
Counting in Practical Anonymous
Dynamic Networks is Polynomial

Maitri Chakraborty, Alessia Milani, and
Miguel A. Mosteiro

NETyS 2016

The Internet of Things

How do you count the size of your group,
 if the members are all identical and move?

The Counting Problem

You all look the same,

did I already count you?

I don’t know!

You also look the same as

 everyone else!!

The problem is clean, but why do we care?

Why do we care?

Distributed protocols

need the number of processors to decide termination.

We need a protocol: « Given a system of n nodes,
 all nodes eventually terminate knowing n »

• Fixed set of n nodes
– No identifiers or labels
– A special node, called the leader [1]

• Synchronous communication : At each round
– a node broadcasts a message to its neighbors
– receives the messages of its neighbors
– executes some local computation

• 1-interval connectivity [2]
– communication links may change from round to round, but
– at each round the network is connected

• An upper bound Δ on the maximum degree is known by all nodes

5

[1] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013
[2] Fabian Kuhn, Nancy A. Lynch, Rotem Oshman. Distributed computation in dynamic networks. STOC 2010

Anonymous Dynamic Networks

6

Previous work

• Previous Counting Protocols
– Guarantee only an exponential upper bound on the network size [1] or
– They guarantee the exact size but
• Take double-exponential number of rounds [2] or
• Take exponential number of rounds, but do not terminate [2] or
• Terminate but no running-time guarantees [3]
– (very) recently, exact-size exponential time Counting with termination:
• [5] Incremental Counting (IC): poly space.
• [6] EXT Counting: no Δ but exponential space.

• Lower bound on the time complexity
– Ω(D) where D is the dynamic diameter and
– Ω(logn) even if D is constant [4]

[1] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013
[2] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic networks. ICDCN 2014
[3] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous dynamic networks under worst-case adversary. ICDCS 2014
[4] G. A. Di Luna and R.Baldoni. Investigating the cost of anonymity on dynamic networks. 2015.
[5] A. Milani and M. A. Mosteiro. A faster counting protocol for anonymous dynamic networks. OPODIS 2015.
[6] R.Baldoni and G. A. Di Luna. Non Trivial Computations in Anonymous Dynamic Networks. OPODIS 2015.

Exponential speedup,
but still not practical

Huge gap

• Experimental evaluation of Incremental Counting:
- Incremental Counting is polynomial (and practical)
- variety of input network topologies that may appear in practice
- insight on network dynamics impact on dissemination

7

Contributions

2. Collection phase:
– to let the leader collect “enough” energy

Initially, each non-leader has “energy” 1

8

Incremental Counting

1. Guess a size k of the system
– start from k=2

k?

k?

k?

k?

k?

k?
k?

9

IC Collection Phase example
End of round 1

Round 2

Round 1

End of round 2

The collection continues for a fixed number of rounds Τ
that depends on the estimate k.

Τ(n) is large enough to drain all the energy in the network.

2. Collection phase:
– to let the leader collect “enough” energy

3. Verification phase:
– to check whether the guess k is correct

Initially, each non-leader has “energy” 1

10

1. Guess a size k of the system
– start from k=2

k?

k?

k?

k?

k?

k?
k?

Incremental Counting

If eleader > k-1 k < n

11

Challenges for Verification
IC Verification Phase:

But,
if k-1-1/kc ≤ eleader ≤ k-1 ???

Need to check if some non-
leader has more than
1/kc energy left.

2. Collection phase:
– to let the leader collect “enough” energy

3. Verification phase:
– to check whether the guess k is correct

Initially, each non-leader has “energy” 1

12

1. Guess a size k of the system
– start from k=2

4. Notification phase:
– k=n : let all nodes know that k is the size
– k<n : wait and go to step 2, guessing k+1

k?

k?

k?

k?

k?

k?
k?

Incremental Counting

2. Collection phase:
– to let the leader collect “enough” energy

3. Verification phase:
– to check whether the guess k is correct

Initially, each non-leader has “energy” 1

13

1. Guess a size k of the system
– start from k=2

4. Notification phase:
– k=n : let all nodes know that k is the size
– k<n : wait and go to step 2, guessing k+1

Worst-case analysis:
IC computes exact size
in less than

(2Δ)n+1(n+1)ln(n+1)/ln(2Δ)
comm rounds.

Exponential improvement but still
exponential upper bound => not
enough for practical guarantees

BUT! Simulations:
showed that in practice is
less than Δn3 comm rounds!

Practical for IoT subnetworks!!

k?

k?

k?

k?

k?

k?
k?

n!

n!

n!

n!

n!

n!
n!

