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Internet-based task computing
• Increasing demand for processing computationally 

intensive tasks. 

• Powerful parallel machines are expensive and are not 
globally available. 

• Growing use and capabilities of personal computers. 

• Wide access to the Internet.
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  Internet emerges as a viable platform: 
• Grid and cloud computing. 

e.g. EGEE Grid, TERA Grid, Amazon’s EC2 

• Volunteering computing. 
e.g. SETI@home, AIDS@home, Folding@home 

• Crowd computing. 
e.g. Amazon Mechanical Turk (human based-computing)



SETI@home by the numbers

As reported in November 2009: 
• 278,832 active CPUs (out of a total of 2.4 million) in 234 countries. 

• 769 TFLOPs.



SETI@home by the numbers

As reported in November 2009: 
• 278,832 active CPUs (out of a total of 2.4 million) in 234 countries. 

• 769 TFLOPs.

Proc. power comparable with supercomputers, 
at a fraction of the cost! 

Great potential limited by untrustworthy entities.



Internet-based task computing
A more dynamic and unpredictable setting: 
• Number of tasks is not fixed or known a priori: 
• It may be anything from one to many, even unbounded.  

• Tasks arrive dynamically and continuously. 

• Dynamic participation: 
• Participating processors (workers) could change over time,  

  not only due to failures. 

• Increased frequency of failures:  
• Failures are the norm rather than the exception.
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• Number of tasks is not fixed or known a priori: 
• It may be anything from one to many, even unbounded.  

• Tasks arrive dynamically and continuously. 

• Dynamic participation: 
• Participating processors (workers) could change over time,  

  not only due to failures. 

• Increased frequency of failures:  
• Failures are the norm rather than the exception.

A whole new world to study tradeoffs between 
efficiency and fault tolerance!
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Types of workers
  Classical distributed computing approach: 
• Malicious workers: always return a fabricated incorrect result. 

• Altruistic workers: always compute and return a correct result. 
[Fernandez-Anta et al.; Konwar; Sarmenta] 

  Game theoretical approach: 
• Rational workers: choose the strategy that maximizes benefit. 

[Abraham et al;Golle et al;Shneidman et al; Yurkewych;NCA’08;PLOS One’15] 

  All three types considered: 
• Mechanisms with reward/punishment schemes that  

• provide incentives for rationals to be honest  
• cope with malicious actions. 

[IPDPS’10;NCA’11;DISC’11;TC’14]



Rewards/punishments

WPC worker punishment for being caught cheating

WCT worker cost of computing the task

WBY worker benefit from master acceptance

MCY master cost for accepting the worker answer

MCA master cost for auditing worker answer

MBR master benefit from accepting the correct answer

MPW master punishment for accepting a wrong answer



8 Task computing scheme
•Master assigns a task to n workers. 
•Workers: 

•Malicious: fabricates a result. 
•Altruistic: computes the result. 
•Rational: cheats with probability pC.  

•Master audits with probability pA. 
•If master audits:  

•computes the task.  
•rewards honest workers and penalizes cheaters.  

•If master does not audit: 
•accepts value returned by “majority” of workers.  
•rewards those in the “majority”.



9 Types of computations

One-shot 
•Model the decisions (cheat or not, audit 
or not) as a game. 

•Find conditions on the parameters for 
Nash equilibria.  

•The pC, pA, and n obtained yield 
correctness at low cost for the master, 
even in presence of malice. 

•Trade-off: probability of correct vs. cost.  

•Constrains: malice, collusion, unreliable 
communication. 
[NCA’08;IPDPS’10;DISC’11;NCA’11;TC’14, PLOS One’15]

Multi-round 
•Evolutionary dynamics: pC and pA 
updated after each round (n is fixed). 

•Reinforcement learning: update function 
of worker profit aspiration and master 
tolerance to loss. 

•Objective: eventual correctness. 

•Trade-off: time to correct vs. cost. 

•Constrains/features: malice, unreliable 
communication, reputation system.   

[PODC’12, EUROPAR’12, OPODIS’13, JOSS’13, CCPE’13]
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•Find conditions on the parameters for 
Nash equilibria.  

•The pC, pA, and n obtained yield 
correctness at low cost for the master, 
even in presence of malice. 

•Trade-off: probability of correct vs. cost.  

•Constrains: malice, collusion, unreliable 
communication. 
[NCA’08;IPDPS’10;DISC’11;NCA’11;TC’14, PLOS One’15]

Multi-round 
•Evolutionary dynamics: pC and pA 
updated after each round (n is fixed). 

•Reinforcement learning: update function 
of worker profit aspiration and master 
tolerance to loss. 

•Objective: eventual correctness. 

•Trade-off: time to correct vs. cost. 

•Constrains/features: malice, unreliable 
communication, reputation system.   

