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Models for Wireless Networks
• Topology Models :


– Undirected Graph

– Unit Disk Graph

– Time-varying Graph


• Node Capabilities Models :

– Computational Resources

– Communication Capabilities

– Weak Sensor Model


• Interference Models : 

– Radio Network (RN)

– Signal to Interference plus Noise Ratio (SINR)

– Affectance (AFF)



Affectance Model [1,2,3]:


 

function quantifying interference of communication through link 

 on communication through link .


• Collision/success: 


For any link , 


a transmission from  is received by  at time  

if and only if 


»  transmits at time  and 


» 


 : set of links whose transmitters transmit at time 


a((u, v), (x, y))

(u, v) (x, y)

(x, y)
x y t

x t

∑
(u,v)∈L(t)

a((u, v), (x, y)) < 1

L(t) ⊆ E t

[1] Halldórsson and Wattenhofer. ICALP 2009. 
[3] Fanghänel, Kesselheim and Vöcking. ICALP 2009. 
[3] Kesselheim and Vöcking. DISC 2010. 
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Link Scheduling Problem
• Scenario :

–  network nodes called senders


–  network nodes called receivers

– each sender holds a message to be delivered to some receiver

– each (sender,receiver,message) called a request

– successful delivery of a message called a realization of the request

n
n



Link Scheduling Problem
• Scenario :

–  network nodes called senders


–  network nodes called receivers

– each sender holds a message to be delivered to some receiver

– each (sender,receiver,message) called a request

– successful delivery of a message called a realization of the request

n
n

• Conditions :

– realization implemented through wireless communication


 affectance among concurrent attempts of realization


 concurrent attempts may fail

– unique node ID’s, unknown to other nodes 

– time slotted in rounds of communication

⇒
⇒

• Goal :

– realize all requests



Link Scheduling Problem
• Input :

– set  of  requestsL n

• Output :

– transmissions schedule to realize all requests under arbitrary affectance



Link Scheduling Problem
• Input :

– set  of  requestsL n

• Output :

– transmissions schedule to realize all requests under arbitrary affectance

…

e.g. realization attempts (transmissions) in round  :t



Link Scheduling Problem
• Input :

– set  of  requestsL n

• Output :

– transmissions schedule to realize all requests under arbitrary affectance

affectance

…

e.g. realization attempts (transmissions) in round  :t



Protocols Studied
• Algorithms :

– distributed: each (sender,receiver) run their own algorithm, no 

centralized entity, ignoring messages from any other nodes

– non-adaptive, except for switching off after realization. That is, requests 

are not aware of other realizations, and there are no control messages 
other than acknowledgements (to the transmitter only).


– deterministic and randomized

• Information available :

– each node knows only  and its own ID 
n



Protocols Studied

• Performance metrics :

– length of schedule: number of rounds to realize all requests

– per request min-entropy . That is, the number of bits needed by the 

random variables used by the local algorithm used by each request.


both given as functions of  and the maximum average affectance [1]:n

A(L) = max
L′￼⊆L

1
|L′￼| ∑

(u,v)∈L′￼
∑

(x,y)∈L′￼

a((u, v), (x, y))

[1] Kesselheim and Vöcking. DISC 2010. 
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PREVIOUS BOUNDS FOR LINK SCHEDULING UNDER LESS GENERAL MODELS OF INTERFERENCE.

⌧ = 2 +max

⇢
2,
⇣
263� ↵�1

↵�2

⌘1/↵�
;

MEASURE OF INTERFERENCE I(L) = maxw2V
P

(u,v)2L min{1, d(u, v)↵/d(u,w)↵};
A(L, p) IS A(L) FOR SINR WITH POWER ASSIGNMENT p;

MONOTONIC POWER ASSIGNMENT: (1) d(`)  d(`0) ) p(`)  p(`0) AND p(`)
d(`)↵ � p(`0)
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d(`)↵ � 2�N .
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W = 2�A(L) with � > 1 the following holds. (Notice that
↵-selectable requests become realized requests for ↵ = 1.)

E(ni+1|ni = x)  (1� qi)x ,

where qi =
1

2

✓
1� A(Li)

�A(L)

◆
.

