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The Counting Problem

How do you count the size of your group,

if the members are all identical and move?




Why do we care?

The problem is clean, but why do we care?
Distributed protocols

need the number of processors to decide termination.

We need a protocol: « Given a system of n nodes,

all nodes eventually terminate knowing n »




Anonymous Dynamic Networks

* Fixed set of n nodes
— No identifiers or labels
— A special node, called the leader [1]
* Synchronous communication : At each round
— a node broadcasts a message to its neighbors
— receives the messages of its neighbors
— executes some local computation

« 1-interval connectivity [2]
— communication links may change from round to round, but
— at each round the network is connected

* An upper bound A on the maximum degree is known by all nodes

[1] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013
[2] Fabian Kuhn, Nancy A. Lynch, Rotem Oshman. Distributed computation in dynamic networks. STOC 2010



Previous work

* Previous Counting Protocols
— Guarantee only an exponential upper bound on the network size [1] or
— They guarantee the exact size but
* Take double-exponential number of rounds [2] or
* Take exponential number of rounds, but do not ferminate [2] or
* Terminate but no running-time guarantees [3]
— (very) recently, exact-size exponential time Counting with termination:
* [5] Incremental Counting (IC): poly space.

Exponential speedup,
« [6]EXT Counting: no A but exponential space. but still not practical

* Lower bound on the time complexity
— ()(D) where D is the dynamic diameter and
— ()(logn) even if D is constant [4] Huge gap

[1] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013
[2] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic networks. ICDCN 2014
[3] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous dynamic networks under worst-case adversary. ICDCS 2014

[4] G. A. Di Luna and R.Baldoni. Investigating the cost of anonymity on dynamic networks. 2015.

[5] A. Milani and M. A. Mosteiro. A faster counting protocol for anonymous dynamic networks. OPODIS 2015.
[6] R.Baldoni and G. A. Di Luna. Non Trivial Computations in Anonymous Dynamic Networks. OPODIS 2015.



Contributions

* Experimental evaluation of Incremental Counting:
- Incremental Counting is polynomial (and practical)
- variety of input network topologies that may appear in practice
- insight on network dynamics impact on dissemination



Incremental Counting

Initially, each non-leader has “energy” 1

1. Guess a size k of the system
— start from k=2

2. Collection phase:
— to let the leader collect "enough” energy




IC Collection Phase example
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Incremental Counting

Initially, each non-leader has “energy” 1

1. Guess a size k of the system
— start from k=2 @
2. Collection phase: (L
— to let the leader collect “enough” energy "@> % @

3. Verification phase:
— Yo check whether the guess k is correct \@/
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Challenges for Verification

IC Verification Phase:
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Incremental Counting

Initially, each non-leader has “energy” 1

1. Guess a size k of the system
— start from k=2

2. Collection phase:
— to let the leader collect "enough” energy

3. Verification phase:
— to check whether the guess k is correct

4. Notification phase:
— k=n: let all nodes know that k is the size
— k<n: wait and go to step 2, guessing k+1




Incremental Counting
Worst-case analysis:

Initially, each non-leader has “energy"” 1 IC Compu'l'es exact size




IC Simulations: inputs

* Extremal cases:

- path with the leader in one end

- star centered at the leader
* Random graph (Erdos-Renyi)
- need to handle disconnections

* Random tree rooted at the leader:

Uniform from Algorithm 2: Random tree generator algorithm. Auxiliary functions in
equivalence classes Algorithm 3.
defined by 1 Function GENTREE(n, A)
isomor'phisms 2 t < SIZES(n) // Compute number of unlabeled rooted trees of size
1,2,...,n.
p < DISTRIB(¢,n) // Compute distributions on subtrees for each n.
4 tree <~ RANRUT(p,n) // Choose an unlabeled rooted tree uniformly at
random.
Pruned down to PRUNE (tree, A) // Move subtrees downwards until max degree of tree
max degree A is 4.
6 return tree




Centralized simulator

Algorithm 1: INCREMENTAL COUNTING algorithm for the leader node.

1 k+1
2 halt + false
3 while —halt do
4 k+—k+1
5 IsCorrect + true
6 er+ 0

// Collection P
7 for each of (k) communication rounds do

receive e, e, ...es from neighbors, where 1 < s < A
ep<—¢€pt+eyt+e+ ...+ eg

// Verification Phase
10 for each of 1 + [%/kc—‘ commaunication rounds do
11 receive e1,eq,...¢es from n where 1 < s < A
12 if k—1-1/k°<ey<k-—1the
13 for j:=1...sdo
14 if e; > 1/k° then
15 L |_ IsCorrect + false
16 else
17 |_ IsCorrect < false

// Notification Phase
18 for each of k communication rounds do
19 if IsCorrect then
20 broadcast (Halt)
21 halt < true
22 else
23 |_ do nothing
24 output k
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k< 1, IsCorrect < false, r + 1, E < ne
while —IsCorrect do
k <+ k+1, IsCorrect < true

Collection Phase:
(61,62,63,...,6n) — (0,1,1,..
while e; <k —1— 1/kl‘01
(el,ez,‘..,en) +~ F(E '(61,62,...,
if r=0 mod T then
r<—r+1

Verification Phase:
if e1 > k — 1 then IsCorrec
(e1,€b,€5,...,€n) < (0,ez,e5...,
for 1+ [k/(1 — 1/k"°1)] dterations d
g for each i do e < max;cn(, By} €
(€1, e, ... en) + (ef e, ... en
if r =0 mod T then E < new set of lin
r<—r+1

if ¢} > 1/k"°" then IsCorrect + fa

Notification Phase:

(h1,h2,h3,.. .,hn) < (

halt flags

for k iterations do
for each i do h} +
(hl,hg, .. .,hn) <
if =0 mod T then E < new set o
r<—nr+1

output k

en)T // broadcast simulation
set of links

roadcast simulation




IC Simulations

Tree topology, average of 20 runs Path topology, average of 20 runs
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Centralized simulator provides upper bound for distributed implementation. 16



Future and Ongoing Work

Improve lower bound.

Distributed implementation that does not
require synchronization.

Remove the knowledge of A using o(2") space.
Other computations in ADNSs.

17



Thank you!