[PODC’12, EUROPAR’12, OPODIS’13, JOSS’13, CCPE’13]

But, workers may not be available all the time! 
Why not taking advantage of N>>n? (Internet scale)



10 Our contributions
•We present a mechanism that  

1. it is resilient to non-responsive and unreliable workers: 
• responsiveness reputation: replies/assignments ratio.  
• 3 truthfulness reputations: ~BOINC, [OPODIS’13], [Sonnek et al.].  

2. leverages availability of N>>n workers: 
the master chooses the most reputable n workers for each computation.



10 Our contributions

•We study feasibility in absence of rationals:  
showing pools of workers such that eventual correctness  

• cannot be achieved unless the master always audits  
• achieved forever with minimal auditing.

•We present a mechanism that  
1. it is resilient to non-responsive and unreliable workers: 

• responsiveness reputation: replies/assignments ratio.  
• 3 truthfulness reputations: ~BOINC, [OPODIS’13], [Sonnek et al.].  

2. leverages availability of N>>n workers: 
the master chooses the most reputable n workers for each computation.



10 Our contributions

•We study feasibility in absence of rationals:  
showing pools of workers such that eventual correctness  

• cannot be achieved unless the master always audits  
• achieved forever with minimal auditing.

•We present a mechanism that  
1. it is resilient to non-responsive and unreliable workers: 

• responsiveness reputation: replies/assignments ratio.  
• 3 truthfulness reputations: ~BOINC, [OPODIS’13], [Sonnek et al.].  

2. leverages availability of N>>n workers: 
the master chooses the most reputable n workers for each computation.

•Experimental evaluation:  
complements analysis for scenarios where rational workers exist.  
reputation-types comparison showing reliability/cost trade-offs.



•Responsiveness: 

•Truthfulness: 
LINEAR: 
[Sonnek et al.] 

EXPONENTIAL: 
[OPODIS’13] 

BOINC: 

11 Types of reputation

⇢(w) =
replies(w) + 1

assignments(w) + 1

⇢(w) =
audited-correct(w) + 1

audited(w) + 1

⇢(w) =
audited-correct(w)

audited(w)
, > 1

⇢(w) = 1� 1

streak(w)
(0 if streak(w) < 10)



Protocol
Algorithm 1 Master’s Algorithm
1 pA x, where x 2 [p

min

A , 1]

2 for i 0 to N do
3 select

i

 0; reply select

i

 0; audit reply select

i

 0; correct audit
i

 0; streak

i

 0

4 ⇢

rsi  1; initialize ⇢

tri // initially all workers have the same reputation
5 for r 1 to1 do
6 W

r  {i 2 N : i is chosen as one of the n workers with the highest ⇢
i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r

9 collect replies from workers in W

r for t time
10 wait for t time collecting replies as received from workers in W

r

11 R {i 2W

r

: a reply from i was received by time t}
12 8i 2 R : reply select

i

 reply select

i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers R

m

✓ R,
17 where 8m0

, ⇢

trRm
� ⇢

trRm0 // weighted majority of workers in R

18 else // the master audits
19 foreach i 2 R do
20 audit reply select

i

 audit reply select

i

+ 1

21 if i 2 F then streak

i

 0 // F ✓ R is the set of responsive workers caught cheating
22 else correct audit

i

 correct audit

i

+ 1, streak
i

 streak

i

+ 1 // honest responsive workers
23 update truthfulness reputation ⇢

tri // depending on the type used
24 if ⇢

trR = 0 then pA min{1, pA + ↵

m

}
25 else
26 p

0
A pA + ↵

m

(⇢

trF /⇢trR � ⌧)

27 pA min{1,max{pmin

A , p

0
A}}

28 8i 2W

r

: return ⇧

i

to worker i // the payoff of workers in W

r \R is zero

Algorithm 2 Algorithm for Rational Worker i
1 p

Ci

 y, where y 2 [0, 1]

2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = p

Ci

6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff ⇧

i

9 p

Ci

 max{0,min{1, p
Ci

+ ↵

w

(⇧

i

� a

i

)}}
10 else
11 send compute(T ) to the master
12 get payoff ⇧

i

13 p

Ci

 max{0,min{1, p
Ci

� ↵

w

(⇧

i

�WCT � a

i

)}}
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Algorithm 1 Master’s Algorithm
1 pA x, where x 2 [p

min

A , 1]

2 for i 0 to N do
3 select

i

 0; reply select

i

 0; audit reply select

i

 0; correct audit
i

 0; streak

i

 0

4 ⇢

rsi  1; initialize ⇢

tri // initially all workers have the same reputation
5 for r 1 to1 do
6 W

r  {i 2 N : i is chosen as one of the n workers with the highest ⇢
i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r