Then, it is

E(ni+1) 
nX

x=0

Pr(ni = x)(1� qi)x

 (1� qi)
nX

x=0

Pr(ni = x)x

 (1� qi)E(ni) . (1)

Applying repeatedly the latter inequality starting with n1 =
n we have that after k windows it is

E(nk+1)  n

kY

j=1

(1� qi)  (1� q1)
k
n 

✓
� + 1

2�

◆k

n .

Using Markov inequality,

Pr(nk+1 � 1)  E(nk+1) 
✓
� + 1

2�

◆k

n .

Thus, to obtain a high probability bound, it is enough to
have a number of windows k such that

✓
� + 1

2�

◆k

n  1

n�
, for some � > 0

k � (1 + �) log n

log(2�/(� + 1))
.

Therefore, the total number of rounds needed is

kW =
(1 + �) log n

log(2�/(� + 1))
·W .

Given that each sender makes only one uniform random
choice per window of length W , the min-entropy per request
is logW per window. That is,

(1 + �) log n

log(2�/(� + 1))
logW .

Hence, the claim follows.

K-V closest work, 
for SINR acks



Contribution
• We study Distributed Wireless Link Scheduling (DWLS) 

protocols that run under arbitrary interference.

• We present a novel combinatorial structure of polynomial 

size that guarantees that every request is realized.  

• We present 3 DWLS protocols that trade schedule length 

for min-entropy.

• We present an affectance characteristic that takes into 

account acknowledgments’ implementation. 



Our Results

Schedule length Min-entropy 
per request

Deterministic

Randomized

Parameterized

O(min{𝔸2 log3 n, n}) 0

O(min{(𝔸2/W )log3 n, n})

O(𝔸 log n) O(log 𝔸 log n)

O(log W log n)

: set of reversed requests

W ≤ 𝔸
𝔸 = A(L) + A(L*)
L*

Matches our new 
lower bound up to 

polylog 

but K-V has 
 

min-entropy 
O(A log A log n)

Same as K-V upper 
bound 



Deterministic DWLS
• Algorithmic core: combinatorial structure we call 


-Affectance-Direct-Link-Scheduler (AFF-DLS):(n, 𝒜)

For affectance threshold ,  an -AFF-DLS is 

a family of subsets  such that 

for every request  such that , 

there exists   such that .

𝒜 (n, 𝒜)

S1, S2, …, Sτ ⊆ L

(vi, vj) ∈ L ∑
(vx,vy)∈L

a((vx, vy), (vi, vj)) ≤ 𝒜

t ≤ τ ∑
(vx,vy)∈St

a((vx, vy), (vi, vj)) ≤ 1

• We show how each node can construct locally an AFF-DLS 
of length  in poly time.4𝒜2⌈log𝒜 n⌉2



Deterministic DWLS

In a nutshell: 

For each  until realized


For  times 


Use a -Aff-DLS to decide 
when to transmit

If acknowledgement is received

Stop

i = 1,2,…

log n
(n,2i)



Algorithm 1: Deterministic DWLS algorithm for each
request (s, r). Given locally pre-computed (n, 2i)-
AFF-DLS, for i = 1, . . . , 1

2 log
n

log2 n , as in Corol-
lary 2. St denotes t-th set in current (n, 2i)-AFF-DLS.

1 s gets active, r gets passive
2 for i = 1, 2 . . . , 1

2 log
n

log2 n do

/* Phase i: */
3 for j = 1, 2 . . . , log n do

/* Sub-phase j of phase i: */
/* Part 1: packets */

4 for t = 1, 2, . . . , length[(n, 2i)-AFF-DLS] do

5 if s is active and s 2 St then

6 s transmits packet to r

7 if r not active and gets packet from s

then

8 r becomes active
/* Part 2: acknowledgments */

9 for t = 1, 2, . . . , length[(n, 2i)-AFF-DLS] do

10 if r is active and r 2 St then

11 r transmits acknowledgement to s

12 if s receives acknowledgment from r then

13 s gets acknowledged
/* Part 3: successful stops */

14 for t = 1, 2, . . . , length[(n, 2i)-AFF-DLS] do

15 if s is acknowledged and s 2 St then

16 s transmits stop to r

17 if r receives stop from s then

18 r stops
19 if s is acknowledged then

20 s stops
21 r becomes passive

Theorem 2. For any n,A, where A  n, POLY-AFF-
DLS deterministically constructs, in time polynomial in n,
an (n,A)-AFF-DLS of length 4 · A2 · dlogA ne2.

