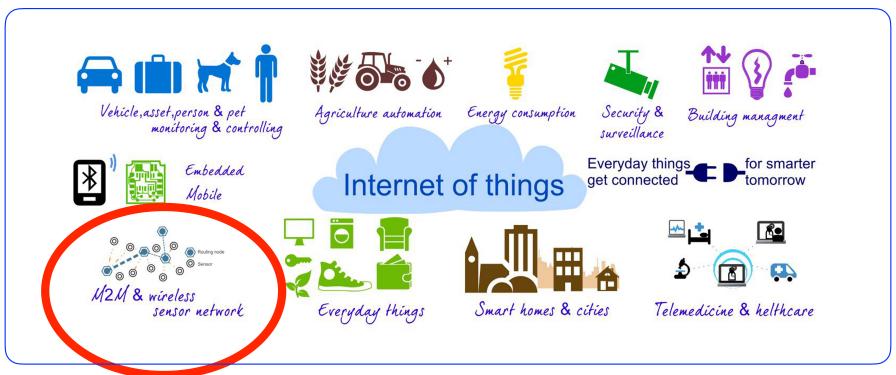
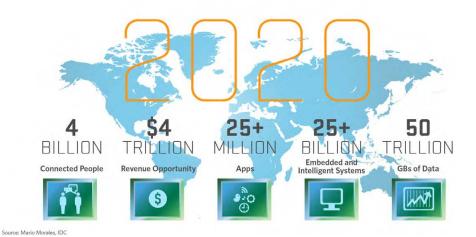
Counting in Practical Anonymous Dynamic Networks is Polynomial

Maitri Chakraborty, Alessia Milani, and Miguel A. Mosteiro

NETyS 2016

The Internet of Things







The Counting Problem

How do you count the size of your group,

if the members are all identical and move?

I don't know! You all look the same, You also look the same as did I already count you? everyone else!!

Why do we care?

The problem is clean, but why do we care?

Distributed protocols

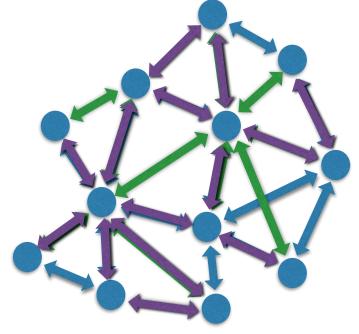
need the number of processors to decide termination.

We need a protocol: « Given a system of n nodes,

all nodes eventually terminate knowing n »

Anonymous Dynamic Networks

- Fixed set of n nodes
 - No identifiers or labels
 - A special node, called the leader [1]
- Synchronous communication : At each round
 - a node broadcasts a message to its neighbors
 - receives the messages of its neighbors
 - executes some local computation
- 1-interval connectivity [2]
 - communication links may change from round to round, but
 - at each round the network is connected
- An upper bound Δ on the maximum degree is known by all nodes



[1] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013 [2] Fabian Kuhn, Nancy A. Lynch, Rotem Oshman. Distributed computation in dynamic networks. STOC 2010

Previous work

Previous Counting Protocols

- Guarantee only an exponential upper bound on the network size [1] or
- They guarantee the exact size but
 - Take double-exponential number of rounds [2] or
 - Take exponential number of rounds, but do not terminate [2] or
 - Terminate but no running-time guarantees [3]
- (very) recently, exact-size exponential time Counting with termination:
 - [5] Incremental Counting (IC): poly space.
 - [6] EXT Counting: no Δ but exponential space.