9 collect replies from workers in W

r for t time
10 wait for t time collecting replies as received from workers in W

r

11 R {i 2W

r

: a reply from i was received by time t}
12 8i 2 R : reply select

i

 reply select

i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers R

m

✓ R,
17 where 8m0

, ⇢

trRm
� ⇢

trRm0 // weighted majority of workers in R

18 else // the master audits
19 foreach i 2 R do
20 audit reply select

i

 audit reply select

i

+ 1

21 if i 2 F then streak

i

 0 // F ✓ R is the set of responsive workers caught cheating
22 else correct audit

i

 correct audit

i

+ 1, streak
i

 streak

i

+ 1 // honest responsive workers
23 update truthfulness reputation ⇢

tri // depending on the type used
24 if ⇢

trR = 0 then pA min{1, pA + ↵

m

}
25 else
26 p

0
A pA + ↵

m

(⇢

trF /⇢trR � ⌧)

27 pA min{1,max{pmin

A , p

0
A}}

28 8i 2W

r

: return ⇧

i

to worker i // the payoff of workers in W

r \R is zero

Algorithm 2 Algorithm for Rational Worker i
1 p

Ci

 y, where y 2 [0, 1]

2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = p

Ci

6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff ⇧

i

9 p

Ci

 max{0,min{1, p
Ci

+ ↵

w

(⇧

i

� a

i

)}}
10 else
11 send compute(T ) to the master
12 get payoff ⇧

i

13 p

Ci

 max{0,min{1, p
Ci

� ↵

w

(⇧

i

�WCT � a

i

)}}

for each 
round of 

computation



Protocol
Algorithm 1 Master’s Algorithm
1 pA x, where x 2 [p

min

A , 1]

2 for i 0 to N do
3 select

i

 0; reply select

i

 0; audit reply select

i

 0; correct audit
i

 0; streak

i

 0

4 ⇢

rsi  1; initialize ⇢

tri // initially all workers have the same reputation
5 for r 1 to1 do
6 W

r  {i 2 N : i is chosen as one of the n workers with the highest ⇢
i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r

9 collect replies from workers in W

r for t time
10 wait for t time collecting replies as received from workers in W

r

11 R {i 2W

r

: a reply from i was received by time t}
12 8i 2 R : reply select

i

 reply select

i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers R

m

✓ R,
17 where 8m0

, ⇢

trRm
� ⇢

trRm0 // weighted majority of workers in R

18 else // the master audits
19 foreach i 2 R do
20 audit reply select

i

 audit reply select

i

+ 1

21 if i 2 F then streak

i

 0 // F ✓ R is the set of responsive workers caught cheating
22 else correct audit

i

 correct audit

i

+ 1, streak
i

 streak

i

+ 1 // honest responsive workers
23 update truthfulness reputation ⇢

tri // depending on the type used
24 if ⇢

trR = 0 then pA min{1, pA + ↵

m

}
25 else
26 p

0
A pA + ↵

m

(⇢

trF /⇢trR � ⌧)

27 pA min{1,max{pmin

A , p

0
A}}

28 8i 2W

r

: return ⇧

i

to worker i // the payoff of workers in W

r \R is zero

Algorithm 2 Algorithm for Rational Worker i
1 p

Ci

 y, where y 2 [0, 1]

2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = p

Ci

6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff ⇧

i

9 p

Ci

 max{0,min{1, p
Ci

+ ↵

w

(⇧

i

� a

i

)}}
10 else
11 send compute(T ) to the master
12 get payoff ⇧

i

13 p

Ci

 max{0,min{1, p
Ci

� ↵

w

(⇧

i

�WCT � a

i

)}}

select  
workers 

according to 
reputation



Protocol
Algorithm 1 Master’s Algorithm
1 pA x, where x 2 [p

min

A , 1]

2 for i 0 to N do
3 select

i

 0; reply select

i

 0; audit reply select

i

 0; correct audit
i

 0; streak

i

 0

4 ⇢

rsi  1; initialize ⇢

tri // initially all workers have the same reputation
5 for r 1 to1 do
6 W

r  {i 2 N : i is chosen as one of the n workers with the highest ⇢
i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r

9 collect replies from workers in W

r for t time
10 wait for t time collecting replies as received from workers in W

r

11 R {i 2W

r

: a reply from i was received by time t}
12 8i 2 R : reply select

i

 reply select

i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers R

m

✓ R,
17 where 8m0

, ⇢

trRm
� ⇢

trRm0 // weighted majority of workers in R

18 else // the master audits
19 foreach i 2 R do
20 audit reply select

i

 audit reply select

i

+ 1

21 if i 2 F then streak

i

 0 // F ✓ R is the set of responsive workers caught cheating
22 else correct audit

i

 correct audit

i

+ 1, streak
i

 streak

i

+ 1 // honest responsive workers
23 update truthfulness reputation ⇢

tri // depending on the type used
24 if ⇢

trR = 0 then pA min{1, pA + ↵

m

}
25 else
26 p

0
A pA + ↵

m

(⇢

trF /⇢trR � ⌧)

