. of Wrocław

Dariusz Kowalski Augusta University

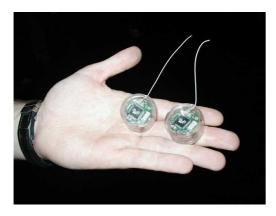
Shay Kutten Technion







Example: A Sensor Network



 $Intel\ Berkeley\ Research\ Lab$

Capabilities

- processing
- sensing
- communication

Limitations

- range
- memory
- life cycle

Example: A Sensor Network

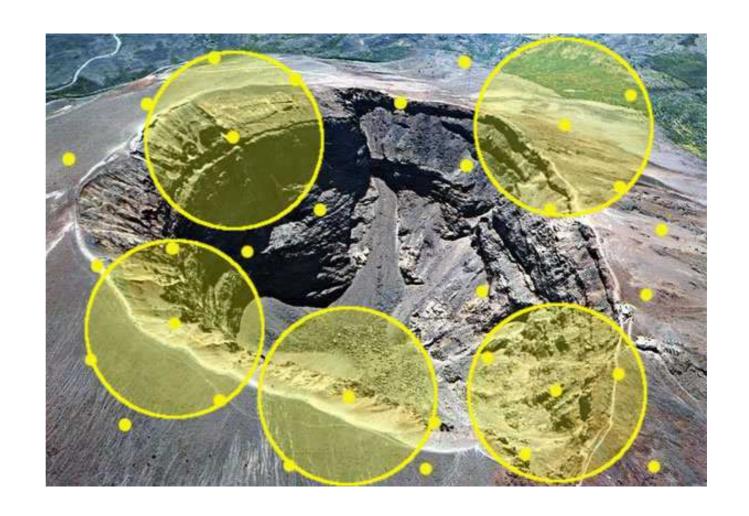
 $Intel\ Berkeley\ Research\ Lab$

Capabilities

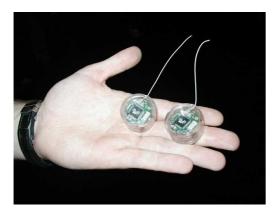
- processing
- sensing
- communication

Limitations

- range
- memory
- life cycle



Example: A Sensor Network



Intel Berkeley Research Lab

Capabilities

- processing
- sensing
- communication

Limitations

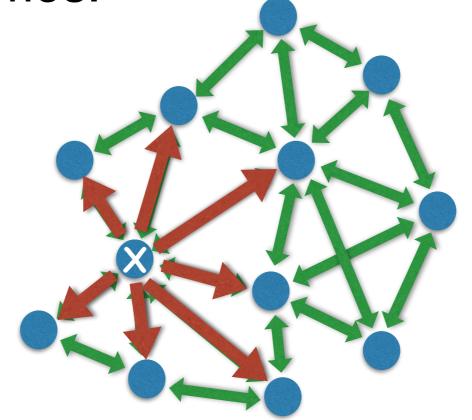
- range
- memory
- life cycle

Local Broadcast Problem

Definition:

Every node that holds a message has to deliver it to all its neighbors, possibly at different times.

Fundamental primitive for more complex communication problems



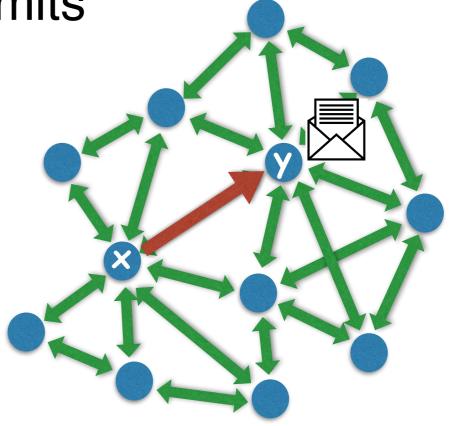
Radio Network Interference Model

Successful transmission:

y receives from x if

no other neighbor of y transmits

y is not transmitting



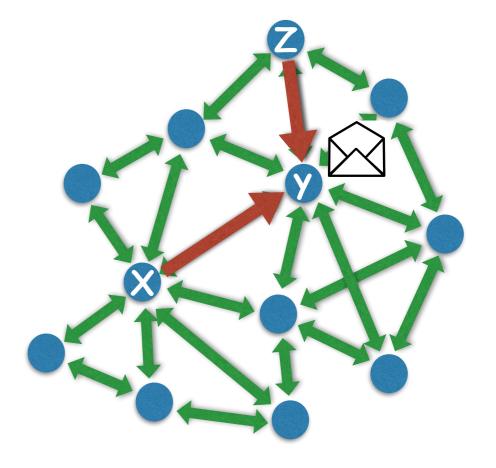
^[1] Chlamtac and Kutten. Trans. on Computers. IEEE, 1987.

