Designing Mechanisms for Reliable Internet-based Computing

Chryssis Georgiou

University of Cyprus, Cyprus

Antonio Fernandez Miguel Mosteiro Universidad Rey Juan Carlos, Spain

Trustworthy Network Computing workshop IEEE NCA 2008
Cambridge, MA

July 12, 2008

Motivation (1)

- Demand for processing complex computational jobs
 - One-processor machines have limited computational resources
 - Powerful parallel machines are expensive
- Internet is emerging as an alternative platform for HPC
 - □ @home projects (e.g., SETI [Korpela Werthimer Anderson Cobb Lebofsky 01])
 - Volunteer computing
 - CPU scavenging
 - □ Convergence of P2P and Grid computing [Foster lamnitchi 03]

Internet-based Computing or P2P Computing – P2PC

Motivation (2)

- Internet-based Computing
 - A machine acts as a server: Master
 - Distributes jobs, across the Internet, to client computers: Workers
 - Workers execute and report back the results
- Great potential but
 - □ Limited use due to *cheaters* [Kahney 01]
 - Cheater fabricates a bogus result and return it
- O Possible solution: Redundant task allocation [Anderson 04, Fernandez et al 06, Konwar et al 06]
 - Master assigns same task to several workers and
 - Compares their returned results (voting)

Our Solution/Approach

- Consider Internet-based Computing from a game-theoretic point of view: Model computations as games
 - Master chooses whether to verify the returned result
 - Worker chooses whether to be honest or a cheater
- Design cost-sensitive mechanisms that incentive the workers to be honest
- Objective
 - Maximize the probability of the master for obtaining the correct result and
 - Maximize master benefit

Background (1)

A game consists of a set of players, a set of strategies available to those players, and a specification of payoffs (utilities) for each combination of strategies [wikipedia]

- Game Theory in Distributed Computing [Halpern 08]
 - ☐ Internet routing [Koutsoupias Papadimitriou 99, Mavronicolas Spirakis 01]
 - □ Resource location and sharing [Halldorsson Halpern Li Mirrokni 04]
 - □ Containment of Viruses spreading [Moscibroda Schmid Wattenhofer 06]
 - □ Secret sharing [Halpern Teague 04]

Background (2)

- Traditional Distributed Computing
 - A priori behavior of processors: either good or bad
- Game Theory:
 - Processors (players) act on their self-interest
 - □ Rational [Golle Mironov 01]: seek to increase their utility
 - Protocol is given as a game, and the objective is to identify the Nash equilibria [Nash 50]

NE: players don't increase their expected utility by choosing a different strategy, if other players don't change

Background (3)

- Algorithmic Mechanism Design [Nisan Ronen 01]
 - □ Games are designed to provide necessary incentives s.t. players act "correctly"
 - ▶Behave well: Reward
 - ➤Otherwise: Penalize
 - □ The design objective is to force a desired behavior (unique NE)
- Close connection between [Shneidman Parkes 03]
 - Rational players in Algorithmic Mechanism Design
 - □ Workers in realistic P2P (P2PC) systems

Framework (1)

Master

- Assigns a task to workers and collects responses
- Can verify (audit) the values returned by the workers
 - Verification is cheaper that computing
 - ➤ The correct result might not be obtained

Workers

- Rational: seek to maximize their benefit
- Honest: Computes the task and returns correct value
- Cheater: Fabricates and returns a bogus result

Framework (2)

- We do not consider non-intentional errors produced by hardware or software problems
- Weak collusion (no Sybil attacks): Workers decide independently, but all cheaters collude in returning the same incorrect answer
- The probability of guessing the correct value (without computing the task) is negligible

General Protocol

- Master assigns a task to n workers
- Worker *i* cheats with probability $p_C^{(i)}$
- \circ Master verifies the responses with probability p_V
- If master verifies
 - rewards honest workers and
 - penalizes the cheaters
- If master does not verify
 - Accepts value returned by majority of workers
 - \square Rewards majority (R_m) , none (R_0) or all (R_a)
 - □ Does not penalize anyone ("In dubio pro reo")

Contributions (1)

Identify a collection of realistic payoff parameters

$WP_{\mathcal{C}}$	worker's punishment for being caught cheating
$WC_{\mathcal{T}}$	worker's cost for computing the task
$WB_{\mathcal{A}}$	worker's benefit from master's acceptance
$MP_{\mathcal{W}}$	master's punishment for accepting a wrong answer
$MC_{\mathcal{A}}$	master's cost for accepting the worker's answer
$MC_{\mathcal{V}}$	master's cost for verifying worker's answers
$MB_{\mathcal{R}}$	master's benefit from accepting the right answer

Note that it is possible that

$$WB_{\mathcal{A}} \neq MC_{\mathcal{A}}$$

Contributions (2)

- Define the following games:
 - □ Between the master and a worker 1:1
 - \square n games between the master and a worker 1:1ⁿ
 - \Box Between n workers (master out of the game) θ :n
 - □ Between the master and *n* workers 1:*n*

With the 3 reward models, we have 12 games in total!!