27 pA min{1,max{pmin

A , p

0
A}}

28 8i 2W

r

: return ⇧

i

to worker i // the payoff of workers in W

r \R is zero

Algorithm 2 Algorithm for Rational Worker i
1 p

Ci

 y, where y 2 [0, 1]

2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = p

Ci

6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff ⇧

i

9 p

Ci

 max{0,min{1, p
Ci

+ ↵

w

(⇧

i

� a

i

)}}
10 else
11 send compute(T ) to the master
12 get payoff ⇧

i

13 p

Ci

 max{0,min{1, p
Ci

� ↵

w

(⇧

i

�WCT � a

i

)}}

send task 
and collect 

replies



Protocol
Algorithm 1 Master’s Algorithm
1 pA x, where x 2 [p

min

A , 1]

2 for i 0 to N do
3 select

i

 0; reply select

i

 0; audit reply select

i

 0; correct audit
i

 0; streak

i

 0

4 ⇢

rsi  1; initialize ⇢

tri // initially all workers have the same reputation
5 for r 1 to1 do
6 W

r  {i 2 N : i is chosen as one of the n workers with the highest ⇢
i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r

9 collect replies from workers in W

r for t time
10 wait for t time collecting replies as received from workers in W

r

11 R {i 2W

r

: a reply from i was received by time t}
12 8i 2 R : reply select

i

 reply select

i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers R

m

✓ R,
17 where 8m0

, ⇢

trRm
� ⇢

trRm0 // weighted majority of workers in R

18 else // the master audits
19 foreach i 2 R do
20 audit reply select

i

 audit reply select

i

+ 1

21 if i 2 F then streak

i

 0 // F ✓ R is the set of responsive workers caught cheating
22 else correct audit

i

 correct audit

i

+ 1, streak
i

 streak

i

+ 1 // honest responsive workers
23 update truthfulness reputation ⇢

tri // depending on the type used
24 if ⇢

trR = 0 then pA min{1, pA + ↵

m

}
25 else
26 p

0
A pA + ↵

m

(⇢

trF /⇢trR � ⌧)

27 pA min{1,max{pmin

A , p

0
A}}

28 8i 2W

r

: return ⇧

i

to worker i // the payoff of workers in W

r \R is zero

Algorithm 2 Algorithm for Rational Worker i
1 p

Ci

 y, where y 2 [0, 1]

2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = p

Ci

6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff ⇧

i

9 p

Ci

 max{0,min{1, p
Ci

+ ↵

w

(⇧

i

� a

i

)}}
10 else
11 send compute(T ) to the master
12 get payoff ⇧

i

13 p

Ci

 max{0,min{1, p
Ci

� ↵

w

(⇧

i

�WCT � a

i

)}}

update 
responsiveness 

reputation



Protocol
Algorithm 1 Master’s Algorithm
1 pA x, where x 2 [p

min

A , 1]

2 for i 0 to N do
3 select

i

 0; reply select

i

 0; audit reply select

i

 0; correct audit
i

 0; streak

i

 0

4 ⇢

rsi  1; initialize ⇢

tri // initially all workers have the same reputation
5 for r 1 to1 do
6 W

r  {i 2 N : i is chosen as one of the n workers with the highest ⇢
i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r

9 collect replies from workers in W

r for t time
10 wait for t time collecting replies as received from workers in W

r

11 R {i 2W

r

: a reply from i was received by time t}
12 8i 2 R : reply select

i

 reply select

i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers R

m

✓ R,
17 where 8m0

, ⇢

trRm
� ⇢

trRm0 // weighted majority of workers in R

18 else // the master audits
19 foreach i 2 R do
20 audit reply select

i

 audit reply select

i

+ 1

21 if i 2 F then streak

i

 0 // F ✓ R is the set of responsive workers caught cheating
22 else correct audit

i

 correct audit

i

+ 1, streak
i

 streak

i

+ 1 // honest responsive workers
23 update truthfulness reputation ⇢

tri // depending on the type used
24 if ⇢

trR = 0 then pA min{1, pA + ↵

m

}
25 else
26 p

0
A pA + ↵

m

(⇢

trF /⇢trR � ⌧)

27 pA min{1,max{pmin

A , p

0
A}}

28 8i 2W

r

: return ⇧

i

to worker i // the payoff of workers in W

r \R is zero

Algorithm 2 Algorithm for Rational Worker i
1 p

Ci

 y, where y 2 [0, 1]