Radio Network Interference Model

Collision:

If x and z transmit at the same time

y receives nothing



We need algorithms to schedule the transmissions!

Other definitions

- Time is slotted in rounds of communication
- Δ : max # of neighbors
- γ_2 : min (max # of dominators within 2 hops)
- Nodes do not know topology, only Δ , γ_2 and n
- Deterministic algorithms (no coin tossing)
- Distributed algorithms

We measure performance in rounds, as a function of Δ , γ_2 and n.

Protocols Studied

- Oblivious ...
- Quasi-adaptive ...
- Adaptive ...

Transmit or not

Round	1	2	3	4	5	6	7	
v_1	0	1	0	1	1	1	0	
v_2	1	1	0	0	1	0	1	
v_3	0	0	1	0	1	1	1	
v_4	0	1	0	1	0	0	0	
v_n	1	1	0	1	0	1	1	

Protocols with Advice

Nodes do not know the topology

What if they have some "advice"? (know something but only local)

We present 3 algorithms trading adaptiveness for bits of advice.

All 3 algorithms run in $\tilde{O}(\Delta \gamma_2^2)$ rounds.

Plato and Aristotle knew better.

Oblivious Protocol with $O(\log(\Delta\gamma_2))$ Bits of Advice

Uses combinatorial structure called Strong Selectors

T	rar	nsmit	
	or	not	

Round	1	2	3	4	5	6	7	
v_1	0	1	0	1	1	1	0	
v_2	- 1	1	0	0	1	0	1	
v_3	0	0	1	0	1	1	1	
v_4	0	1	0	1	0	0	0	
v_n	1	1	0	1	0	1	1	

Can be seen as OBLIVIOUS Transmission Schedules

For any subset $S \subseteq V$, for every $v \in S$, exists some round that "selects" v.

^[1] Erdos, Frankl, and Furedi. Israel J. Math, 1985.

^[2] Kautz and Singleton. Trans. Inf. Thy., 1964.

Oblivious Protocol with $O(\log(\Delta\gamma_2))$ Bits of Advice

- Consider a dominating set DS that minimizes γ_2 ,
- _ a 4-distance coloring of DS of $O(\gamma_2^2)$ colors, and
- a labeling of dominated nodes wrt their dominators

The color corresponds to phases, and each phase to one selector. The color of w=dominator(v) indicates that this is the phase when v is active and should transmit.

```
Algorithm 1 LB_LAd- Local Broadcast algorithm with O(\log(\Delta \gamma_2)) Advice for a node v
```

```
1: Let \mathcal{F} = \{S_1, \ldots, S_\ell\} be the fixed (shared between all nodes) (\gamma_2^2, \gamma_2)-strong selector,
   where \ell = |\mathcal{F}|
 2: Receive (from oracle) color c of DS node w in some distance 4 coloring, that v will be
    assigned to
 3: Receive from the oracle the number x assigned to v
 4: for phase = 1, \ldots, \ell do
       for round = 1, \dots, \Delta + 1 do
 5:
           if w \in S_{phase} and round = x then
 6:
               Transmit the message, ID of v and the color of w
 7:
           else
 8:
               Remain silent
 9:
           end if
10:
       end for
11:
12: end for
```

Quasi-adaptive Protocol with $O(\log(\gamma_2))$ Bits of Advice

Uses combinatorial structure called Avoiding Selectors

Round	1	2	3	4	5	6	7	
v_1	0	1	0	1	1	1	0	
v_2	1	1	0	0	1	0	1	
v_3	0	0	1	0	1	1	1	
v_4	0	1	0	1	0	0	0	
v_n	1	1	0	1	0	1	1	

Nodes can stop after local task is completed.

For any subset of nodes ...
"selects" some elements while avoiding others.

^[1] De Bonis, Gasieniec and Vaccaro. Siam J. Comp. 2005.

^[2] Chlebus and Kowalski. FCT 2005.