Note that for A �
q

n
log2 n there is a simple (n,A)-AFF-

DLS of length 2n. Indeed, we could take a Round-Robin
schedule in which if a station needs to transmit, it does it
in any step t such that v = t mod 2n. (Recall that [2n] is
the space of stations’ ids.) This way each station transmits
alone and affectance from other link is 0. Hence, by using
Round-Robin for any A �

q
n

log2 n , we get the following:

Corollary 2. For any n,A, where A  n, there is a
polynomial-time (in n) deterministic construction of an (n,A)-
AFF-DLS of length 4 ·A2 · dlogA ne2, if A 

q
n

log2 n , and of
length 2n otherwise.

V. RANDOMIZED DWLS UNDER ARBITRARY AFFECTANCE

In this section we present our randomized scheduler and
analyze its performance. For clarity, we present the algorithm
assuming that the maximum average affectance is known and
that receivers can send an acknowledgement of successful de-

1) Define integers d = dlogA ne and q = c · A · d
for constant c > 1 such that q is an integer and
q
d+1 � n.

2) Consider all polynomials Pi of degree d over field
[q]. Notice that there are q

d+1 of such polynomials.
3) Create a matrix M

0 of size q ⇥ q
d+1. (Refer

to Figure 2 in the Appendix.) Each column will
represent values Pi(x) of each polynomial Pi for
arguments x = 0, 1, . . . , q � 1 (corresponding to
rows of M

0). Next, a binary-valued matrix M
00 is

created from M
0 as follows: each value y = Pi(x)

is represented and padded in q consecutive rows of
0s and 1s, where 1 is on y-th position, while on all
other positions there are 0s. Notice that M 00 has q2
rows (q rows for each argument), thus M 00 has size
q
2 ⇥ q

d+1.
4) Remove q

d+1 � n arbitrary columns from matrix
M

00, creating matrix M with exactly n columns
remaining.

5) Each row of matrix M will correspond to one set
St of a AFF-DLS {St}q

2

t=1 over the set [n] =
{1, . . . , n} of elements (in our case, links).

Fig. 1. The POLY-AFF-DLS algorithm, given parameters n,A.

livery to the senders in a separate channel (without additional
interference to the senders’ transmissions). Those assumptions
can be removed without extra cost using the scheme presented
in Section IV.

The execution of the algorithm is conceptually divided
in windows of W rounds, where W is a parameter of the
algorithm. Before each window, each sender v with a message
not delivered (i.e. a request not realized) chooses a round s

uniformly at random among the following W rounds and waits
until round s to transmit its message. If the corresponding
receiver w actually receives the message in round s (i.e. the
request is realized), then the receiver sends an acknowledge-
ment to the sender and both stop participating in the protocol.
If the acknowledgement is not received the sender waits for the
next window and repeats the procedure. A detailed pseudocode
is included in Algorithm 2.

We now upper bound the schedule length achieved and
the min-entropy per request of Algorithm 2. Parts of the
analysis that follows resemble the analysis in [4], adapted to
the windowed structure of our algorithm.

In the following lemma we bound the expected number of
requests receiving a total affectance less than some threshold.
The proof is left to the Appendix for brevity.

Lemma 1. For an initial set L of requests, consider any subset
of requests Li ✓ L still not realized at the beginning of the
ith window in the execution of Algorithm 2 with parameter
window size W . Let a request that receives total affectance
less than ↵ > 0 in the round chosen within window i be
called ↵-selectable. Then, the expected number of ↵-selectable
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log n
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livery to the senders in a separate channel (without additional
interference to the senders’ transmissions). Those assumptions
can be removed without extra cost using the scheme presented
in Section IV.

The execution of the algorithm is conceptually divided
in windows of W rounds, where W is a parameter of the
algorithm. Before each window, each sender v with a message
not delivered (i.e. a request not realized) chooses a round s

uniformly at random among the following W rounds and waits
until round s to transmit its message. If the corresponding
receiver w actually receives the message in round s (i.e. the
request is realized), then the receiver sends an acknowledge-
ment to the sender and both stop participating in the protocol.
If the acknowledgement is not received the sender waits for the
next window and repeats the procedure. A detailed pseudocode
is included in Algorithm 2.

We now upper bound the schedule length achieved and
the min-entropy per request of Algorithm 2. Parts of the
analysis that follows resemble the analysis in [4], adapted to
the windowed structure of our algorithm.