2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = p

Ci

6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff ⇧

i

9 p

Ci

 max{0,min{1, p
Ci

+ ↵

w

(⇧

i

� a

i

)}}
10 else
11 send compute(T ) to the master
12 get payoff ⇧

i

13 p

Ci

 max{0,min{1, p
Ci

� ↵

w

(⇧

i

�WCT � a

i

)}}

audit with 
probability pA



Protocol
Algorithm 1 Master’s Algorithm
1 pA x, where x 2 [p

min

A , 1]

2 for i 0 to N do
3 select

i

 0; reply select

i

 0; audit reply select

i

 0; correct audit
i

 0; streak

i

 0

4 ⇢

rsi  1; initialize ⇢

tri // initially all workers have the same reputation
5 for r 1 to1 do
6 W

r  {i 2 N : i is chosen as one of the n workers with the highest ⇢
i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r

9 collect replies from workers in W

r for t time
10 wait for t time collecting replies as received from workers in W

r

11 R {i 2W

r

: a reply from i was received by time t}
12 8i 2 R : reply select

i

 reply select

i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers R

m

✓ R,
17 where 8m0

, ⇢

trRm
� ⇢

trRm0 // weighted majority of workers in R

18 else // the master audits
19 foreach i 2 R do
20 audit reply select

i

 audit reply select

i

+ 1

21 if i 2 F then streak

i

 0 // F ✓ R is the set of responsive workers caught cheating
22 else correct audit

i

 correct audit

i

+ 1, streak
i

 streak

i

+ 1 // honest responsive workers
23 update truthfulness reputation ⇢

tri // depending on the type used
24 if ⇢

trR = 0 then pA min{1, pA + ↵

m

}
25 else
26 p

0
A pA + ↵

m

(⇢

trF /⇢trR � ⌧)

27 pA min{1,max{pmin

A , p

0
A}}

28 8i 2W

r

: return ⇧

i

to worker i // the payoff of workers in W

r \R is zero

Algorithm 2 Algorithm for Rational Worker i
1 p

Ci

 y, where y 2 [0, 1]

2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = p

Ci

6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff ⇧

i
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 max{0,min{1, p
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Algorithm 1 Master’s Algorithm
1 pA x, where x 2 [p

min

A , 1]

2 for i 0 to N do
3 select

i

 0; reply select

i

 0; audit reply select

i

 0; correct audit
i

 0; streak

i

 0

4 ⇢

rsi  1; initialize ⇢

tri // initially all workers have the same reputation
5 for r 1 to1 do
6 W

r  {i 2 N : i is chosen as one of the n workers with the highest ⇢
i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r

9 collect replies from workers in W

r for t time
10 wait for t time collecting replies as received from workers in W

r
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r

: a reply from i was received by time t}
12 8i 2 R : reply select

i
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i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
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16 accept the value m returned by workers R

m
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� ⇢

trRm0 // weighted majority of workers in R
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i
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24 if ⇢
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m
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27 pA min{1,max{pmin

A , p

0
A}}
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i
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i
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tri // initially all workers have the same reputation
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6 W
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i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r
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10 wait for t time collecting replies as received from workers in W

r
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: a reply from i was received by time t}
12 8i 2 R : reply select

i

 reply select

i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
15 if the answers were not audited then
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m
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20 audit reply select
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i
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trR = 0 then pA min{1, pA + ↵
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}
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m
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0
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i
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Algorithm 1 Master’s Algorithm
1 pA x, where x 2 [p

min

A , 1]

2 for i 0 to N do
3 select

i

 0; reply select

i

 0; audit reply select

i

 0; correct audit
i

 0; streak

i

 0

4 ⇢

rsi  1; initialize ⇢

tri // initially all workers have the same reputation
5 for r 1 to1 do
6 W

r  {i 2 N : i is chosen as one of the n workers with the highest ⇢
i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r

9 collect replies from workers in W

r for t time
10 wait for t time collecting replies as received from workers in W

r

11 R {i 2W

r

: a reply from i was received by time t}
12 8i 2 R : reply select

i

 reply select

i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers R

m

✓ R,
17 where 8m0

, ⇢

trRm
� ⇢

trRm0 // weighted majority of workers in R

18 else // the master audits
19 foreach i 2 R do
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i

 audit reply select
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+ 1

21 if i 2 F then streak

i

 0 // F ✓ R is the set of responsive workers caught cheating
22 else correct audit

i

 correct audit

i
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i
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i

+ 1 // honest responsive workers
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tri // depending on the type used
24 if ⇢

trR = 0 then pA min{1, pA + ↵

m

}
25 else
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0
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m

(⇢
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A}}
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to worker i // the payoff of workers in W

r \R is zero

Algorithm 2 Algorithm for Rational Worker i
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 y, where y 2 [0, 1]

