Internet Computing:
Using Reputation to
Select Workers from a Pool

Evgenia Christoforou, Antonio Fernandez Anta,
Chryssis Georgiou, and Miguel A. Mosteiro

NETyS 2016

Internet-based task computing

Increasing demand for processing computationally
iIntensive tasks.

Powerful parallel machines are expensive and are not
globally available.

Growing use and capabilities of personal computers.
Wide access to the Internet.

Internet-based task computing

* |ncreasing demand for processing computationally
Intensive tasks.

e Powerful parallel machines are expensive and are not
globally available.

e Growing use and capabilities of personal computers.
 Wide access to the Internet.

Internet emerges as a viable platform:
e Grid and cloud computing.

e.g. EGEE Grid, TERA Grid, Amazon’s EC2

* Volunteering computing.

e.g. SETI@home, AIDS@home, Folding@home

e Crowd computing.

e.g. Amazon Mechanical Turk (human based-computing)

SETI@home by the numbers

As reported in November 2009:

278,832 active CPUs (out of a total of 2.4 million) in 234 countries.
769 TFLOPs.

SETI@home by the numbers

As reported in November 2009:

278,832 active CPUs (out of a total of 2.4 million) in 234 countries.
769 TFLOPs.

Proc. power comparable with supercomputers,
at a fraction of the cost!
Great potential limited by untrustworthy entities.

Internet-based task computing

A more dynamic and unpredictable setting:

Number of tasks is not fixed or known a priori:

It may be anything from one to many, even unbounded.

Tasks arrive dynamically and continuously.

Dynamic participation:
Participating processors (workers) could change over time,

not only due to failures.

Increased frequency of failures:

Failures are the norm rather than the exception.

Internet-based task computing

A more dynamic and unpredictable setting:

Number of tasks is not fixed or known a priori:

It may be anything from one to many, even unbounded.

Tasks arrive dynamically and continuously.
Dynamic participation:
Participating processors (workers) could change over time,

not only due to failures.

Increased frequency of failures:

Failures are the norm rather than the exception.

A whole new world to study tradeoffs between
efficiency and fault tolerance!

Master-worker computing

Master

\-
—

A

Worker

Worker

Master-worker computing

Master
—
\ '
task \
’ task
task
-~
[/ result
-/ result
4
result

A

Worker

Worker

Master-worker computing

Master

\
\

task N\)

task
Inter+et
/
/- 7 result
4
result

Worker

result

A

|

Worker

One or

many rounds

Master-worker computing

Mechanism for deciding result
Master ' (e.g., majority voting)

=== (|)

task

One or
many rounds

result
result

Worker

REDUNDANCY

Types of workers

Classical distributed computing approach:

* Malicious workers: always return a fabricated incorrect result.

 Altruistic workers: always compute and return a correct result.

[Fernandez-Anta et al.; Konwar; Sarmenta]

Game theoretical approach:

* Rational workers: choose the strategy that maximizes benefit.
[Abraham et al;Golle et al;Shneidman et al; Yurkewych;NCA'08;PLOS One’15]

All three types considered:

* Mechanisms with reward/punishment schemes that
* provide incentives for rationals to be honest

* cope with malicious actions.
[IPDPS’10;NCA'11;DISC’11;TC 14]

Rewards/punishments

WPc worker punishment for being caught cheating
WCr |worker cost of computing the task

WBy worker benefit from master acceptance

MCy master cost for accepting the worker answer
MCa master cost for auditing worker answer

MBgr master benefit from accepting the correct answer
MPw |master punishment for accepting a wrong answer

Task computing scheme

*Master assigns a task to n workers.

*\Workers:
‘Malicious: fabricates a result.
-Altruistic: computes the result.
‘Rational: cheats with probability pC.

eMaster audits with probability pA.

/f master audits:
-computes the task.
‘rewards honest workers and penalizes cheaters.

*|[f master does not audit:
-accepts value returned by “majority” of workers.
‘rewards those in the “majority”.

Types of computations

One-shot

*Model the decisions (cheat or not, audit
or not) as a game.

°Find conditions on the parameters for
Nash equilibria.

*The pC, pA, and n obtained yield
correctness at low cost for the master,
even in presence of malice.

* Trade-off: probability of correct vs. cost.

eConstrains: malice, collusion, unreliable
communication.

[NCA'08;IPDPS’10;DISC'11;NCA11;TC’ 14, PLOS One’15]

Multi-round

eEvolutionary dynamics: pC and pA
updated after each round (n is fixed).

*Reinforcement learning: update function
of worker profit aspiration and master
tolerance to loss.

*Objective: eventual correctness.

e Trade-off: time to correct vs. cost.

esConstrains/features: malice, unreliable
communication, reputation system.

[PODC’12, EUROPAR'12, OPODIS'13, JOSS’13, CCPE’13]

Types of computations

One-shot

*Model the decisions (cheat or not, audit
or not) as a game.