In the following lemma we bound the expected number of
requests receiving a total affectance less than some threshold.
The proof is left to the Appendix for brevity.

Lemma 1. For an initial set L of requests, consider any subset
of requests Li ✓ L still not realized at the beginning of the
ith window in the execution of Algorithm 2 with parameter
window size W . Let a request that receives total affectance
less than ↵ > 0 in the round chosen within window i be
called ↵-selectable. Then, the expected number of ↵-selectable

Deterministic DWLS

In a nutshell: 

For each  until realized


For  times 


Use a -Aff-DLS to decide 
when to transmit

If acknowledgement is received

Stop

i = 1,2,…

log n
(n,2i)

Performance:

−  rounds

−Min-entropy: 


O(min{𝔸2 log3 n, n})
0



Randomized DWLS

In a nutshell (acks and  given for clarity): 


For each window of  rounds

Choose uniformly at random a round to transmit

If acknowledgement is received


Stop

𝔸
W ≥ 𝔸



Randomized DWLS

In a nutshell (acks and  given for clarity): 


For each window of  rounds

Choose uniformly at random a round to transmit

If acknowledgement is received


Stop

𝔸
W ≥ 𝔸

Algorithm 2: Randomized DWLS algorithm for each
request (v, w). The window size W is a parameter.
/* Algorithm for sender v */

1 i 0
2 �  integer chosen in [1,W ] uniformly at random
3 for each round t = 1, 2, . . . do

4 if t = iW + � then

5 transmit to w

6 if acknowledgement is received from w then

stop
7 if t ⌘ 0 mod W then

8 i++
9 �  integer chosen in [1,W ] uniformly at

random
/* Algorithm for receiver w */

10 for each round t = 1, 2, . . . do

11 if transmission from v is received then

12 transmit acknowledgement to v

13 stop

requests by the end of the ith window is at least
✓
1� 2A(Li)

↵W

◆
ni

2
,

where ni = |Li|.

We now combine the performance of all windows using
conditional expectations in the main result of this section. The
proof is left to the Appendix for brevity.

Theorem 3. For an input set of requests L of size n = |L|
and maximum average affectance A(L), Algorithm 2 with
parameter window size W = 2�A(L) with � > 1, solves Link
Scheduling within (1+�) logn

log(2�/(�+1))W rounds with min-entropy
per request at most (1+�) logn

log(2�/(�+1)) logW , with probability at
least 1� n

�� , for � > 0.

The following result is a direct consequence of Theorem 3.

Corollary 3. For an input set of requests L of size n = |L| and
maximum average affectance A(L), setting the window size
in Algorithm 2 to some W 2 ⌦(A(L)), the Link Scheduling
problem is solved in O(A(L) log n) rounds with min-entropy
in O(log(A(L)) log n) per request with high probability.

VI. TRADING SCHEDULES’ LENGTH FOR MIN-ENTROPY

Consider Algorithm 2 with windows of length W  A(L).
We replace each round of a window by a sub-window of
W

0 rounds – thus each window is now of length W ·W 0. A
sender chooses randomly a sub-window in which it is active
– it requires logW truly random bits. In each consecutive
sub-window, a station that selected it randomly executes
deterministic transmission schedule of length W

0 taken from
an (n,A)-AFF-DLS from Corollary 1, for value A such that
the length of the (n,A)-AFF-DLS – 4 · A2 · dlogA ne2 if
A 

q
n

log2 n and 2n otherwise – is at most W 0. (In case the

length is shorter than W
0, we pad the remainder of the sub-

window with idle steps.) Finally, we interleave the modified
algorithm with Round-Robin (c.f., Section IV-B).

Theorem 4. Consider any W  A(L) and ↵ = c
A(L)
W , for

some (sufficiently large) constant c > 1, and W
0 be the length

of schedules as in Corollary 2 for A = ↵. The modified Algo-
rithm 2 with window length W and sub-windows of length W

0

has min-entropy O(logW log n) per station and schedules’
length is O(min{A(L)2

W log3 n, n}), with probability at least
1� n

�� , for some � > 0.