- Analysis of the 12 games under general payoff models
 - Characterize the conditions for a unique NE
 - Mechanisms that the master can run to trade cost and reliability

Contributions (3)

- Design mechanism for two specific realistic system scenarios
 - A system of volunteering computing like SETI
 - ➤ Best is single-worker allocation with game $(0:n,R_0)$
 - ➤ Always correct result, almost no verification, almost optimal master utility
 - Company that buys computing cycles from Internet computers and sells them to customers
 - ➤ No single optimal game
 - E.g., If only n chosen, best is single-worker allocation with game $(0:n,R_a)$ or $(0:n,R_0)$

GAMES

Game Definition

$W = \{1, 2, \dots, n\}$	set of assigned workers		
M	master processor		
\mathcal{S}_i	set of pure strategies available to player i		
$\{\mathcal{C},\overline{\mathcal{C}}\}$	set of pure strategies of a worker		
$\{\mathcal{V},\overline{\mathcal{V}}\}$	set of pure strategies of the master		
s	strategy profile (a mapping from players to pure strategies)		
s_i	strategy used by player i in the strategy profile s		
s_{-i}	strategy used by each player but i in the strategy profile s		
$w_s^{(i)}$	payoff of worker i for the strategy profile s		
m_s	payoff of the master for the strategy profile s		
$p_{s_i}^{(i)}$	probability that worker i uses strategy s_i		
p_{s_M}	probability that the master uses strategy s_M		
σ	mixed strategy profile		
σ_i	probability distribution over pure strategies used by player i in σ		
σ_{-i}	probability distribution over pure strategies by all players but i in σ		
$U_i(s_i, \sigma_{-i})$	expected utility of worker i with mixed strategy profile σ		
$U_M(s_M,\sigma_{-M})$	expected utility of master with mixed strategy profile σ		
$supp(\sigma_i)$	set of strategies of player i with probability > 0 in σ		

Equilibrium Definition

• For a finite game, a mixed strategy profile σ^* is a mixed-strategy Nash Equilibrium (MSNE), iff, for each player i

$$U_{i}(s_{i}, \sigma_{-i}^{*}) = U_{i}(s_{j}, \sigma_{-i}^{*}), \forall s_{i}, s_{j} \in supp(\sigma_{i}^{*}),$$

$$U_{i}(s_{i}, \sigma_{-i}^{*}) \geq U_{i}(s_{k}, \sigma_{-i}^{*}),$$

$$\forall s_{i}, s_{k} : s_{i} \in supp(\sigma_{i}^{*}), s_{k} \notin supp(\sigma_{i}^{*}).$$

A strategy choice by each game participant s.t none has incentive to change it.

Methodology

- \circ For each game in $\{1:1, 1:1^n, 0:n, 1:n\}$
 - Identify the parameter conditions for which there is a MSNE
 - ➤ Instantiate the two equations of the MSNE definition
 - ➤ Assume a general payoff model
 - From the above, obtain the conditions on the parameters (payoffs and probabilities) that make such a MSNE unique
 - □ Plug the specific reward models (R_m, R_0, R_a) on the conditions to obtain the trade-offs between cost and reliability

Game 1:1, 1 master - 1 worker

Expected utility of the master in any equilibrium

$$U_M = p_{\mathcal{C}} p_{\mathcal{V}} m_{\mathcal{C}\mathcal{V}} + (1 - p_{\mathcal{C}}) p_{\mathcal{V}} m_{\overline{\mathcal{C}\mathcal{V}}} + p_{\mathcal{C}} (1 - p_{\mathcal{V}}) m_{\mathcal{C}\overline{\mathcal{V}}} + (1 - p_{\mathcal{C}}) (1 - p_{\mathcal{V}}) m_{\overline{\mathcal{C}\mathcal{V}}}$$

Expected utility of the worker in any equilibrium

$$U_W = p_{\mathcal{C}} p_{\mathcal{V}} w_{\mathcal{C}\mathcal{V}} + p_{\mathcal{C}} (1 - p_{\mathcal{V}}) w_{\mathcal{C}\overline{\mathcal{V}}} + (1 - p_{\mathcal{C}}) p_{\mathcal{V}} w_{\overline{\mathcal{C}\mathcal{V}}} + (1 - p_{\mathcal{C}}) (1 - p_{\mathcal{V}}) w_{\overline{\mathcal{C}\mathcal{V}}}$$