°Find conditions on the parameters for
Nash equilibria.

*The pC, pA, and n obtained yield
correctness at low cost for the master,
even in presence of malice.

* Trade-off: probability of correct vs. cost.

eConstrains: malice, collusion, unreliable
communication.

[NCA'08;IPDPS’10;DISC'11;NCA11;TC’ 14, PLOS One’15]

Multi-round

eEvolutionary dynamics: pC and pA
updated after each round (n is fixed).

*Reinforcement learning: update function
of worker profit aspiration and master
tolerance to loss.

*Objective: eventual correctness.

e Trade-off: time to correct vs. cost.

eConstrains/features: malice, unreliable
communication, reputation system.

[PODC’12, EUROPAR'12, OPODIS'13, JOSS’13, CCPE’13]

But, workers may not be available all the time!
Why not taking advantage of N>>n"? (Internet scale)

Our contributions

*\Ne present a mechanism that

1. it is resilient to non-responsive and unreliable workers:

* responsiveness reputation: replies/assignments ratio.
« 3 truthfulness reputations: ~BOINC, [OPODIS’13], [Sonnek et al.].

2. leverages availability of N>>n workers:
the master chooses the most reputable n workers for each computation.

Our contributions

*\Ne present a mechanism that

1. it is resilient to non-responsive and unreliable workers:

* responsiveness reputation: replies/assignments ratio.
« 3 truthfulness reputations: ~BOINC, [OPODIS’13], [Sonnek et al.].

2. leverages availability of N>>n workers:
the master chooses the most reputable n workers for each computation.
*\We study feasibility in absence of rationals:

showing pools of workers such that eventual correctness
« cannot be achieved unless the master always audits
 achieved forever with minimal auditing.

Our contributions

*\Ne present a mechanism that

1. it is resilient to non-responsive and unreliable workers:

* responsiveness reputation: replies/assignments ratio.
« 3 truthfulness reputations: ~BOINC, [OPODIS’13], [Sonnek et al.].

2. leverages availability of N>>n workers:
the master chooses the most reputable n workers for each computation.

*\We study feasibility in absence of rationals:
showing pools of workers such that eventual correctness

« cannot be achieved unless the master always audits
 achieved forever with minimal auditing.

eExperimental evaluation:

complements analysis for scenarios where rational workers exist.
reputation-types comparison showing reliability/cost trade-offs.

Types of reputation

eResponsiveness:
replies(w) + 1

w) =
plw) assignments(w) + 1
e Truthfulness:
LINEAR:
[Sonnek et al] audited-correct(w) + 1
p(w) = .
audited(w) + 1
EXPONENTIAL:
[OPODIS T3] H;audited—correct(’w)
= 1
p(w) o audited(w) 10>
BOINC.:
1
p(w) =1 (0 if streak(w) < 10)

Protocol

Algorithm 1 Master’s Algorithm

1 pa + x, where x € [p*™, 1]
2 fori<0to N do

select; < 0; reply_select;<— 0; audit_reply_select;<— 0; correct_audit; < 0; streak; < 0
prs; < 1 initialize py-, // initially all workers have the same reputation

forr < 1 to codo

W7 <« {i € N :iis chosen as one of the n workers with the highest p; = prs, * ptr; }
Vi e W7 : select; < select; + 1
send a task T to all workers in W"
collect replies from workers in W' for t time
wait for ¢ time collecting replies as received from workers in W™
R < {i € W" : areply from i was received by time t}
Vi € R : reply_select; < reply_select; + 1
update responsiveness reputation prs, of each workeri € W"
audit the received answers with probability p 4
if the answers were not audited then

accept the value m returned by workers R.,, C R,

where Ym/, Ptry, > ptr R, /l weighted majority of workers in R

else // the master audits

foreach: € R do
audit_reply_select; <— audit_reply_select; + 1
if 2 € F then streak;<— 0 /| F' C R is the set of responsive workers caught cheating
else correct_audit; <— correct_audit; + 1, streak;<— streak; + 1 // honest responsive
update truthfulness reputation py,; I/ depending on the type used

if p¢r, = O then p 4 min{1l,pa + am}

else

Pla < pa+ am(pirp/ptry — T)

pa + min{1l, max{pi"",ps}}
Vi € W" :retarn II; to workeri /I the payoff of workers in W' \ R is zero

for each
round of
computation

Protocol

Algorithm 1 Master’s Algorithm

1 pa <« x, where x € [p'}

)