^[3] Indyk. SODA 2002.

Quasi-adaptive Protocol with $O(\log(\gamma_2))$ Bits of Advice

- Consider a dominating set DS that minimizes γ_2 , and
- a 4-distance coloring of DS of $O(\gamma_2^2)$ colors (no labeling).

```
Algorithm 2 LB_quasi – Local Broadcast algorithm with O(\log \gamma_2) Advice for a node v
```

```
1: Let \mathcal{F}_i = \{S_1^{(i)}, \dots, S_{\ell_i}^{(i)}\} be a fixed (shared between all nodes) (n, \Delta/2^{i-1}, \Delta/2^i)-avoiding
    selector, where \ell_i = |\mathcal{F}_i|, for i = 0, 1, \dots, \log \Delta.
 2: Receive from the oracle the color col(v) = c of DS node w such that v is assigned to w
 3: for phase = 1, ..., \log \Delta do
        for stage = 1, \dots, \ell_{phase} do
            for block = 1, ..., \gamma_2^2 + 1 do
 5:
                Round 1:
 6:
                if v \in S_{stage}^{(phase)} and col(v) = block and v \notin DS then
 7:
                    Transmit the message and the ID of v
 8:
                else
 9:
                    Remain silent
10:
                end if
11:
                Round 2:
12:
13:
                if col(v) = block and v \in DS then
                    if v received a message in the previous round then
14:
                        send the received message back
15:
                    else
16:
                        Send a dummy message
17:
                    end if
18:
                end if
19:
                if v sent a message in Round 1 and received it back in Round 2 then
20:
                    v switches off
21:
                end if
22:
23:
            end for
        end for
24:
25: end for
```

Thanks to avoiding selectors, no need for round robin (no labeling)

Thanks to acknowledgments, nodes switch off after all neighbors received.

Adaptive Protocol with 1 Bit of Advice

– Consider a dominating set DS that minimizes γ_2 (no labeling, no coloring).

Preprocessing for node ν :

- -receive 1 bit of advice indicating whether ν belongs to DS or not
- compute assignment of dominators
- compute labeling (constant adaptivity)
- Algorithm 5 Local broadcast after assignment of DS nodes and numbering Algorithm for node v

```
1: Let \mathcal{F} = \{S_1, \dots, S_\ell\} be the fixed shared (n, \gamma_2)-strong selector, where \ell = |\mathcal{F}|

2: for i = 1, \dots, \ell do

3: for j = 1, \dots, \Delta + 1 do

4: DS_v \leftarrow \text{the } DS \text{ node assigned to } v

5: if DS_v \in \mathcal{F}_i and the local number of v is equal to j then

6: v transmits

7: end if

8: end for

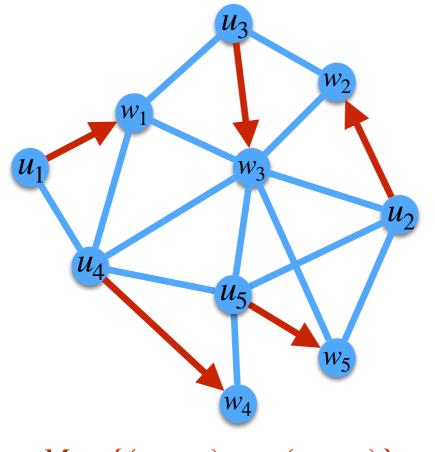
9: end for
```

The Directed-matching Hitting Game

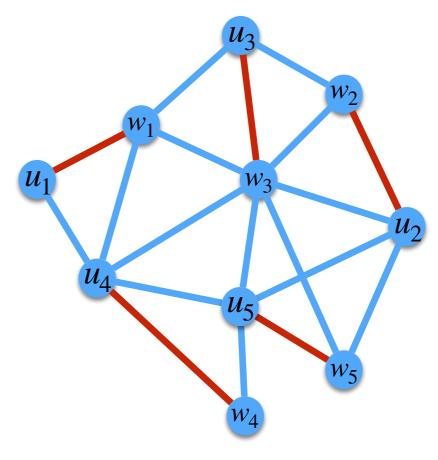
Technical tool to prove our lower bound.