Probability of master accepting a wrong value:

$$\mathbf{P}_{wrong} = (1 - p_{\mathcal{V}})p_{\mathcal{C}}$$

Game 1:1, 1 master - 1 worker

- Opending on the range of values that p_C and p_V take, we may have a MSNE or a pure NE
- O Both p_C and p_V can take values either 0, 1, or in (0,1) (9 cases)
- Example

If $p_{\mathcal{C}} \in (0,1), p_{\mathcal{V}} \in (0,1)$, there is a MSNE if, simultaneously,

$$U_M(\mathcal{V}, p_{\mathcal{C}}) = U_M(\overline{\mathcal{V}}, p_{\mathcal{C}}) \ \ U_W(\mathcal{C}, p_{\mathcal{V}}) = U_W(\overline{\mathcal{C}}, p_{\mathcal{V}})$$

and hence

$$p_{\mathcal{C}} = \frac{m_{\overline{\mathcal{C}}\overline{\mathcal{V}}} - m_{\overline{\mathcal{C}}\mathcal{V}}}{m_{\mathcal{C}}\mathcal{V}} - m_{\overline{\mathcal{C}}\overline{\mathcal{V}}} + m_{\overline{\mathcal{C}}\overline{\mathcal{V}}} \quad p_{\mathcal{V}} = \frac{w_{\overline{\mathcal{C}}\overline{\mathcal{V}}} - w_{\mathcal{C}}\overline{\mathcal{V}}}{w_{\mathcal{C}}\mathcal{V}} - w_{\overline{\mathcal{C}}\overline{\mathcal{V}}} + w_{\overline{\mathcal{C}}\overline{\mathcal{V}}}$$

Reward Models

 \circ R_m : Rewards only majority

$$m_{\mathcal{C}\mathcal{V}} = -MC_{\mathcal{V}}$$
 $w_{\mathcal{C}\mathcal{V}} = -WP_{\mathcal{C}}$ $m_{\overline{\mathcal{C}\mathcal{V}}} = MB_{\mathcal{R}} - MC_{\mathcal{V}} - MC_{\mathcal{A}}$ $w_{\overline{\mathcal{C}\mathcal{V}}} = WB_{\mathcal{A}} - WC_{\mathcal{T}}$ $m_{\mathcal{C}\overline{\mathcal{V}}} = -MP_{\mathcal{W}} - MC_{\mathcal{A}}$ $w_{\mathcal{C}\overline{\mathcal{V}}} = WB_{\mathcal{A}}$ $w_{\mathcal{C}\overline{\mathcal{V}}} = WB_{\mathcal{A}} - WC_{\mathcal{T}}$ $w_{\overline{\mathcal{C}\mathcal{V}}} = WB_{\mathcal{A}} - WC_{\mathcal{T}}$

- \circ R_a : Rewards all workers (same as above)
- \circ R_0 : Does not reward any worker

$$egin{aligned} m_{\mathcal{C}\mathcal{V}} &= -MC_{\mathcal{V}} & w_{\mathcal{C}\mathcal{V}} &= -WP_{\mathcal{C}} \ m_{\overline{\mathcal{C}\mathcal{V}}} &= MB_{\mathcal{R}} - MC_{\mathcal{V}} - MC_{\mathcal{A}} & w_{\overline{\mathcal{C}\mathcal{V}}} &= WB_{\mathcal{A}} - WC_{\mathcal{T}} \ m_{\mathcal{C}\overline{\mathcal{V}}} &= -MP_{\mathcal{W}} & w_{\mathcal{C}\overline{\mathcal{V}}} &= 0 \ m_{\overline{\mathcal{C}\mathcal{V}}} &= MB_{\mathcal{R}} & w_{\overline{\mathcal{C}\mathcal{V}}} &= -WC_{\mathcal{T}} \end{aligned}$$

Game 1:1ⁿ, n Games 1:1

- Master runs n instances of Game 1:1, one with each of the n workers
- \circ Chooses to verify or not with prob p_V only once
- If no verification, rewards all or none like in the 1:1
 game
- Key difference now is that redundancy can be used to reduce the prob. of accepting a wrong value.

$$\mathbf{P}_{\mathcal{C}} = \sum_{\substack{(F,T) \in \mathcal{W} \\ |F| > |T|}} \prod_{j \in F} p_{\mathcal{C}}^{(j)} \prod_{k \in T} (1 - p_{\mathcal{C}}^{(k)})$$
$$\mathbf{P}_{wrong} = (1 - p_{\mathcal{V}}) \mathbf{P}_{\mathcal{C}}$$