2 fori<+0to N do

3

o0 O\ Lt

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28

select; < 0; reply_select;<— 0; audit_reply_select;<— 0; correct_audit; < 0; streak; < 0
prs; < 1 initialize py-, // initially all workers have the same reputation

forr < 1 to codo

W7 <« {i € N :iis chosen as one of the n workers with the highest p; = prs, * ptr; }
Vi e W7 : select; < select; + 1
send a task T to all workers in W"
collect replies from workers in W' for t time
wait for ¢ time collecting replies as received from workers in W™
R < {i € W" : areply from i was received by time t}
Vi € R : reply_select; < reply_select; + 1
update responsiveness reputation prs, of each workeri € W"
audit the received answers with probability p 4
if the answers were not audited then

accept the value m returned by workers R, C R,

where Ym/, Ptry, > ptr R, /l weighted majority of workers in R

else // the master audits
foreach: € R do
audit_reply_select; <— audit_reply_select; + 1
if 2 € F then streak;<— 0 /| F' C R is the set of responsive workers caught cheating
else correct_audit; <— correct_audit; + 1, streak;<— streak; + 1 // honest responsive
update truthfulness reputation py,; I/ depending on the type used
if p¢r, = O then p 4 min{1l,pa + am}
else
p.lA —pA+ am(ptrp /ptTR —)
pa <+ min{l, max{pA'", p's}}
Vi € W" :retarn II; to workeri /I the payoff of workers in W' \ R is zero

select
workers
according to
reputation

Protocol

Algorithm 1 Master’s Algorithm

1 pa <« x, where x € [p'}

)

2 fori<+0to N do

select; < 0; reply_select;<— 0; audit_reply_select;<— 0; correct_audit; < 0; streak; < 0
prs; < 1 initialize py-, // initially all workers have the same reputation

forr < 1 to codo

W7 <« {i € N :iis chosen as one of the n workers with the highest p; = prs, * ptr; }
Vi e W7 : select; < select; + 1
send a task T to all workers in W"
collect replies from workers in W' for t time
wait for ¢ time collecting replies as received from workers in W™
R < {i € W" : areply from i was received by time t}
Vi € R : reply_select; < reply_select; + 1
update responsiveness reputation prs, of each workeri € W"
audit the received answers with probability p 4
if the answers were not audited then

accept the value m returned by workers R, C R,

where Ym/, Ptry, > ptr R, /l weighted majority of workers in R

else // the master audits
foreach: € R do
audit_reply_select; <— audit_reply_select; + 1
if 2 € F then streak;<— 0 /| F' C R is the set of responsive workers caught cheating
else correct_audit; <— correct_audit; + 1, streak;<— streak; + 1 // honest responsive
update truthfulness reputation py,; I/ depending on the type used
if p¢r, = O then p 4 min{1l,pa + am}
else
p.lA —pA+ am(ptrp /ptTR —)
pa <+ min{l, max{pA'", p's}}
Vi € W" :retarn II; to workeri /I the payoff of workers in W' \ R is zero

send task
and collect
replies

Protocol

Algorithm 1 Master’s Algorithm

1 pa <« x, where x € [p'}

)

2 fori<+0to N do

select; < 0; reply_select;<— 0; audit_reply_select;<— 0; correct_audit; < 0; streak; < 0
prs; < 1 initialize py-, // initially all workers have the same reputation

forr < 1 to codo

W7 <« {i € N :iis chosen as one of the n workers with the highest p; = prs, * ptr; }
Vi e W7 : select; < select; + 1
send a task T to all workers in W"
collect replies from workers in W' for t time
wait for ¢ time collecting replies as received from workers in W™
R < {i € W" : areply from i was received by time t}
Vi € R : reply_select; < reply_select; + 1
update responsiveness reputation prs, of each workeri € W"
audit the received answers with probability p 4
if the answers were not audited then

accept the value m returned by workers R, C R,

where Ym/, Ptry, > ptr R, /l weighted majority of workers in R

else // the master audits
foreach: € R do
audit_reply_select; <— audit_reply_select; + 1
if 2 € F then streak;<— 0 /| F' C R is the set of responsive workers caught cheating
else correct_audit; <— correct_audit; + 1, streak;<— streak; + 1 // honest responsive
update truthfulness reputation py,; I/ depending on the type used
if p¢r, = O then p 4 min{1l,pa + am}
else
p.lA —pA+ am(ptrp /ptTR —)
pa <+ min{l, max{pA'", p's}}
Vi € W" :retarn II; to workeri /I the payoff of workers in W' \ R is zero

update
responsiveness
reputation

Protocol

Algorithm 1 Master’s Algorithm

1 pa <« x, where x € [p'}

)