Lower bound on the time complexity

- $-\Omega(D)$ where D is the dynamic diameter and
- $\Omega(\log n)$ even if D is constant [4]

Exponential speedup, but still not practical

Huge gap

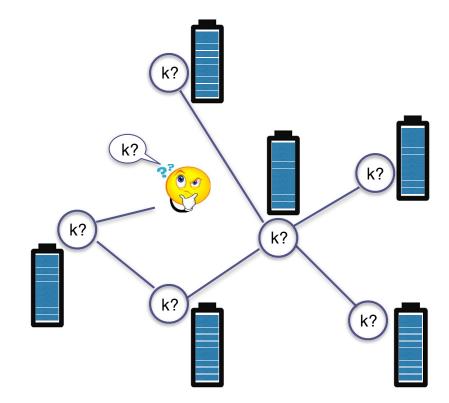
- [1] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and counting in anonymous unknown dynamic networks. SSS 2013
- [2] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic networks. ICDCN 2014
- [3] G. A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous dynamic networks under worst-case adversary. ICDCS 2014
- [4] G. A. Di Luna and R.Baldoni. Investigating the cost of anonymity on dynamic networks. 2015.
- [5] A. Milani and M. A. Mosteiro. A faster counting protocol for anonymous dynamic networks. OPODIS 2015.
- [6] R.Baldoni and G. A. Di Luna. Non Trivial Computations in Anonymous Dynamic Networks. OPODIS 2015.

Contributions

- Experimental evaluation of Incremental Counting:
 - Incremental Counting is polynomial (and practical)
 - variety of input network topologies that may appear in practice
 - insight on network dynamics impact on dissemination

Initially, each non-leader has "energy" 1

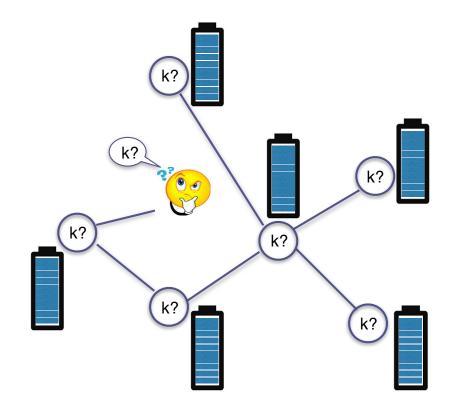
- 1. Guess a size k of the system
 - start from k=2
- 2. Collection phase:
 - to let the leader collect "enough" energy



IC Collection Phase example End of round 1 Round 1 The collection continues for a fixed number of rounds T that depends on the estimate kind Time is large enough to drain all the nergy in the network. End of round 2 Round 2

Initially, each non-leader has "energy" 1

- 1. Guess a size k of the system
 - start from k=2
- 2. Collection phase:
 - to let the leader collect "enough" energy
- 3. Verification phase:
 - to check whether the guess k is correct



Challenges for Verification

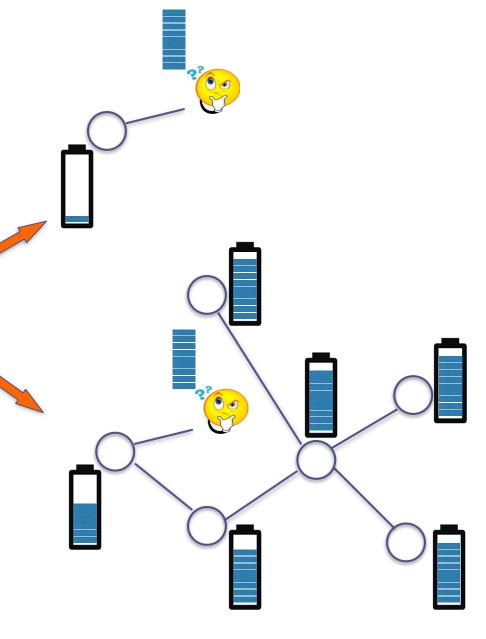
If $e_{leader} > k-1$ k < n

But,

if $k-1-1/k^c \le e_{leader} \le k-1$???

Need to check if some nonleader has more than

1/k° energy left.