Game $1:1^n$, R_m , R_a (Game 1:1 for n=1)

Equilibrium $p_{\mathcal{C}}, p_{\mathcal{V}}$	Conditions	\mathbf{P}_{wrong}	U_{M}	U_W
$rac{MC_{\mathcal{V}}}{MC_{\mathcal{A}}+MP_{\mathcal{W}}},\;rac{WC_{\mathcal{T}}}{WB_{\mathcal{A}}+WP_{\mathcal{C}}}$		$(1-p_{\mathcal{V}})\mathbf{P}_{\mathcal{C}}$	$p_{\mathcal{V}}((1-p_{\mathcal{C}}^n)MB_{\mathcal{R}}-\ MC_{\mathcal{V}}-(1-p_{\mathcal{C}})nMC_{\mathcal{A}})+\ (1-p_{\mathcal{V}})(MB_{\mathcal{R}}(1-\mathbf{P}_{\mathcal{C}})-\ MP_{\mathcal{W}}\mathbf{P}_{\mathcal{C}}-nMC_{\mathcal{A}})$	$WB_{\mathcal{A}}-WC_{\mathcal{T}}$
$0, \frac{WC_{\mathcal{T}}}{WB_{\mathcal{A}} + WP_{\mathcal{C}}} \le p_{\mathcal{V}} < 1$ $0 < p_{\mathcal{V}}$	$\mathit{MC}_{\mathcal{V}} = 0$	0	$MB_{\mathcal{R}}-nMC_{\mathcal{A}}$	$WB_{\mathcal{A}}-WC_{\mathcal{T}}$
$1, 0 < p_{\mathcal{V}} \le \frac{WC_{\mathcal{T}}}{WB_{\mathcal{A}} + WP_{\mathcal{C}}}$ $p_{\mathcal{V}} < 1$	$MC_{\mathcal{V}} = MP_{\mathcal{W}} + MC_{\mathcal{A}}$	$1-p_{\mathcal{V}}$	$-p_{\mathcal{V}}MC_{\mathcal{V}}-(1-p_{\mathcal{V}})(MP_{\mathcal{W}}+nMC_{\mathcal{A}})$	$(1-p_{\mathcal{V}})WB_{\mathcal{A}}- p_{\mathcal{V}}WP_{\mathcal{C}}$
$0 \le p_{\mathcal{C}} \le \frac{MC_{\mathcal{V}}}{MC_{\mathcal{A}} + MP_{\mathcal{W}}}, 0$ $p_{\mathcal{C}} < 1$	$WC_{\mathcal{T}}=0$	$\mathbf{P}_{\mathcal{C}}$	$MB_{\mathcal{R}}(1-\mathbf{P}_{\mathcal{C}})-MP_{\mathcal{W}}\mathbf{P}_{\mathcal{C}}-nMC_{\mathcal{A}}$	$WB_{\mathcal{A}}$
$\frac{\frac{MC_{\mathcal{V}}}{MC_{\mathcal{A}} + MP_{\mathcal{W}}} \le p_{\mathcal{C}} < 1}{0 < p_{\mathcal{C}}} , 1$	$WC_{\mathcal{T}} = WB_{\mathcal{A}} + WP_{\mathcal{C}}$	0	$(1 - \prod_{j \in W} p_{\mathcal{C}}^{(j)}) MB_{\mathcal{R}} - MC_{\mathcal{V}} - \sum_{(W_F, W_T) \in \mathcal{W}} \prod_{j \in W_F} p_{\mathcal{C}}^{(j)} \cdot \prod_{k \in W_T} (1 - p_{\mathcal{C}}^{(k)}) W_T MC_{\mathcal{A}}$	$-\mathit{WP}_\mathcal{C}$
1 1	$MC_{\mathcal{V}} \leq MP_{\mathcal{W}} + MC_{\mathcal{A}}$	0	MC.	WD.

0

0

1

 $\frac{WC_{\mathcal{T}} \ge WB_{\mathcal{A}} + WP_{\mathcal{C}}}{MC_{\mathcal{V}} = 0}$

 $\frac{WC_T \le WB_A + WP_C}{MC_V \ge MP_W + MC_A}$

 $-MC_{\mathcal{V}}$

 $MB_{\mathcal{R}} - nMC_{\mathcal{A}}$

 $\overline{-MP_{\mathcal{W}}-nMC_{\mathcal{A}}}$

1, 1

0, 1

1, 0

 $-WP_{\mathcal{C}}$

 $WB_{\mathcal{A}} - WC_{\mathcal{T}}$

 $\overline{WB_{\mathcal{A}}}$

Game $1:1^n$, R_0 (Game 1:1 for n=1)