2 fori<+0to N do

select; < 0; reply_select;<— 0; audit_reply_select;<— 0; correct_audit; < 0; streak; < 0
prs; < 1 initialize py-, // initially all workers have the same reputation

forr < 1 to codo

W7 <« {i € N :iis chosen as one of the n workers with the highest p; = prs, * ptr; }
Vi e W7 : select; < select; + 1
send a task T to all workers in W"
collect replies from workers in W' for t time
wait for ¢ time collecting replies as received from workers in W™
R < {i € W" : areply from i was received by time t}
Vi € R : reply_select; < reply_select; + 1
update responsiveness reputation prs, of each workeri € W"
audit the received answers with probability p 4
if the answers were not audited then

accept the value m returned by workers R, C R,

where Ym/, Ptry, > ptr R, /l weighted majority of workers in R

else // the master audits
foreach: € R do
audit_reply_select; <— audit_reply_select; + 1
if 2 € F then streak;<— 0 /| F' C R is the set of responsive workers caught cheating
else correct_audit; <— correct_audit; + 1, streak;<— streak; + 1 // honest responsive
update truthfulness reputation py,; I/ depending on the type used
if p¢r, = O then p 4 min{1l,pa + am}
else
p.lA —pA+ am(ptrp /ptTR —)
pa <+ min{l, max{pA'", p's}}
Vi € W" :retarn II; to workeri /I the payoff of workers in W' \ R is zero

audit with
probability pA

Protocol

Algorithm 1 Master’s Algorithm

1 pa <« x, where x € [p'}

)

2 fori<+0to N do

select; < 0; reply_select;<— 0; audit_reply_select;<— 0; correct_audit; < 0; streak; < 0
prs; < 1 initialize py-, // initially all workers have the same reputation

forr < 1 to codo

W7 <« {i € N :iis chosen as one of the n workers with the highest p; = prs, * ptr; }
Vi e W7 : select; < select; + 1
send a task T to all workers in W"
collect replies from workers in W' for t time
wait for ¢ time collecting replies as received from workers in W™
R < {i € W" : areply from i was received by time t}
Vi € R : reply_select; < reply_select; + 1
update responsiveness reputation prs, of each workeri € W"
audit the received answers with probability p 4
if the answers were not audited then

accept the value m returned by workers R, C R,

where Ym/, Ptry, > ptr R, /l weighted majority of workers in R

else // the master audits
foreach: € R do
audit_reply_select; <— audit_reply_select; + 1
if 2 € F then streak;<— 0 /| F' C R is the set of responsive workers caught cheating
else correct_audit; <— correct_audit; + 1, streak;<— streak; + 1 // honest responsive
update truthfulness reputation py,; I/ depending on the type used
if p¢r, = O then p 4 min{1l,pa + am}
else
p.lA —pA+ am(ptrp /ptTR —)
pa <+ min{l, max{pA'", p's}}
Vi € W" :retarn II; to workeri /I the payoff of workers in W' \ R is zero

if NOT audited,
accep

wel
truth

i

cany
hfeé
ulness r'ep

Protocol

Algorithm 1 Master’s Algorithm

1 pa <« x, where x € [p'}

min]
?

2 fori<+0to N do

select; < 0; reply_select;<— 0; audit_reply_select;<— 0; correct_audit; < 0; streak; < 0
prs; < 1 initialize py-, // initially all workers have the same reputation

forr < 1 to codo

W7 <« {i € N :iis chosen as one of the n workers with the highest p; = prs, * ptr; }
Vi e W7 : select; < select; + 1
send a task T to all workers in W™
collect replies from workers in W' for t time
wait for ¢ time collecting replies as received from workers in W™
R < {i € W" : areply from i was received by time t}
Vi € R : reply_select; < reply_select; + 1
update responsiveness reputation prs, of each workeri € W"
audit the received answers with probability p 4
if the answers were not audited then

accept the value m returned by workers R, C R,

where Ym/, Ptry, > ptr R, /l weighted majority of workers in R

else // the master audits

foreach: € R do
audit_reply_select; <— audit_reply_select; + 1
if 2 € F then streak;<— 0 /| F' C R is the set of responsive workers caught cheating
else correct_audit; <— correct_audit; + 1, streak;<— streak; + 1 // honest responsive
update truthfulness reputation py,; I/ depending on the type used

if p¢r, = O then p 4 min{1l,pa + am}

else

Pla < pa+ am(pirp/ptry — T)

pa + min{1l, max{p"", pa}}
Vi € W" :retarn II; to workeri /I the payoff of workers in W' \ R is zero

if audited,
update truthfulness
reputation

Protocol

Algorithm 1 Master’s Algorithm

1 pa <« x, where x € [p'}

)