Proof. Refresh Lemma 1 with respect to selecting
sub-windows instead of rounds. Note that W

0 =
O(min{↵2 log2 n, n}), by Corollary 2. If a station is
↵-selectable, then because in each sub-window stations
selecting that window execute (n,↵)-AFF-DLS, they realize
their requests in the sub-window (with probability 1, as
(n,A)-AFF-DLS is deterministic, but conditioned on the
probability of a station being ↵-selectable). By Lemma 1,
after one window the number of non-realized links decreases
by a constant factor, in expectation. Applying the same
probability analysis as in the proof of Theorem 3, we obtain
that O(log n) windows suffice with probability at least
1� n

�� , for some � > 0.
Hence, with the same probability, the length of schedules is

O(W ·W 0 log n) = O
�
W ·min{↵2 log2 n, n} log n

�

= O

✓
W ·min

⇢
A(L)2

W 2
log2 n, n

�
log n

◆

= O

✓
min

⇢
A(L)2

W
log3 n, n log n

�◆
,

while the min-entropy per station is clearly O(logW ) for
selecting a single sub-window in a window, multiplied by the
number of windows O(log n). Finally, round-robin allows to
reduce n log n part to n in the formula for the length.

Applying Theorem 4 for W such that logW = o(log n)
and W  A(L), we get the following:

Corollary 4. There is a randomized Link Scheduling al-
gorithm with schedules’ length o(A(L)2) and min-entropy
o(log2 n) per station.

VII. CONCLUSION

We initiated the study of the dependency of the length of
transmission schedules on the min-entropy of randomness used
by algorithms, for the Distributed Wireless Link Scheduling
problem under arbitrary interference between wireless links.
An intriguing question is how short the schedules could be for
sub-logarithmic entropy? This includes proving lower bounds
on the schedules’ length depending on entropy. Finally, the
literature considered many specific settings of wireless envi-
ronment (e.g., different metrics, power assignments) that could
lead to restricted classes of the affectance function a(·, ·).
Proving more efficient trade-offs between schedules’ length
and entropy for such classes is another challenging direction.

Acks given and  known for clarity.𝔸



Randomized DWLS

In a nutshell (acks and  given for clarity): 


For each window of  rounds

Choose uniformly at random a round to transmit

If acknowledgement is received


Stop

𝔸
W ≥ 𝔸

Performance: whp

−  rounds

−Min-entropy: 


O(𝔸 log n)
O(log 𝔸 log n)

Algorithm 2: Randomized DWLS algorithm for each
request (v, w). The window size W is a parameter.
/* Algorithm for sender v */

1 i 0
2 �  integer chosen in [1,W ] uniformly at random
3 for each round t = 1, 2, . . . do

4 if t = iW + � then

5 transmit to w

6 if acknowledgement is received from w then

stop
7 if t ⌘ 0 mod W then

8 i++
9 �  integer chosen in [1,W ] uniformly at

random
/* Algorithm for receiver w */

10 for each round t = 1, 2, . . . do

11 if transmission from v is received then

12 transmit acknowledgement to v

13 stop

requests by the end of the ith window is at least
✓
1� 2A(Li)

↵W

◆
ni

2
,

where ni = |Li|.

We now combine the performance of all windows using
conditional expectations in the main result of this section. The
proof is left to the Appendix for brevity.

Theorem 3. For an input set of requests L of size n = |L|
and maximum average affectance A(L), Algorithm 2 with
parameter window size W = 2�A(L) with � > 1, solves Link
Scheduling within (1+�) logn

log(2�/(�+1))W rounds with min-entropy
per request at most (1+�) logn

log(2�/(�+1)) logW , with probability at
least 1� n

�� , for � > 0.

The following result is a direct consequence of Theorem 3.

Corollary 3. For an input set of requests L of size n = |L| and
maximum average affectance A(L), setting the window size
in Algorithm 2 to some W 2 ⌦(A(L)), the Link Scheduling
problem is solved in O(A(L) log n) rounds with min-entropy
in O(log(A(L)) log n) per request with high probability.

VI. TRADING SCHEDULES’ LENGTH FOR MIN-ENTROPY

Consider Algorithm 2 with windows of length W  A(L).
We replace each round of a window by a sub-window of
W

0 rounds – thus each window is now of length W ·W 0. A
sender chooses randomly a sub-window in which it is active
– it requires logW truly random bits. In each consecutive
sub-window, a station that selected it randomly executes
deterministic transmission schedule of length W

0 taken from
an (n,A)-AFF-DLS from Corollary 1, for value A such that
the length of the (n,A)-AFF-DLS – 4 · A2 · dlogA ne2 if
A 

q
n

log2 n and 2n otherwise – is at most W 0. (In case the

length is shorter than W
0, we pad the remainder of the sub-

window with idle steps.) Finally, we interleave the modified
algorithm with Round-Robin (c.f., Section IV-B).