Equilibrium $p_{\mathcal{C}}, p_{\mathcal{V}}$	Conditions	\mathbf{P}_{wrong}	U_{M}	U_W
$\frac{MC_{\mathcal{V}}+MC_{\mathcal{A}}}{MC_{\mathcal{A}}+MP_{\mathcal{W}}},\; \frac{WC_{\mathcal{T}}}{WB_{\mathcal{A}}+WP_{\mathcal{C}}}$		$(1-p_{\mathcal{V}})\mathbf{P}_{\mathcal{C}}$	$p_{\mathcal{V}}((1-p_{\mathcal{C}}^n)MB_{\mathcal{R}}-\ MC_{\mathcal{V}}-(1-p_{\mathcal{C}})nMC_{\mathcal{A}})+\ (1-p_{\mathcal{V}})(MB_{\mathcal{R}}(1-\mathbf{P}_{\mathcal{C}})-\ MP_{\mathcal{W}}\mathbf{P}_{\mathcal{C}})$	$-p_{\mathcal{V}}\mathit{WP}_{\mathcal{C}}$
$0, \frac{\frac{WC_{\mathcal{T}}}{WB_{\mathcal{A}} + WP_{\mathcal{C}}} \le p_{\mathcal{V}} < 1}{0 < p_{\mathcal{V}}}$	$\mathit{MC}_\mathcal{A} = \mathit{MC}_\mathcal{V} = 0$	0	$MB_{\mathcal{R}}$	$p_{\mathcal{V}}WB_{\mathcal{A}}-WC_{\mathcal{T}}$
$1, 0 < p_{\mathcal{V}} \le \frac{WC_{\mathcal{T}}}{WB_{\mathcal{A}} + WP_{\mathcal{C}}}$ $p_{\mathcal{V}} < 1$	$\mathit{MC}_{\mathcal{V}} = \mathit{MP}_{\mathcal{W}}$	$1-p_{\mathcal{V}}$	$-MC_{\mathcal{V}}$	$-p_{\mathcal{V}}WP_{\mathcal{C}}$
$0 \le p_{\mathcal{C}} \le \frac{\frac{MC_{\mathcal{V}} + MC_{\mathcal{A}}}{MC_{\mathcal{A}} + MP_{\mathcal{W}}}}{p_{\mathcal{C}} < 1}, 0$	$WC_{\mathcal{T}} = 0$	$\mathbf{P}_{\mathcal{C}}$	$MB_{\mathcal{R}}(1-\mathbf{P}_{\mathcal{C}})-MP_{\mathcal{W}}\mathbf{P}_{\mathcal{C}}$	0
$\frac{\frac{MC_{\mathcal{V}} + MC_{\mathcal{A}}}{MC_{\mathcal{A}} + MP_{\mathcal{W}}} \le p_{\mathcal{C}} < 1}{0 < p_{\mathcal{C}}}, 1$	$WC_{\mathcal{T}} = WB_{\mathcal{A}} + WP_{\mathcal{C}}$	0	$(1 - \prod_{j \in W} p_{\mathcal{C}}^{(j)}) MB_{\mathcal{R}} - MC_{\mathcal{V}} - \sum_{(W_F, W_T) \in \mathcal{W}} \prod_{j \in W_F} p_{\mathcal{C}}^{(j)} \cdot \prod_{k \in W_T} (1 - p_{\mathcal{C}}^{(k)}) W_T MC_{\mathcal{A}}$	$-WP_{\mathcal{C}}$
1, 1	$MC_{\mathcal{V}} \le MP_{\mathcal{W}} WC_{\mathcal{T}} \ge WB_{\mathcal{A}} + WP_{\mathcal{C}}$	0	$-MC_{\mathcal{V}}$	$-WP_{\mathcal{C}}$
0, 1	$MC_{\mathcal{V}} = MC_{\mathcal{A}} = 0$ $WC_{\mathcal{T}} \le WB_{\mathcal{A}} + WP_{\mathcal{C}}$	0	$MB_{\mathcal{R}}$	$WB_{\mathcal{A}}-WC_{\mathcal{T}}$
1, 0	$MC_{\mathcal{V}} \geq MP_{\mathcal{W}}$	1	$-MP_{\mathcal{W}}$	0

Games 0:n and 1:n

- In Game 0:n the master participates only indirectly (by fixing p_V)
 - Under our assumptions, we prove that there are only pure NE
 - We force the unique equilibrium in which no worker cheats
- Game 1:n is similar to 0:n, but
 - □ The master is part of the game
 - This imposes additional restrictions on the NE
 - □ The unique NE in which no worker cheats requires $MC_V=0$