2 fori<+0to N do

21

select; < 0; reply_select;<— 0; audit_reply_select;<— 0; correct_audit; < 0; streak; < 0
prs; < 1 initialize py-, // initially all workers have the same reputation

forr < 1 to codo

W7 <« {i € N :iis chosen as one of the n workers with the highest p; = prs, * ptr; }
Vi e W7 : select; < select; + 1
send a task T to all workers in W"
collect replies from workers in W' for t time
wait for ¢ time collecting replies as received from workers in W™
R < {i € W" : areply from i was received by time t}
Vi € R : reply_select; < reply_select; + 1
update responsiveness reputation prs, of each workeri € W"
audit the received answers with probability p 4
if the answers were not audited then

accept the value m returned by workers R, C R,

where Ym/, Ptry, > ptr R, /l weighted majority of workers in R

else // the master audits
foreach: € R do
audit_reply_select; <— audit_reply_select; + 1
if 2 € F then streak;<— 0 /| F' C R is the set of responsive workers caught cheating
else correct_audit; <— correct_audit; + 1, streak;<— streak; + 1 // honest responsive
update truthfulness reputation py,; I/ depending on the type used
if p¢r, = O then p 4 min{1l,pa + am}
else
p.lA —pA+ am(ptrp /ptTR —)
pa <+ min{l, max{pA'", p's}}
Vi € W" :retarn II; to workeri /I the payoff of workers in W' \ R is zero

...and pA

Protocol

Algorithm 1 Master’s Algorithm

1 pa <« x, where x € [p'}

)

2 fori<+0to N do

select; < 0; reply_select;<— 0; audit_reply_select;<— 0; correct_audit; < 0; streak; < 0
prs; < 1 initialize py-, // initially all workers have the same reputation

forr < 1 to codo

W7 <« {i € N :iis chosen as one of the n workers with the highest p; = prs, * ptr; }
Vi e W7 : select; < select; + 1
send a task T to all workers in W™
collect replies from workers in W' for t time
wait for ¢ time collecting replies as received from workers in W™
R < {i € W" : areply from i was received by time t}
Vi € R : reply_select; < reply_select; + 1
update responsiveness reputation prs, of each workeri € W"
audit the received answers with probability p 4
if the answers were not audited then

accept the value m returned by workers R, C R,

where Ym/, Ptry, > ptr R, /l weighted majority of workers in R

else // the master audits
foreach: € R do
audit_reply_select; <— audit_reply_select; + 1
if 2 € F then streak;<— 0 /| F' C R is the set of responsive workers caught cheating
else correct_audit; <— correct_audit; + 1, streak;<— streak; + 1 // honest responsive
update truthfulness reputation py,; I/ depending on the type used
if p¢r, = O then p 4 min{1l,pa + am}
else tolerance
N FPA*‘Oém(PtrF//?trR —) to IOSS
pa min{1, max{p}"", p/s}}
Vi € W" :retarn II; to workeri /I the payoff of workers in W' \ R is zero

pay/penalize
accordingly

Protocol

Algorithm 1 Master’s Algorithm

0 1O\ L A~ W IN =

N W S Gy G Sy W S
<N O\ N R W= OO

NI \O I \O I \O I \O T O B S R s
NN K~ W — O O

\O]
-

~ 0O

\
c

pA — x, where x € [p'R*", 1]
for: < 0t N do
select; < 0; reply_select;<— 0; audit_reply_select;<— 0; correct_audit; < 0; streak; < 0
prs; < 1 initialize py-, // initially all workers have the same reputation
for r < 110 oo do
W7 <« {i € N :iis chosen as one of the n workers with the highest p; = prs, * ptr; }
Vi e W7 : select; < select; + 1
send a task T to all workers in W™
collect replies from workers in W' for t time
wait for ¢ time collecting replies as received from workers in W™
R < {i € W" : areply from i was received by time t}
Vi € R : reply_select; < reply_select; + 1
update responsiveness reputation prs, of each workeri € W"
audit the received answers with probability p 4
if the answers were not audited then
accept the value m returned by workers R, C R,
where Ym/, Ptry, > ptr R, /l weighted majority of workers in R

else // the master audits
foreach: € R do
audit_reply_select; <— audit_reply_select; + 1
if 2 € F then streak;<— 0 /| F' C R is the set of responsive workers caught cheating
else correct_audit; <— correct_audit; + 1, streak;<— streak; + 1 // honest responsive
update truthfulness reputation py,; I/ depending on the type used
if p¢r, = O then p 4 min{1l,pa + am}
else tolerance
N FPA*‘Oém(PtrF//?trR —) to IOSS
pa min{1, max{p}"", p/s}}
Vi € W" :retarn II; to workeri /I the payoff of workers in W' \ R is zero

Protocol

Algorithm 2 Algorithm for Rational Worker ¢

1 pci <y, wherey € [0, 1]
2 repeat forever
3 wait for a rask I’ from the master
4 if available then
5 decide whether to cheat or not independently with distribution P(cheat) = pc
6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff 11;
9 pci < max{0, min{1, pc; + aw(Il; — a;)}}
10 else
11 send compute(T') to the master
12 get payoff 11;
13 pci < max{0, min{1, pc; — aw(Il; — WCr —a;)}}