Initially, each non-leader has "energy" 1

1. Guess a size k of the system

– start from k=2

2. Collection phase:

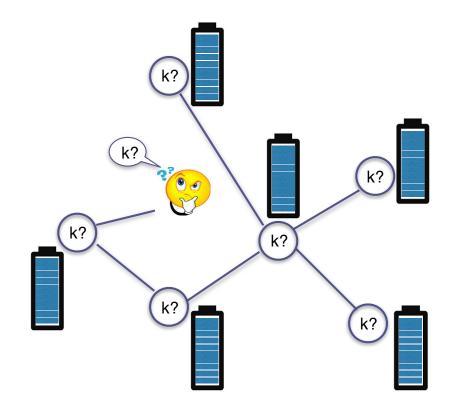
- to let the leader collect "enough" energy

3. Verification phase:

to check whether the guess k is correct

4. Notification phase:

- k=n: let all nodes know that k is the size
- k<n: wait and go to step 2, guessing k+1



Initially, each non-leader has "energy" 1

- 1. Guess a size k of the system
 - start from k=2

2. Collection phase:

- to let the leader collect "enough" energy

3. Verification phase:

to check whether the guess k is correct

4. Notification phase:

- k=n: let all nodes know that k is the size
- k<n: wait and go to step 2, guessing k+1

Worst-case analysis:

IC computes exact size in less than $(2\Delta)^{n+1}(n+1)$ $n+1)/ln(2\Delta)$ round con

Practical for IoT subnetworks!!

IC Simulations: inputs

- Extremal cases:
 - path with the leader in one end
 - star centered at the leader
- Random graph (Erdos-Renyi)
 - need to handle disconnections
- · Random tree rooted at the leader:

Uniform from equivalence classes defined by isomorphisms

Pruned down to max degree Δ

Algorithm 2: Random tree generator algorithm. Auxiliary functions in Algorithm 3.

```
1 Function GENTREE (n, \Delta)
```

 $t \leftarrow \mathtt{SIZES}(n)$ // Compute number of unlabeled rooted trees of size $1,2,\ldots,n$.

 $p \leftarrow \mathtt{DISTRIB}(t,n)$ // Compute distributions on subtrees for each n.

tree $\leftarrow \mathtt{RANRUT}(p,n)$ // Choose an unlabeled rooted tree uniformly at random.

PRUNE (tree, Δ) // Move subtrees downwards until max degree of tree is Δ .