Mechanism Design

SETI-like Scenario

- Here we assume
 - \square $WB_A > WC_T = 0$ (CPU scavenging, worker's incentive)
 - \square $MB_R > MC_A > 0$ (master's incentive to compute)
 - \square $MP_W > MC_V > 0$ (master's incentive to verify)
- Under these constraints,
 - □ In both Games 1:1 and 1:1ⁿ one single MSNE remains
 - □ There is no unique NE for Game 1:n

Results for SETI-like

$({ m Game, Model})$	Equilibrium	\mathbf{P}_{wrong}	U_M	U_W
, , , , , , , , , , , , , , , , , , ,	$p_{\mathcal{C}}, p_{\mathcal{V}}$			
$(1:1, \mathcal{R}_{\mathrm{m}}), (1:1, \mathcal{R}_{\mathrm{a}})$	$0 \le p_{\mathcal{C}} \le \frac{MC_{\mathcal{V}}}{MC_{\mathcal{A}} + MP_{\mathcal{V}}}, p_{\mathcal{C}} < 1 , p_{\mathcal{V}} = 0$	$p_{\mathcal{C}}$	$MB_{\mathcal{R}} - p_{\mathcal{C}}(MB_{\mathcal{R}} + MP_{\mathcal{W}}) - MC_{\mathcal{A}}$	$WB_{\mathcal{A}}$
$(1{:}1,\mathcal{R}_{\emptyset})$	$0 \le p_{\mathcal{C}} \le \frac{MC_{\mathcal{V}} + MC_{\mathcal{A}}}{MC_{\mathcal{A}} + MP_{\mathcal{W}}}, p_{\mathcal{C}} < 1, p_{\mathcal{V}} = 0$	$p_{\mathcal{C}}$	$MB_{\mathcal{R}} - p_{\mathcal{C}}(MB_{\mathcal{R}} + MP_{\mathcal{W}})$	0
$(1:1^n, \mathcal{R}_{\mathrm{m}}), (1:1^n, \mathcal{R}_{\mathrm{a}})$	$0 \le p_{\mathcal{C}} \le \frac{MC_{\mathcal{V}}}{MC_{\mathcal{A}} + MP_{\mathcal{W}}}, p_{\mathcal{C}} < 1, p_{\mathcal{V}} = 0$	$\mathbf{P}_{\mathcal{C}}$	$MB_{\mathcal{R}} - \mathbf{P}_{\mathcal{C}}(MB_{\mathcal{R}} + MP_{\mathcal{W}}) - nMC_{\mathcal{A}}$	$WB_{\mathcal{A}}$
$(1:1^n,\mathcal{R}_{\emptyset})$	$0 \le p_{\mathcal{C}} \le \frac{MC_{\mathcal{V}} + MC_{\mathcal{A}}}{MC_{\mathcal{A}} + MP_{\mathcal{W}}}, p_{\mathcal{C}} < 1 , p_{\mathcal{V}} = 0$	$\mathbf{P}_{\mathcal{C}}$	$\mathit{MB}_\mathcal{R} - \mathbf{P}_\mathcal{C}(\mathit{MB}_\mathcal{R} + \mathit{MP}_\mathcal{W})$	0
$(0:n,\mathcal{R}_{\mathrm{m}})$	$p_{\mathcal{C}} = 0, \ \frac{WB_{\mathcal{A}}}{WP_{\mathcal{C}} + 2WB_{\mathcal{A}}} < p_{\mathcal{V}} \le 1$	0	$MB_{\mathcal{R}}-p_{\mathcal{V}}MC_{\mathcal{V}}-nMC_{\mathcal{A}}$	$WB_{\mathcal{A}}$
$(0:n,\mathcal{R}_{\mathrm{a}})$	$p_{\mathcal{C}} = 0, \ 0 < p_{\mathcal{V}} \le 1$	0	$MB_{\mathcal{R}}-p_{\mathcal{V}}MC_{\mathcal{V}}-nMC_{\mathcal{A}}$	$WB_{\mathcal{A}}$
$(0\!:\!n,\mathcal{R}_{\emptyset})$	$p_{\mathcal{C}} = 0, \ 0 < p_{\mathcal{V}} \le 1$	0	$MB_{\mathcal{R}} - p_{\mathcal{V}}(MC_{\mathcal{V}} + nMC_{\mathcal{A}})$	$p_{\mathcal{V}} \mathit{WB}_{\mathcal{A}}$

- The best choice is Game 0:n with reward model R_0 (no verification, no payment) and non-redundant allocation
- •To obtain always the correct answer it is enough for the master to verify with arbitrarily small probability
- The master's utility is arbitrarily close to optimal