Protocol

Algorithm 2 Algorithm for Rational Worker ¢

1 pci <y, wherey € [0, 1]
2 repeat forever
3 wait for a rask I’ from the master
: 4 if available then
CheaT. WI'I'h 5 decide whether to cheat or not independently with distribution P(cheat) = pc
pr'Obabl I 'TY PC 6 if the decision was to cheat then

7 send arbitrary solution to the master
8 get payoff 11;
9 pci < max{0, min{1, pc; + aw(Il; — a;)}}

10 else

11 send compute(T') to the master

12 get payoff 11;

13 pci < max{0, min{1, pc; — aw(Il; — WCr —a;)}}

Protocol

Algorithm 2 Algorithm for Rational Worker ¢

1 pci <y, wherey € [0, 1]

2 repeat forever

3 wait for a task 'T' from the master

if available then

decide whether to cheat or not independently with distribution P(cheat) = pc;

if the decision was to cheat then

send arbitrary solution to the master

get payoff 11;

pci < max{0, min{1, pc; + o (Il; — ai)}}

else
send compute(T') to the master
get payoff 11;

- pei + max{0, min{1, pc; — v (Il; —

Feasibility without rationals

Theorem 3. Consider a system in which workers are either altruistic or malicious and
there is at least one altruistic worker i with d; = 1 in the pool. Eventual correctness
is satisfied if the mechanism of Algorithm 1 is used with the responsiveness reputation
and any of the truthfulness reputations LINEAR or EXPONENTIAL.

~N

Theorem 4. Consider a system in which workers are either altruistic or malicious and
there is at least one altruistic worker 1 with d; = 1 in the pool. In this system, the mech-
anism of Algorithm 1 is used with the responsiveness reputation and the truthfulness
reputation BOINC. Then, eventual correctness is satisfied if and only if the number of
altruistic workers with d; < 1 is smaller than n.

J

Simulations: workers always available (d="

n=9, convergence: pA = pAmin = 0.01

300 \ ‘ ‘ 300 \ \ ‘ 300 ‘ ‘ ‘
o convergence o convergence o convergence
o audits o audits o audits
250" incorrect results R 2501l " incorrect results R 250" incorrect results |
200 b 200 b 200+
[]
2 2 2 f
5 1501 T } 4 3 150F 4 3 150F
e (< <
[]
[] f []
100+ [] [] 1 100 1 100
sor 1 st 1 sof f ; !
1 o 1 i i i { | E } }]
b i s § i 5
0 |] [| [| m o m 0 | i | n [] m m m 0 B L] | B] [] m m m
L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99 L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99 L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99
reputation type/pool size reputation type/pool size reputation type/pool size
(al) (b1) (cl)
300 \ ‘ ‘ ‘ 300 \ \ ‘ ‘ ‘ 300 \ ‘ ‘ ‘ ‘
o convergence o convergence o convergence
o audits o audits o audits
250" incorrect results 8 250~ incorrect results R 250" incorrect results
[]
200+ R 200+ R 200+
2 2 2
3 150+ } 1 3150 1 3 150
(<4 e <
[]
'] []
L) [
100} 1 100} 1 100} l
50+ b 50+ + b 501 m
E o - i o m [] D x !
@ ™ m = = m] m | - o | | m
= = = e = = e = = o= ®w w p w f p a g [.., ,— .. e - :- -LZL
L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99 L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99 L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99
reputation type/pool size reputation type/pool size reputation type/pool size

(a2) (b2) (c2)

Simulations: workers always available (d="

n=9, convergence: pA = pAmin = 0.01

300 \ ‘ I
o convergence
o audits
o5l 7 incorrect results
200
initial £ 150/
pA=0.5 =
[]
100+ [] [
50~ 1 1
1 o
B i §
0 | ! I [| m
L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99
reputation type/pool size
(al)
300 \ ‘ I ‘
o convergence
o audits
o5l ° incorrect results
200
initial T
p A=1 § 150
']
100 {
50+
] = | = E =

L-p5 L-p9 L-p99 E-p5 E—p9 E-p99 B_p5 B-p9 B-p99

rational / # malicious =

reputation type/pool size

(a2)

5/4

round

round

300

250"

200

150

100

50

300

250

200

150

100

50

o convergence
o audits

o incorrect results

I o

o

l

|

L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99
reputation type/pool size

(b1)

o convergence
o audits

o incorrect results

L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99

reputation type/pool size

(62)

4/5

round

round

300

250

200

150

100

50

300

250

200

150

100

50

convergence
audits

incorrect results

i

b g

t

L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9

reputation type/pool size

el

B-p99

o

convergence
audits

incorrect results

L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99

reputation type/pool size

(c2)

1/8

Simulations: workers always available (d="

n=9, convergence: pA = pAmin = 0.01

rational / # malicious =

reputation type/pool size

(a2)

5/4

reputation type/pool size

(62)

4/5

reputation type/pool size

(c2)