Theorem 4. Consider any W  A(L) and ↵ = c
A(L)
W , for

some (sufficiently large) constant c > 1, and W
0 be the length

of schedules as in Corollary 2 for A = ↵. The modified Algo-
rithm 2 with window length W and sub-windows of length W

0

has min-entropy O(logW log n) per station and schedules’
length is O(min{A(L)2

W log3 n, n}), with probability at least
1� n

�� , for some � > 0.

Proof. Refresh Lemma 1 with respect to selecting
sub-windows instead of rounds. Note that W

0 =
O(min{↵2 log2 n, n}), by Corollary 2. If a station is
↵-selectable, then because in each sub-window stations
selecting that window execute (n,↵)-AFF-DLS, they realize
their requests in the sub-window (with probability 1, as
(n,A)-AFF-DLS is deterministic, but conditioned on the
probability of a station being ↵-selectable). By Lemma 1,
after one window the number of non-realized links decreases
by a constant factor, in expectation. Applying the same
probability analysis as in the proof of Theorem 3, we obtain
that O(log n) windows suffice with probability at least
1� n

�� , for some � > 0.
Hence, with the same probability, the length of schedules is

O(W ·W 0 log n) = O
�
W ·min{↵2 log2 n, n} log n

�

= O

✓
W ·min

⇢
A(L)2

W 2
log2 n, n

�
log n

◆

= O

✓
min

⇢
A(L)2

W
log3 n, n log n

�◆
,

while the min-entropy per station is clearly O(logW ) for
selecting a single sub-window in a window, multiplied by the
number of windows O(log n). Finally, round-robin allows to
reduce n log n part to n in the formula for the length.

Applying Theorem 4 for W such that logW = o(log n)
and W  A(L), we get the following:

Corollary 4. There is a randomized Link Scheduling al-
gorithm with schedules’ length o(A(L)2) and min-entropy
o(log2 n) per station.

VII. CONCLUSION

We initiated the study of the dependency of the length of
transmission schedules on the min-entropy of randomness used
by algorithms, for the Distributed Wireless Link Scheduling
problem under arbitrary interference between wireless links.
An intriguing question is how short the schedules could be for
sub-logarithmic entropy? This includes proving lower bounds
on the schedules’ length depending on entropy. Finally, the
literature considered many specific settings of wireless envi-
ronment (e.g., different metrics, power assignments) that could
lead to restricted classes of the affectance function a(·, ·).
Proving more efficient trade-offs between schedules’ length
and entropy for such classes is another challenging direction.

Acks given and  known for clarity.𝔸



Trading Time for Min-entropy
In a nutshell: Consider windows composed of  sub-windows. 
Each sub-window composed of  rounds.

For each window

Choose uniformly at random a sub-window


Use a -Aff-DLS of length  to decide when to transmit

If acknowledgement is received stop

W ≤ 𝔸
W′￼

(n, 𝒜) W′￼



Trading Time for Min-entropy
In a nutshell: Consider windows composed of  sub-windows. 
Each sub-window composed of  rounds.

For each window

Choose uniformly at random a sub-window


Use a -Aff-DLS of length  to decide when to transmit

If acknowledgement is received stop

W ≤ 𝔸
W′￼

(n, 𝒜) W′￼

Performance: whp

−  rounds

−Min-entropy: 


where 

O(min{(𝔸2/W )log3 n, n})
O(log W log n)

W ≤ 𝔸



Open Problems

Schedule length Min-entropy 
per request

Deterministic

Randomized

Parameterized

O(min{𝔸2 log3 n, n}) 0

O(min{(𝔸2/W )log3 n, n})

O(𝔸 log n) O(log 𝔸 log n)

O(log W log n)

: set of reversed requests

W ≤ 𝔸
𝔸 = A(L) + A(L*)
L*

Matches our new 
lower bound up to 

polylog 

but K-V has 
 

min-entropy 
O(A log A log n)

Same as K-V upper 
bound 

• reduce polylog 
factors?

• time-entropy 
lower bounds?
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