2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = p
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6 if the decision was to cheat then
7 send arbitrary solution to the master
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Algorithm 1 Master’s Algorithm
1 pA x, where x 2 [p

min

A , 1]

2 for i 0 to N do
3 select

i

 0; reply select

i

 0; audit reply select

i

 0; correct audit
i

 0; streak

i

 0

4 ⇢

rsi  1; initialize ⇢

tri // initially all workers have the same reputation
5 for r 1 to1 do
6 W

r  {i 2 N : i is chosen as one of the n workers with the highest ⇢
i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r

9 collect replies from workers in W

r for t time
10 wait for t time collecting replies as received from workers in W

r

11 R {i 2W

r

: a reply from i was received by time t}
12 8i 2 R : reply select

i

 reply select

i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers R

m

✓ R,
17 where 8m0

, ⇢

trRm
� ⇢

trRm0 // weighted majority of workers in R

18 else // the master audits
19 foreach i 2 R do
20 audit reply select

i

 audit reply select

i

+ 1

21 if i 2 F then streak

i

 0 // F ✓ R is the set of responsive workers caught cheating
22 else correct audit

i

 correct audit

i

+ 1, streak
i

 streak

i

+ 1 // honest responsive workers
23 update truthfulness reputation ⇢

tri // depending on the type used
24 if ⇢

trR = 0 then pA min{1, pA + ↵

m

}
25 else
26 p

0
A pA + ↵

m

(⇢

trF /⇢trR � ⌧)

27 pA min{1,max{pmin

A , p

0
A}}

28 8i 2W

r

: return ⇧

i

to worker i // the payoff of workers in W

r \R is zero

Algorithm 2 Algorithm for Rational Worker i
1 p

Ci

 y, where y 2 [0, 1]

2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = p

Ci

6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff ⇧

i

9 p

Ci

 max{0,min{1, p
Ci

+ ↵

w

(⇧

i

� a

i
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10 else
11 send compute(T ) to the master
12 get payoff ⇧

i

13 p
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cheat with  
probability pC

Algorithm 1 Master’s Algorithm
1 pA x, where x 2 [p

min

A , 1]

2 for i 0 to N do
3 select

i

 0; reply select

i

 0; audit reply select

i

 0; correct audit
i

 0; streak

i

 0

4 ⇢

rsi  1; initialize ⇢

tri // initially all workers have the same reputation
5 for r 1 to1 do
6 W

r  {i 2 N : i is chosen as one of the n workers with the highest ⇢
i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r

9 collect replies from workers in W

r for t time
10 wait for t time collecting replies as received from workers in W

r

11 R {i 2W

r

: a reply from i was received by time t}
12 8i 2 R : reply select

i

 reply select

i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers R

m

✓ R,
17 where 8m0

, ⇢

trRm
� ⇢

trRm0 // weighted majority of workers in R

18 else // the master audits
19 foreach i 2 R do
20 audit reply select

i

 audit reply select

i

+ 1

21 if i 2 F then streak

i

 0 // F ✓ R is the set of responsive workers caught cheating
22 else correct audit

i

 correct audit

i

+ 1, streak
i

 streak

i

+ 1 // honest responsive workers
23 update truthfulness reputation ⇢

tri // depending on the type used
24 if ⇢

trR = 0 then pA min{1, pA + ↵

m

}
25 else
26 p

0
A pA + ↵

m

(⇢

trF /⇢trR � ⌧)

27 pA min{1,max{pmin

A , p

0
A}}

28 8i 2W

r

: return ⇧

i

to worker i // the payoff of workers in W

r \R is zero

Algorithm 2 Algorithm for Rational Worker i
1 p

Ci

 y, where y 2 [0, 1]

2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = p

Ci

6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff ⇧

i

9 p

Ci

 max{0,min{1, p
Ci
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w
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i
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11 send compute(T ) to the master
12 get payoff ⇧
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cheat with  
probability pC

Algorithm 1 Master’s Algorithm
1 pA x, where x 2 [p

min

A , 1]

2 for i 0 to N do
3 select

i

 0; reply select

i

 0; audit reply select

i

 0; correct audit
i

 0; streak

i

 0

4 ⇢

rsi  1; initialize ⇢

tri // initially all workers have the same reputation
5 for r 1 to1 do
6 W

r  {i 2 N : i is chosen as one of the n workers with the highest ⇢
i

= ⇢

rsi · ⇢tri }
7 8i 2W

r

: select

i

 select

i

+ 1

8 send a task T to all workers in W

r

9 collect replies from workers in W

r for t time
10 wait for t time collecting replies as received from workers in W

r

11 R {i 2W

r

: a reply from i was received by time t}
12 8i 2 R : reply select

i

 reply select

i

+ 1

13 update responsiveness reputation ⇢

rsi of each worker i 2W

r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers R

m

✓ R,
17 where 8m0

, ⇢

trRm
� ⇢

trRm0 // weighted majority of workers in R

18 else // the master audits
19 foreach i 2 R do
20 audit reply select

i

 audit reply select

i

+ 1

21 if i 2 F then streak

i

 0 // F ✓ R is the set of responsive workers caught cheating
22 else correct audit