6 return tree

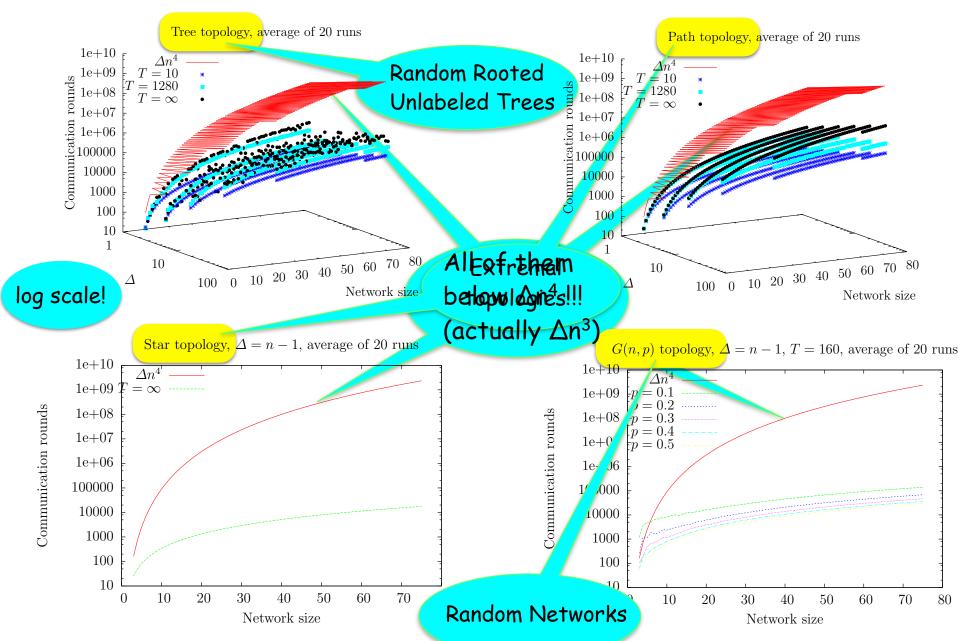
Centralized simulator

```
Algorithm 1: INCREMENTAL COUNTING algorithm for the leader node.
```

```
1 \ k \leftarrow 1
                                                fixed # rounds for the
 2 halt \leftarrow false
 з while \neg halt do
                                                    leader to collect
        k \leftarrow k + 1
                                              at least k-1-1/k<sup>c</sup> energy
       IsCorrect \leftarrow true
       e_{\ell} \leftarrow 0
       // Collection Phase
        for each of \tau(k) communication rounds do
            receive e_1, e_2, \dots e_s from neighbors, where 1 \le s \le \Delta
           e_{\ell} \leftarrow e_{\ell} + e_1 + e_2 + \ldots + e_s
        // Verification Phase
        for each of 1 + \left| \frac{k}{1 - 1/k^c} \right| communication rounds do
10
            receive e_1, e_2, \dots e_s from neighbors where 1 \leq s \leq \Delta
11
            if k - 1 - 1/k^c < e_{\ell} < k - 1 then
                for j := 1 \dots s do
13
                    if e_i > 1/k^c then
                                                                       fixed # rounds
                       IsCorrect \leftarrow false
15
            else
16
                IsCorrect \leftarrow false
17
        // Notification Phase
        for each of k communication rounds do
18
            if IsCorrect then
19
                broadcast \langle Halt \rangle
20
                halt \leftarrow true
            else
                do nothing
24 output k
```

```
1 k \leftarrow 1, IsCorrect \leftarrow false, r \leftarrow 1, E \leftarrow new
 2 while \neg IsCorrect do
                                                                      collect until leader has
         k \leftarrow k + 1, IsCorrect \leftarrow \mathsf{true}
                                                                   at least k-1-1/k<sup>c</sup> energy
         Collection Phase:
               (e_1, e_2, e_3, \dots, e_n) \leftarrow (0, 1, 1, \dots)
 5
               while e_1 < k - 1 - 1/k^{1.01} do
                    \left(e_1,e_2,\ldots,e_n\right)\leftarrow\mathbf{F}(E)\cdot\left(e_1,e_2,\ldots,e_n\right)^T\text{// broadcast simulation}
                   if r \equiv 0 \mod T then E new set of links
                   r \leftarrow r + 1
          Verification Phase:
10
                                                                             parametric \Delta
               if e_1 > k-1 then IsCorrect
11
              (e'_1, e'_2, e'_3, \dots, e'_n) \leftarrow (0, e_2, e_3, \dots, e_n)
for 1 + \lceil k/(1 - 1/k^{1.01}) \rceil iterations do
12
13
                    for each i do e_i'' \leftarrow \max_{i \in N(i,E) \cup \{i\}} e_i'
                                                                                broadcast simulation
14
                   (e'_1, e'_2, \dots, e'_n) \leftarrow (e''_1, e''_2, \dots, e''_n)
15
                   if r \equiv 0 \mod T then E \leftarrow \text{new set of link}
                                                                                        parametric
                                                                                          dynamics
              if e_1' > 1/k^{1.01} then IsCorrect \leftarrow false
                                                                                         to handle
25
         Notification Phase:
               (h_1, h_2, h_3, \dots, h_n) \leftarrow (IsCorrect) ise, fals
                                                                                   disconnection in
              halt flags
              for k iterations do
                                                                                            G(n,p)
                   for each i do h'_i \leftarrow \bigvee_{i \in N(i,E)} h_i
28
                                                                            11
                    (h_1,h_2,\ldots,h_n) \leftarrow (h'_1,h'_2,\ldots,h'_n)
29
                   if r \equiv 0 \mod T then E \leftarrow \text{new set of}
                  r \leftarrow r + 1
32
34
35
36
38 output k
```

IC Simulations



Centralized simulator provides upper bound for distributed implementation.

Future and Ongoing Work

- Improve lower bound.
- Distributed implementation that does not require synchronization.
- Remove the knowledge of Δ using o(2ⁿ) space.
- Other computations in ADNs.

Thank you!