Incremental Counting

14

IC Simulations: inputs

• Extremal cases:
- path with the leader in one end
- star centered at the leader

• Random graph (Erdos-Renyi)
- need to handle disconnections

• Random tree rooted at the leader:

whole new network every T rounds, since the topology is less restricted (trees)
or it is not restricted at all (graphs). For stars and random graphs, we fixed the
degree upper bound � = n � 1. For the former because that is the maximum
degree and for the latter to guarantee a uniform draw. For random trees and
paths we used � = 2i, for all values of i > 0 such that 2i n � 1. For random
graphs we evaluated p 2 {0.1, 0.2, 0.3, 0.4, 0.5}. All our results where computed
as the average over 100 executions of the protocol.

To produce our random rooted unlabeled trees we used the algorithm RAN-
RUT presented in [14], which was proved to provide a uniform distribution on
the equivalence classes defined by isomorphisms. The tree so obtained may have
maximum degree larger than �. When that is the case, we prune the tree moving
subtrees downwards until all nodes have at most � neighbors. This procedure
increases (or does not change) the longest path to the leader, which increases (or
does not change) the running time of Incremental Counting. Thus, with re-
spect to a uniform distribution on rooted unlabeled trees of maximum degree �,
our input distribution is biased “against” Incremental Counting providing
stronger guarantees.

In contrast, topologies obtained connecting pairs of nodes stochastically until
the graph is connected, usually have relatively low diameter, which may speed up
the energy transfer. Algorithm 2 summarizes the rooted tree network generator
used in our simulations.

Algorithm 2: Random tree generator algorithm. Auxiliary functions in
Algorithm 3.

1 Function GENTREE(n,�)

2 t SIZES(n) // Compute number of unlabeled rooted trees of size

1, 2, . . . , n.
3 p DISTRIB(t, n) // Compute distributions on subtrees for each n.

4 tree RANRUT(p, n) // Choose an unlabeled rooted tree uniformly at

random.

5 PRUNE (tree,�) // Move subtrees downwards until max degree of tree
is �.

6 return tree

5 Simulation Platform

We developed our own simulator and input generator implementing Algorithms 1
and 2 in Java 8. The simulations were carried out on a cluster facility at Kean
University known as Puma. Puma is a 130 node, 1040 core Dell cluster running
Red Hat Enterprise Linux and Rocks+ 4.3. Each node has 2 quad core 2.6 GHz
Xeon processors, 16GB RAM, and 350GB local storage, and are connected with
Gigabit ethernet.

Uniform from
equivalence classes

defined by
isomorphisms

Pruned down to
max degree Δ

15

Centralized simulator
A. Milani and M. A. Mosteiro 7

Algorithm 1: Incremental Counting algorithm for the leader node.
1 k Ω 1
2 halt Ω false
3 while ¬halt do

4 k Ω k + 1
5 IsCorrect Ω true
6 e

¸

Ω 0
// Collection Phase

7 for each of ·(k) communication rounds do

8 receive e
1

, e
2

, . . . e
s

from neighbors, where 1 Æ s Æ �
9 e

¸

Ω e
¸

+ e
1

+ e
2

+ . . . + e
s

// Verification Phase

10 for each of 1 +
Ï

k

1≠1/k

c

Ì
communication rounds do

11 receive e
1

, e
2

, . . . e
s

from neighbors, where 1 Æ s Æ �
12 if k ≠ 1 ≠ 1/kc Æ e

¸

Æ k ≠ 1 then

13 for j := 1 . . . s do

14 if e
j

> 1/kc

then

15 IsCorrect Ω false

16 else

17 IsCorrect Ω false

// Notification Phase

18 for each of k communication rounds do

19 if IsCorrect then

20 broadcast ÈHaltÍ
21 halt Ω true

22 else

23 do nothing

24 output k

5 Analysis

The following notation will be used. The energy of node i at the beginning of round r, is
denoted as er

i

, which is also generalized to any set of nodes S ™ V as er

S

=
q

iœS

er

i

. For any
given round r and node i, let the set of neighbors of i be Nr

i

and the average energy of i’s
neighbors be e

N

r
i
. The superindex indicating the round number will be omitted when clear

from context or irrelevant. Also, at any time, let
q

iœV

e
i

be called the system energy andq
iœV \{¸} e

i

be called the energy left. At the beginning of each iteration of the protocol, that
is, for each new size estimate k, the energy of the leader is reset to zero and the energy of the
non-leader nodes is reset to 1. Thus, the system energy is

q
iœV

e
i

= n ≠ 1 and the energy
left is

q
iœV \{¸} e

i

= n ≠ 1.