i

 correct audit

i

+ 1, streak
i

 streak

i

+ 1 // honest responsive workers
23 update truthfulness reputation ⇢

tri // depending on the type used
24 if ⇢

trR = 0 then pA min{1, pA + ↵

m

}
25 else
26 p

0
A pA + ↵

m

(⇢

trF /⇢trR � ⌧)

27 pA min{1,max{pmin

A , p

0
A}}

28 8i 2W

r

: return ⇧

i

to worker i // the payoff of workers in W

r \R is zero

Algorithm 2 Algorithm for Rational Worker i
1 p

Ci

 y, where y 2 [0, 1]

2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = p

Ci

6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff ⇧

i
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Feasibility without rationals

to the master. After receiving its payoff, worker i changes its pCi according to payoff
⇧i, the chosen strategy (cheat or not cheat), and its aspiration ai. Similarly to the mas-
ter, the workers have a learning rate ↵w. We assume that all workers have the same
learning rate, that is, they learn in the same manner (in [25], the learning rate is called
step-size). In a real platform the workers learning rate can slightly vary (since workers
in these platforms have similar profiles), making some worker more or less susceptible
to reward and punishment. Using the same learning rate for all workers is representative
of what happens in a population of different values with small variations around some
mean.

4 Analysis
In this section, we prove some properties of the system. We start by observing that, in
order to achieve eventual correctness, it is necessary to change workers over time. 3

Observation 1 If the number of malicious workers is at least n and the master assigns
the task to the same workers in all rounds, eventual correctness cannot be guaranteed.
The intuition behind this observation is that there is always a positive probability that
the master will select n malicious workers at the first round and will have to remain with
the same workers. This observation justifies that the master has to change its choice of
workers if eventual correctness has to be guaranteed. We apply the natural approach of
choosing the n workers with the largest reputation among the N workers in the pool
(breaking ties randomly). In order to guarantee eventual correctness we need to add one
more condition regarding the availability of the workers.
Observation 2 To guarantee eventual correctness at least one non-malicious worker i
must exist with di = 1.

To complement the above observations, we show now that there are sets of workers
with which eventual correctness is achievable using the different reputation types (LIN-
EAR and EXPONENTIAL as truthfulness reputations) defined and the master reputation-
based mechanism in Algorithm 1.
Theorem 3. Consider a system in which workers are either altruistic or malicious and
there is at least one altruistic worker i with di = 1 in the pool. Eventual correctness
is satisfied if the mechanism of Algorithm 1 is used with the responsiveness reputation
and any of the truthfulness reputations LINEAR or EXPONENTIAL.

The intuition behind the proof is that thanks to the decremental way in which the
reputation of a malicious worker is calculated at some point the altruistic worker i with
full responsiveness (di = 1) will be selected and have a greater reputation than the
aggregated reputation of the selected malicious workers. A similar result does not hold
if truthfulness reputation of type BOINC is used. In this case, we have found that it is
not enough that one altruistic worker with full availability exists, but also the number
of altruistic workers with partial availability have to be considered.
Theorem 4. Consider a system in which workers are either altruistic or malicious and
there is at least one altruistic worker i with di = 1 in the pool. In this system, the mech-
anism of Algorithm 1 is used with the responsiveness reputation and the truthfulness
reputation BOINC. Then, eventual correctness is satisfied if and only if the number of
altruistic workers with dj < 1 is smaller than n.

3 The omitted proofs can be found at http://arxiv.org/abs/1603.04394.
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full responsiveness (di = 1) will be selected and have a greater reputation than the
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if truthfulness reputation of type BOINC is used. In this case, we have found that it is
not enough that one altruistic worker with full availability exists, but also the number
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Fig. 1: Simulation results with full availability. First row plots are for initial pA = 0.5. Second
row plots are for initial pA = 1. The bottom (red) errorbars present the number of incorrect
results accepted until convergence (pA = p

min

A ), the middle (green) errorbars present the number
of audits until convergence; and finally the upper (blue) errorbars present the number of rounds
until convergence, in 100 instantiations. In plots (a1) and (a2) the ratio of rational/malicious is
5/4. In plots (b1) and (b2) the ratio of rational/malicious is 4/5. In plots (c1) and (c2) the ratio of
rational/malicious is 1/8. The x-axes symbols are as follows, L: LINEAR, E: EXPONENTIAL and
B: BOINC reputation; p5: pool size 5, p9: pool size 9 and p99: pool size 99.

and audit these workers, and hence to establish valid reputation for the workers and to
reinforce the rational ones to be honest. For both reputation types (EXPONENTIAL and
BOINC) this is a costly procedure also in terms of auditing for all rational/malicious
ratios. (The effect on the number of audits is more acute for reputation BOINC as the
pool size increases.) As for the number of incorrect results accepted until convergence,
with reputation EXPONENTIAL they still increase with the pool size. However, reputa-
tion BOINC is much more robust with respect to this metric, essentially guaranteeing
that no incorrect result is accepted.