1/8

300 : ; ; 300 : ; ; 300 ; ; ;
o convergence o convergence o convergence
o audits o audits o audits
250" incorrect results R 2501l " incorrect results R 250" incorrect results |
2001 1 200f 1 200F
[]
. g 'a '° 'c -
initial 5 150/ 1 5150/ 1 5150/
pA=0.5 = = =
' L
100+ [] [b 100y b 100
sop | 1 s0f | 50t s | !
1 * g 0 v . } ! §
b § s i g i A
0 I] [| m m m 0 | i | [] m L] n L] L] m n m
L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99 L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p! . L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99
reputation type/pool size reputation type/pool size SLOW & reputation type/pool size
EXPENSIVE
(al) (b1) (cl)
300 : : : : 300 : — : : . : :
o convergence o convergence o convergence
o audits o audite o audits
2501 o incorrect results | om0 = rect results | 2501 o incorrect results
[]
200 b 200 b 200+ T
pA=1 § 150 } b § 150+ b g 150+
e —— []
'] []
L) [
100+ { 1 100+ 1 100+ l
501 b 501 7 50 m
i . i n 3 . g 0
= = [| a = = s m o ™ = m
L-p5 L-p9 L-p99 E-p5 E—p9 E-p99 B_p5 B-p9 B-p99 L-p5 L-p9 L-p99 E-p5 E—p9 E-p99 B-p5 B-p9 B-p99 L-p5 L-p9 L-p99 E—p5 E-p9 E-p99 B-p5 B-p9 B_p99

Simulations: workers always available (d="

n=9, convergence: pA = pAmin = 0.01

300 : ; ;
o convergence
o audits
o5l 7 incorrect results
200
initial £ 150/ }
pA=0.5 =
[]
100+ [] [
501 1 1
1 o [}
Frf e
0‘ | [] I [| m m m
L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99
reputation type/pool size
(al)
LESS 300 : : : :
o convergence
: AUDITS : ? conve
_/\ - 250! o incorrect results
200
initial)
pA=1 . 3 150/ }
\ T
100 {
501
E o
] = | = m =
L-p5 L-p9 L-p99 E-p5 E—p9 E-p99 B_p5 B-p9 B-p99
reputation type/pool size
(a2)
rational / # malicious = 5/4

round

round

300

250"

200

100

50

300

250

200

150

100

50

o

o

o

convergence
audits
incorrect results

I o

o

l

|

L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99
reputation type/pool size

o

o

o

convergence
audits
incorrect results

L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99
reputation type/pool size

(b1)

(62)

4/5

round

round

300

250

o convergence
o audits
o incorrect results

2001

1501

1001

iiiiiii

L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99
reputation type/pool size

300

el

250

o convergence
o audits
o incorrect results

2001

1501

100

L-p5 L-p9 L-p99 E-p5 E-p9 E-p99 B-p5 B-p9 B-p99
reputation type/pool size

(c2)

1/8

Simulations: workers partially available (d<1

N=9, n=5, convergence: pA = pAmin = 0.01

200 I I I 200 I I I
T o convergence - o convergence
180+ o audits H 180+ o audits H
o incorrect results o incorrect results
160 _ B 160 B
140 [] b 140 b b
120 b 120 b
2 1 2
5 100+ 1 5 100} T .
))
80+ B 80 B
60+ - B 60+ B
40+ B 40+] b
n 8 1 . o §
20- m =] 200 = = B =]
a] B a
0 0 # % = £ # = = = =
L-S1 L-S2 L-S3 E-S1 E-S2 E-S3 B-S1 B-S2 B-S3 L-S1 L-S2 L-S3 E-S1 E-S2 E-S3 B-S1 B-S2 B-S3
reputation type/scenario reputation type/scenario
(al) (b1)
250 I I I 250 I I I
o convergence o convergence
o audits o audits
o incorrect results after convergence o incorrect results after convergence
200+ T B 200+ B
[]
150 - - b 150 b
[] []
-] T
c c
3 3)
" 00 1 T |~ 100} |]
[] b il +
1
50+ B 50+ B
} 1 g ! ! . ;oo &
n | o [
| B i
0 0
L-S4 L-S5 L-S6 E-S4 E-S5 E-S6 B-S4 B-S5 B-S6 L-S4 L-S5 L-S6 E-S4 E-S5 E-S6 B-S4 B-S5 B-S6
reputation type/scenario reputation type/scenario

(a2) (62)

Simulations: workers partially available (d<1)

N=9, n=5, convergence: pA = pAmin = 0.01

200 I I I
© convergence
M A 1807 o ia::c;:‘fect results |
160
140 []
S1 9)d=1 120¢
-g 100 I
1)d=1 80
82 8)d=0.5 60+
40 . i]
S3 8)d=0.5(1)d=1 20t " =
0 L-S1 L-S2 L-S3 E-S1 E-S2 E-S3 B-S1 B-S2 B-S3
reputation type/scenario
(al)
250 I I I
o convergence
=] di
M R o ia:ctal:fect results after convergence
200+ T
S4 9)d=T1 - [
1)d=1 w00 [] ¢ T
S5 8)d=0.5 1] I
50 | } 1 . E i
S6 | 8)d=0.5| 1)d=1 : .
| B i