I Lemma 2. For any network of n nodes, including a leader ¸, running the Incremental

Counting Protocol under the communication and connectivity models defined the following
holds. For any given node i œ V \ {¸} and for any given round r of the Collection Phase, it
is er

i

Æ 1.

Algorithm 1: Centralized simulation of leader and non-leader nodes run-
ning Incremental Counting [13] on T -stable topologies. V is the set of
nodes and E is the set of links. Node 1 is the leader node. The other node
labels are used for reference only, but not used to make decisions. N(i, E)
is the set of neighbors of node i according to E. F(E) is the matrix of
fractions shared according to E (cf. Equation 1).

1 k 1, IsCorrect false, r 1, E new set of links
2 while ¬IsCorrect do

3 k k + 1, IsCorrect true

4 Collection Phase:

5
�
e1, e2, e3, . . . , en

�

�
0, 1, 1, . . . , 1

�
// vector of energies

6 while e1 < k � 1� 1/k1.01
do

7
�
e1, e2, . . . , en

�
 F(E) ·

�
e1, e2, . . . , en

�T
// broadcast simulation

8 if r ⌘ 0 mod T then E new set of links
9 r r + 1

10 Verification Phase:

11 if e1 > k � 1 then IsCorrect false
12

�
e

0
1, e

0
2, e

0
3, . . . , e

0
n

�

�
0, e2, e3 . . . , en

�
// vector of max energy heard

13 for 1 + dk/(1� 1/k1.01)e iterations do

14 for each i do e

00
i maxj2N(i,E)[{i} e

0
j // broadcast simulation

15
�
e

0
1, e

0
2, . . . , e

0
n

�

�
e

00
1 , e

00
2 , . . . , e

00
n

�

16 if r ⌘ 0 mod T then E new set of links
17 r r + 1

18 // for Gn,p input only:

19 while not all nodes “heard” by leader do

20 for each i do e

00
i maxj2N(i,E)[{i} e

0
j // broadcast simulation

21
�
e

0
1, e

0
2, . . . , e

0
n

�

�
e

00
1 , e

00
2 , . . . , e

00
n

�

22 if r ⌘ 0 mod T then E new set of links
23 r r + 1

24 if e

0
1 > 1/k1.01

then IsCorrect false

25 Notification Phase:

26
�
h1, h2, h3, . . . , hn

�

�
IsCorrect, false, false, . . . , false

�
// vector of

halt flags

27 for k iterations do

28 for each i do h

0
i

W
j2N(i,E) hj // broadcast simulation

29
�
h1, h2, . . . , hn

�

�
h

0
1, h

0
2, . . . , h

0
n

�

30 if r ⌘ 0 mod T then E new set of links
31 r r + 1

32 // for Gn,p input only:

33 while ¬(h1)
V

i2V hi) do
34 for each i do h

0
i

W
j2N(i,E) hj // broadcast simulation

35
�
h1, h2, . . . , hn

�

�
h

0
1, h

0
2, . . . , h

0
n

�

36 if r ⌘ 0 mod T then E new set of links
37 r r + 1

38 output k

 fixed # rounds for the
leader to collect

at least k-1-1/kc energy

 collect until leader has
at least k-1-1/kc energy

parametric
dynamics

to handle
disconnection in

G(n,p)

 fixed # rounds

 parametric Δ

16

Tree topology, average of 20 runs

�n4

T = 10

T = 1280

T = 1

1

10

100

�
0

10

20

30

40

50

60

70

80

Network size

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

C
o
m
m
u
n
i
c
a
t
i
o
n
r
o
u
n
d
s

Path topology, average of 20 runs

�n4

T = 10

T = 1280

T = 1

1

10

100

�
0

10

20

30

40

50

60

70

80

Network size

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

C
o
m
m
u
n
i
c
a
t
i
o
n
r
o
u
n
d
s

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 10 20 30 40 50 60 70 80

C
o
m
m
u
n
i
c
a
t
i
o
n
r
o
u
n
d
s

Network size

Star topology, � = n� 1, average of 20 runs

�n4

T = 1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 10 20 30 40 50 60 70 80

C
o
m
m
u
n
i
c
a
t
i
o
n
r
o
u
n
d
s

Network size

G(n, p) topology, � = n� 1, T = 160, average of 20 runs

�n4

p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

IC Simulations

Random Rooted
Unlabeled Trees

Extremal
topologies

Random Networks

All of them
below Δn4 !!!
(actually Δn3)

Centralized simulator provides upper bound for distributed implementation.

log scale!

17

Future and Ongoing Work
• Improve lower bound.
• Distributed implementation that does not

require synchronization.
• Remove the knowledge of Δ using o(2n) space.
• Other computations in ADNs.

Thank you!