Contractor Scenario

- A company buys computational power from Internet users and sells it to computationneeding consumers (commercial P2PC)
- Workers must have incentive to participate: $U_W > 0$
- Additionally
 - \square $WB_A = MC_A$ (worker's incentive)
 - \square $MB_R > MC_A$ (master's incentive to compute)
 - \square $WC_T > \theta$ (computing cost)
 - \square $MP_W > MC_V > 0$ (master's incentive to verify)

Results for Contractor

(Game, Model)	Equilibrium	$oldsymbol{\mathbf{P}_{wrong}}$	U_{M}	U_W
	$p_{\mathcal{C}}, p_{\mathcal{V}}$			
$(1:1, \mathcal{R}_{ m m}), (1:1, \mathcal{R}_{ m a})$	$egin{array}{c} rac{MC_{\mathcal{V}}}{MC_{\mathcal{A}}+MP_{\mathcal{W}}}, & rac{WC_{\mathcal{T}}}{WB_{\mathcal{A}}+WP_{\mathcal{C}}} \ \hline MC_{\mathcal{V}}+MC_{\mathcal{A}} & WC_{\mathcal{T}} \end{array}$	$(1-p_{\mathcal{V}})p_{\mathcal{C}}$	$\mathit{MB}_\mathcal{R} - p_\mathcal{C}(\mathit{MB}_\mathcal{R} + \mathit{MP}_\mathcal{W}) - \mathit{MC}_\mathcal{A}$	$WB_{\mathcal{A}} - WC_{\mathcal{T}}$
$(1{:}1,\mathcal{R}_{\emptyset})$	$igg rac{MC_{\mathcal{V}} + MC_{\mathcal{A}}}{MC_{\mathcal{A}} + MP_{\mathcal{W}}}, rac{WC_{\mathcal{T}}}{WB_{\mathcal{A}} + WP_{\mathcal{C}}}$	$(1-p_{\mathcal{V}})p_{\mathcal{C}}$	$\mathit{MB}_\mathcal{R} - p_\mathcal{C}(\mathit{MB}_\mathcal{R} + \mathit{MP}_\mathcal{W})$	$-p_{\mathcal{V}}WP_{\mathcal{C}}$
$(1:1^n, \mathcal{R}_{\mathrm{m}}), (1:1^n, \mathcal{R}_{\mathrm{a}})$	$\frac{MC_{\mathcal{V}}}{MC_{\mathcal{A}}+MP_{\mathcal{W}}},\; \frac{WC_{\mathcal{T}}}{WB_{\mathcal{A}}+WP_{\mathcal{C}}}$	$(1-p_{\mathcal{V}})\mathbf{P}_{\mathcal{C}}$	$(p_{\mathcal{V}}(1-p_{\mathcal{C}}^{n})+(1-p_{\mathcal{V}})(1-\mathbf{P}_{\mathcal{C}}))MB_{\mathcal{R}}$ $-p_{\mathcal{V}}MC_{\mathcal{V}}-(1-p_{\mathcal{V}})\mathbf{P}_{\mathcal{C}}MP_{\mathcal{W}}$ $-(1-p_{\mathcal{V}}p_{\mathcal{C}})nMC_{\mathcal{A}}$	$WB_{\mathcal{A}}-WC_{\mathcal{T}}$
$(1:1^n,\mathcal{R}_{\emptyset})$	$\frac{MC_{\mathcal{V}} + MC_{\mathcal{A}}}{MC_{\mathcal{A}} + MP_{\mathcal{W}}}, \ \frac{WC_{\mathcal{T}}}{WB_{\mathcal{A}} + WP_{\mathcal{C}}}$	$(1-p_{\mathcal{V}})\mathbf{P}_{\mathcal{C}}$	$(p_{\mathcal{V}}(1-p_{\mathcal{C}}^{n}) + (1-p_{\mathcal{V}})(1-\mathbf{P}_{\mathcal{C}}))MB_{\mathcal{R}}$ $-p_{\mathcal{V}}MC_{\mathcal{V}} - (1-p_{\mathcal{V}})\mathbf{P}_{\mathcal{C}}MP_{\mathcal{W}}$ $-p_{\mathcal{V}}(1-p_{\mathcal{C}})nMC_{\mathcal{A}}$	$-p_{\mathcal{V}}\mathit{WP}_{\mathcal{C}}$
$(0:n,\mathcal{R}_{\mathrm{m}})$	$0, \frac{WB_{\mathcal{A}} + WC_{\mathcal{T}}}{WP_{\mathcal{C}} + 2WB_{\mathcal{A}}} < p_{\mathcal{V}} \le 1$	0	$\mathit{MB}_\mathcal{R} - p_\mathcal{V} \mathit{MC}_\mathcal{V} - n \mathit{MC}_\mathcal{A}$	$WB_{\mathcal{A}}-WC_{\mathcal{T}}$
$(0:n,\mathcal{R}_{\mathbf{a}})$	$0, \frac{WC_T}{WP_C + WB_A} < p_V \le 1$	0	$MB_{\mathcal{R}} - p_{\mathcal{V}}MC_{\mathcal{V}} - nMC_{\mathcal{A}}$	$WB_{\mathcal{A}} - WC_{\mathcal{T}}$
$(0:n, \mathcal{R}_{\emptyset}) \qquad 0, \frac{\widetilde{W}C_{\mathcal{T}}}{WP_{\mathcal{C}} + WB_{\mathcal{A}}} < p_{\mathcal{V}} \le 1$		0	$MB_{\mathcal{R}} - p_{\mathcal{V}}(MC_{\mathcal{V}} + nMC_{\mathcal{A}})$	$p_{\mathcal{V}}WB_{\mathcal{A}}-WC_{\mathcal{T}}$