Definitions:

• A set of ordered pairs $M=\{(u_1,w_1),(u_2,w_2),\ldots\}$ is a <u>directed matching</u> on G=(V,E) if the set of edges $M'=\{\{u_1,w_1\},\{u_2,w_2\},\ldots\}$ is a matching on G.



$$M = \{(u_1, w_1), ..., (u_5, w_5)\}$$



$$M' = \{\{u_1, w_1\}, ..., \{u_5, w_5\}\}$$

The Directed-matching Hitting Game

Technical tool to prove our lower bound.

Definitions:

- Any subset of nodes $\{u_i \mid (u_i, w_i) \in M\}$ is called a *query*.
- A sequence of queries $\langle Q_1, Q_2, ... \rangle$ is called a *protocol*.

Indicates						
u_1	\in	Q_6				

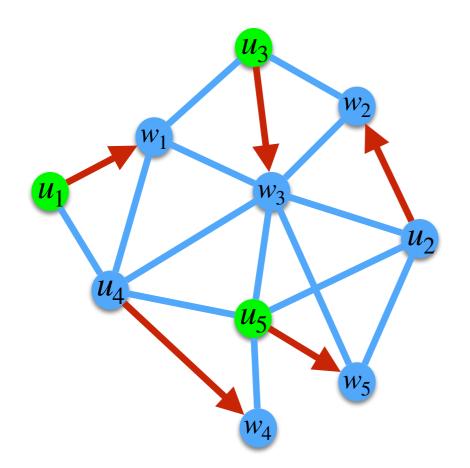
Round	1	2	3	4	5	6	/7	
u_1	0	1	0	1	1	1	0	
u_2	1	1	0	0	1	0	1	
u_3	0	0	1	0	1	1	1	
u_4	0	1	0	1	0	0	0	
$u_{n/2}$	1	1	0	1	0	1	1	

The Directed-matching Hitting Game

Technical tool to prove our lower bound.

Definitions:

• A query $Q \subseteq V$ hits the ordered pair $(u, w) \in M$ iff $u \in Q$ and for all other $v \in Q$ it is $\{v, w\} \notin E$.



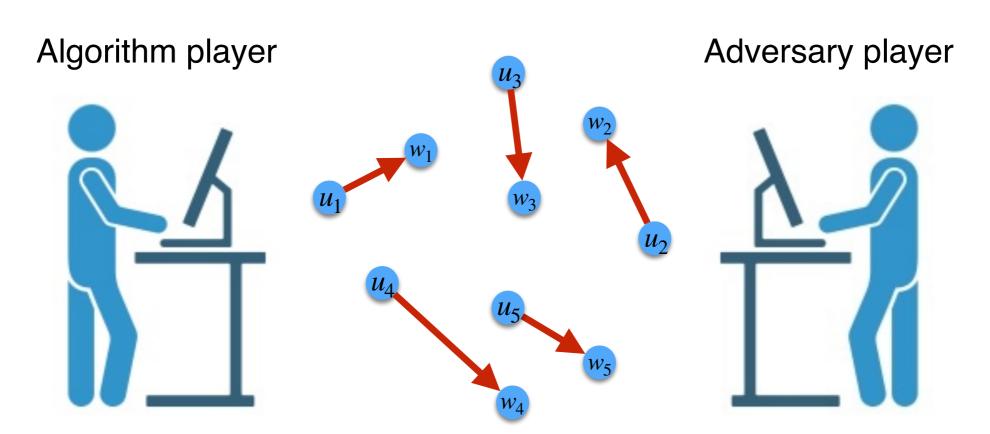
$$Q = \{u_1, u_3, u_5\}$$
 hits (u_5, w_5)

Same as successful transmission in RNs!

The Directed-matching Hitting Game

Parameters: number of nodes n, max degree Δ , and 2-local domination γ_2 .

Initialization



Chooses a protocol (sequence of queries) $\langle Q_1, Q_2, ... \rangle$

Objective: minimize rounds to hit all pairs.

Chooses directed matching $M = \{(u_1, w_1), (u_2, w_2), ..., (u_{n/2}, w_{n/2})\}$

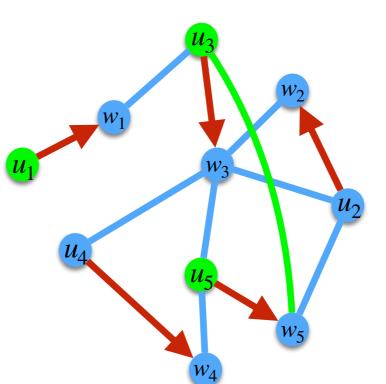
Objective: maximize rounds to hit all pairs.