L-S4 L-S5 L-S6 E-S4 E-S5 E-S6 B-S4 B-S5 B-S6
reputation type/scenario

(a2)

initial pA = 0.5

200

180~

160

1401

1201

round
—
[=]
o

80

60

40"

201

250

200

150

round

100+

50~

T T T
o convergence
o audits
o incorrect results

L-S1 L-S2 L-S3 E-S1 E-S2 E-S3 B-S1 B-S2 B-S3
reputation type/scenario

(b1)

T
o convergence
o audits
o incorrect results after convergence

L-S4 L-S5 L-S6 E-S4 E-S5 E-S6 B-S4 B-S5 B-S6
reputation type/scenario

(62)

Simulations: workers partially available (d<

N=9, n=5, convergence: pA = pAmin = 0.01

200 T T T T T T T T T 200 T
T o convergence - 0__con S
180+ o audits H 180+ Cauants v
M A o incorrect results o incorrect res:’ .
160 _ B 160
1401 L 1 1401)
St 9)d=1 120f 1 120
2 1 2
5 100t 5 100 T
))
1)d=1 80+ B 80
52 8)21—0 5
-0 60+ - B 60+
40t B 40+]
n 8 1 . o §
S3 8)d=05 1)d=1 201 " = 1 20+ s] L =
a] B a
0 0 # % = £ # = = = =
L-S1 L-S2 L-S3 E-S1 E-S2 E-S3 B-S1 B-S2 B-S3 L-S1 L-S2 L-S3 E-S1 E-S2 E-S3 B-S1 B-S2 B-S3
reputation type/scenario reputation type/scenario
(al) (b1)
250 T T T T 250 T T T
o convergence o convergence
M R o audits o audits
o incorrect results after convergence o incorrect results after convergence
200+ T B 200+
i -
S4 9)d=1 150 - - b 150
[] []
-] T
c c
3 3
1)d=1 100+ - B 100+ 1
S5) B [] &
8)d=0.5 1
s 1
50 B 50
L } - | E i m i | E i
S6 | 8)d=0.5| 1)d=1 . n ® a
| B i
0 0
L-S4 L-S5 L-S6 E-S4 E-S5 E-S6 B-S4 B-S5 B-S6 L-S4 L-S5 L-S6 E-S4 E-S5 E-S6 B-S4 B-S5 B-S6
reputation type/scenario reputation type/scenario
(a2) (b2)

initial pA = 0.5 1

1)

LOTS OF MALICIOUS
BOINC IS BETTER

Simulations: workers partially available (d<1)

N=9, n=5, convergence: pA = pAmin = 0.01

200 T T T T T T T T T 200 T T T T
T o convergence - o convergence
180+ o audits H 180+ o audits H
M A o incorrect results o incorrect results
160 _ B 160
140 [] b 140 b
St 9)d=1 120f 1 120
2 1 2
5 100 5 100 T
e o
1)d=1 80+ B 80
S2 8)21—0 5
e 60+ - B 60+
40+ B 40+
8 3 = , = §
S3 8)d=05 1)d=1 201 " = 1 20+ s] L =
a] B a
0 0 # % = £ # = = = =
L-S1 L-S2 L-S3 E-S1 E-S2 E-S3 B-S1 B-S2 B-S3 L-S1 L-S2 L-S3 E-S1 E-S2 E-S3 B-S1 B-S2 B-S3
reputation type/scenario reputation type/scenario
(al) (b1) CONVERGENCE
250 T T T T 250 T T T T T T
o convergence o convergence EVEN WITH
M R © audits © audits - LOW AVAILABILITY
o incorrect results after convergence o incorrect results after convergence -
200+ T B 200+ -
- =
i - '|'
S4 9)d=1 1501 - . | 1 150F |
2 2 "
3 3
e 3
[]
1)d=1 100+ - B 100+ 1
S5) B [] &
8)d=0.5 1
1
50 B 50
1 L } - | E i m i | E i
S6 | 8)d=0.5| 1)d=1 . n ® a
| B i
0 0
L-S4 L-S5 L-S6 E-S4 E-S5 E-S6 B-S4 B-S5 B-S6 L-S4 L-S5 L-S6 E-S4 E-S5 E-S6 B-S4 B-S5 B-S6
reputation type/scenario reputation type/scenario
(a2) (b2)

initial pA = 0.5 1

Ongoing and future work

Application of repeated games framework for provable guarantees in
multiround computations.

Experimental comparison of both approaches.

Integration of our mechanisms into emBoinc.

Thank you!