- To obtain always the correct answer, verification probability $p_V > WC_T / (WP_C + WB_A)$ can be large
- No single optimal game
 - Either Game $(0:n,R_a)$ or $(0:n,R_0)$ is the best if only n(=1) or WP_C can be changed
 - If master can only change $WB_A = MC_A$, sometimes Game

 $J_{\text{uly }12}$, $(1:1^n, R_m)$ is the best

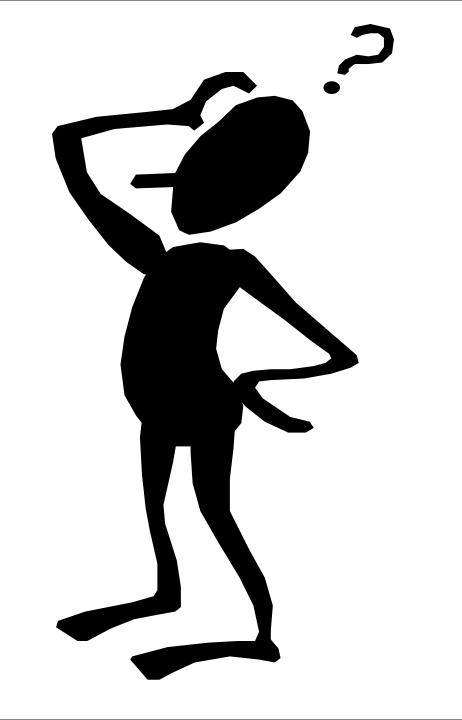
Fernandez, Georgiou, Mosteiro - NCA 2008 ©

Summary

- We considered master-worker Internet-based computations from a game-theoretic point of view
- We defined the general model and costparameters
- Proposed and analyzed several games that the master can choose to play to achieve high reliability at low cost
- Designed appropriate mechanisms for two realistic scenarios
- No optimal game for every scenario or set of parameters.

Future Work

- Consider other realistic scenarios where our work can be applied
- Consider other forms of collusion (e.g., Sybil attacks) and investigate how the trade-offs are affected
- Remove the complete knowledge assumption (implicit in NE analyses)
- Study games with several rounds (reputation)
- Consider irrational, bounded-rational, and faulty players.



Thank you!

IAG vs Our Work

- O Closer work to ours [Yurkewych Levine Rosenberg 05]
 - Master audits the results returned by rational workers with a tunable probability
 - Bounds for that probability are computed to provide incentives to workers to be honest in three scenarios
 - > Redundant allocation with collusion
 - Cooperation among workers concealed from the master
 - Redundant allocation without collusion
 - Single-worker allocation
 - Their conclusion: Single-worker allocation is a cost-effective mechanism, especially in the presence of collusion
- Our model comprises a weaker type of collusion but
 - We study more algorithms and games
 - Consider a richer payoff model and probabilistic cheating
 - We have one-round protocols and
 - Show useful trade-offs between the benefit (cost) of the master and the probability of accepting a wrong result (reliability)

Prior/Related Work

- Internet Auditing Game [Yurkewych Levine Rosenberg 05]
 - □ Three master-worker scenarios
 - Redundant allocation with/without collusion (Cooperation among workers concealed from the master)
 - ➤ Single-worker allocation
 - Master (out of the game) audits the results or accepts majority
 - \Box (Fixed) probability p_V of auditing
 - \Box (Fixed) payments R for accepted results
 - □ (Fixed) penalty *P* for rejected results
 - \square Result: Bounds on R, P, and p_V to prevent cheating
 - Conclusions:
 - \triangleright Lots of auditing $(p_V > 1/2)$ with collusion
 - > Redundancy only useful if no collusion
 - ➤ Single-worker allocation is cost-effective