The Directed-matching Hitting Game

Parameters: number of nodes n, max degree Δ , and 2-local domination γ_2 .

For each round r

 $\{u_1, u_3, u_5\}$ Algorithm player



Adversary player

 $\{\{u_3, w_5\}\}$

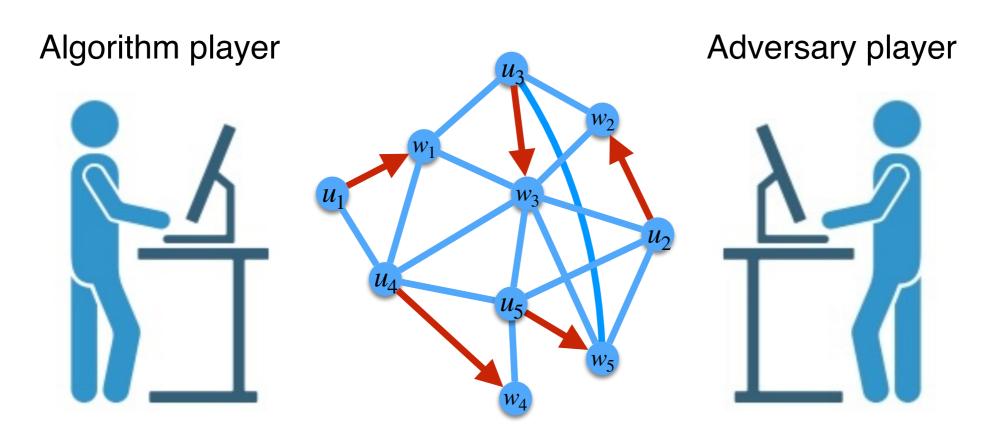
Announces query $Q_r \backslash H_r$ where $H_r = \{u_i \in Q_r | (u_i, w_i) \text{ hit before} \}$

Adds to the graph edges (u_i, w_j) such that $u_i \notin H_r$, restricted to Δ and γ_2 .

The Directed-matching Hitting Game

Parameters: number of nodes n, max degree Δ , and 2-local domination γ_2 .

Ending conditions



Game ends at round τ if every edge of the directed matching M has been hit by queries $\langle Q_1, Q_2, ..., Q_{\tau} \rangle$.

The Directed-matching Hitting Game

▶ **Theorem 16.** Consider a directed-matching hitting game with parameters $\gamma_2 > 1$, $\Delta > 1$ and $n \geq 3$. For each algorithm player \mathcal{P}_A , there exists an adversary player \mathcal{P}_B such that the number of rounds τ needed to finish the game is $\tau \in \Omega\left(\min\left\{\left(\frac{\min\{\Delta,\gamma_2\}}{\log n}\right)^2,n\right\}\right)$.

Proof sketch: we show

- an adversary strategy that prevents some hits,
- that such strategy fulfills the restrictions of the game,
- that within the claimed time bound only a fraction of the matching is hit, all with positive probability \Rightarrow by the probabilistic method the claim follows.

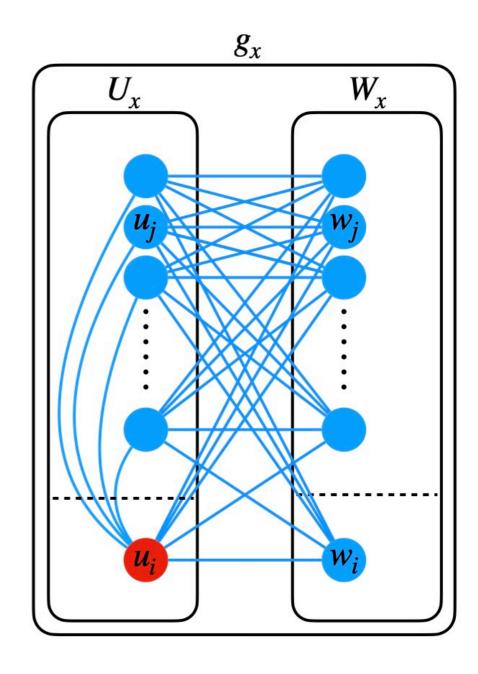
Let's look at the adversary strategy...

The Directed-matching Hitting Game

Adversary strategy:

- Initially:
 - partition at random the matching in subsets called "gadgets".
 - add edges to each gadget to make it bipartite complete.
 - add edges to each gadget so that a chosen node dominates the gadget.

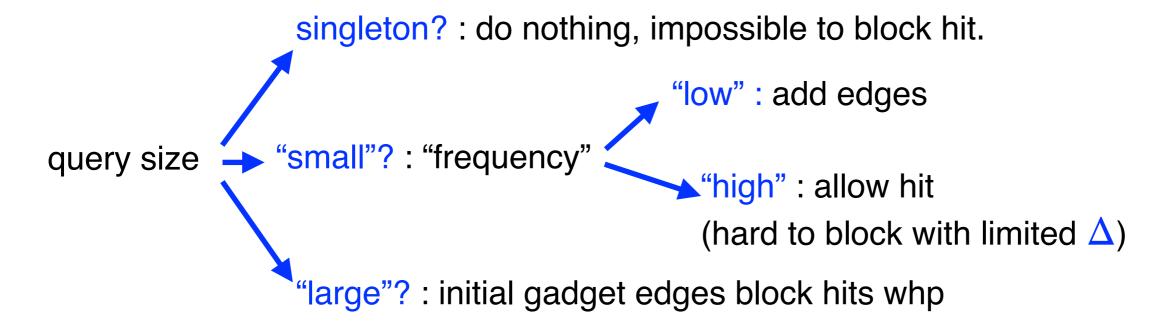
These edges will make large queries of the algorithm ineffective for hitting because, being the query large, the likelihood of having a hit will be low.



The Directed-matching Hitting Game

Adversary strategy:

- For each round:



```
 \begin{array}{l} \operatorname{small / large}: \, \lessgtr \sigma = 1 + \frac{c_1 n \log n}{\min\{\Delta/2, \gamma_2 - 1\}} \\ \text{frequency}: \# \text{ of occurrences in small queries so far.} \\ \log / \text{ high}: \, \lessgtr \min\{\Delta/2, \gamma_2 - 1\} \\ \end{array}
```

▶ **Theorem 17.** Consider any deterministic quasi-adaptive protocol \mathcal{P} that solves Local Broadcast in the RN model. Let τ be the number of rounds needed by \mathcal{P} in the worst case. Then, for each \mathcal{P} , there exists an adversarial input network with set V of n nodes, 2-local domination number at most γ_2 , and maximum degree Δ such that $\tau \in \Omega\left(\min\left\{\left(\frac{\min\{\Delta,\gamma_2\}}{\log n}\right)^2,n\right\}\right)$.

Proof sketch:

- For contradiction we assume that there exists such protocol P that completes Local Broadcast in less time.
- We show that then we can use P as the algorithm player in the Hitting Game, and use the network built by the adversary as input of Local Broadcast reaching a contradiction with Theorem 16.

Conclusion

Section # or reference	Communication rounds	Protocol class	Bits of advice
[8]:Thm 13	$O(\Delta^2 \min\{\log n, \log_{\Delta}^2 n\})$	oblivious, $\gamma_2 \geq 1$	none
[12]:Thm 1.6	$\Omega(\min\{\Delta^2 \log_\Delta n, n\})$	oblivious, $\gamma_2 \geq 1$	none
3.2	$O(\Delta\gamma_2^2\log\gamma_2)$	oblivious	$O(\log(\Delta\gamma_2))$
3.3	$O(\Delta \gamma_2^2 \log n)$	quasi-adaptive	$O(\log \gamma_2)$
4.2	$\Omega\left(\min\left\{\left(\frac{\min\{\Delta,\gamma_2\}}{\log n}\right)^2,n\right\}\right)$	quasi-adaptive	none
3.4	$O(\Delta \gamma_2^2 \log^2 n)$	adaptive	1
[14]:Cor 11	$\Omega(\Delta \log n)$	any, $\gamma_2 \geq 1$	none

Open Directions

What is the inherent complexity of other local tasks?

Which global tasks can be performed without using Local Broadcast as a primitive, and thus, possibly have even a lower complexity?

Can one derive better algorithms for the case that only some x < n nodes wish to locally broadcast? Must x be known to help?

We provided three points in the trade-off between adaptivity and advice. What is the complete trade-off?

Thank you!

mmosteiro@pace.edu