Comparing now the performance of the different reputation types based on our
evaluation metrics, it seems that reputation LINEAR performs better when the size of
the pool is big compared to the other two reputation types. On the other hand rep-
utation types EXPONENTIAL and BOINC perform slightly better when the pool size
is small. Comparing reputation types EXPONENTIAL and BOINC, while reputation
BOINC shows that has slightly faster convergence, this is traded for at least double
auditing than reputation EXPONENTIAL. On the other hand, reputation EXPONENTIAL
is accepting a greater number of incorrect results until convergence. This is a clear ex-

Simulations: workers always available (d=1)
n=9, convergence: pA = pAmin = 0.01
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Fig. 1: Simulation results with full availability. First row plots are for initial pA = 0.5. Second
row plots are for initial pA = 1. The bottom (red) errorbars present the number of incorrect
results accepted until convergence (pA = p

min

A ), the middle (green) errorbars present the number
of audits until convergence; and finally the upper (blue) errorbars present the number of rounds
until convergence, in 100 instantiations. In plots (a1) and (a2) the ratio of rational/malicious is
5/4. In plots (b1) and (b2) the ratio of rational/malicious is 4/5. In plots (c1) and (c2) the ratio of
rational/malicious is 1/8. The x-axes symbols are as follows, L: LINEAR, E: EXPONENTIAL and
B: BOINC reputation; p5: pool size 5, p9: pool size 9 and p99: pool size 99.

and audit these workers, and hence to establish valid reputation for the workers and to
reinforce the rational ones to be honest. For both reputation types (EXPONENTIAL and
BOINC) this is a costly procedure also in terms of auditing for all rational/malicious
ratios. (The effect on the number of audits is more acute for reputation BOINC as the
pool size increases.) As for the number of incorrect results accepted until convergence,
with reputation EXPONENTIAL they still increase with the pool size. However, reputa-
tion BOINC is much more robust with respect to this metric, essentially guaranteeing
that no incorrect result is accepted.

Comparing now the performance of the different reputation types based on our
evaluation metrics, it seems that reputation LINEAR performs better when the size of
the pool is big compared to the other two reputation types. On the other hand rep-
utation types EXPONENTIAL and BOINC perform slightly better when the pool size
is small. Comparing reputation types EXPONENTIAL and BOINC, while reputation
BOINC shows that has slightly faster convergence, this is traded for at least double
auditing than reputation EXPONENTIAL. On the other hand, reputation EXPONENTIAL
is accepting a greater number of incorrect results until convergence. This is a clear ex-

Simulations: workers always available (d=1)

initial 
pA=0.5

initial 
pA=1

# rational / # malicious = 5/4 4/5 1/8

n=9, convergence: pA = pAmin = 0.01
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Fig. 1: Simulation results with full availability. First row plots are for initial pA = 0.5. Second
row plots are for initial pA = 1. The bottom (red) errorbars present the number of incorrect
results accepted until convergence (pA = p

min

A ), the middle (green) errorbars present the number
of audits until convergence; and finally the upper (blue) errorbars present the number of rounds
until convergence, in 100 instantiations. In plots (a1) and (a2) the ratio of rational/malicious is
5/4. In plots (b1) and (b2) the ratio of rational/malicious is 4/5. In plots (c1) and (c2) the ratio of
rational/malicious is 1/8. The x-axes symbols are as follows, L: LINEAR, E: EXPONENTIAL and
B: BOINC reputation; p5: pool size 5, p9: pool size 9 and p99: pool size 99.

and audit these workers, and hence to establish valid reputation for the workers and to
reinforce the rational ones to be honest. For both reputation types (EXPONENTIAL and
BOINC) this is a costly procedure also in terms of auditing for all rational/malicious
ratios. (The effect on the number of audits is more acute for reputation BOINC as the
pool size increases.) As for the number of incorrect results accepted until convergence,
with reputation EXPONENTIAL they still increase with the pool size. However, reputa-
tion BOINC is much more robust with respect to this metric, essentially guaranteeing
that no incorrect result is accepted.

Comparing now the performance of the different reputation types based on our
evaluation metrics, it seems that reputation LINEAR performs better when the size of
the pool is big compared to the other two reputation types. On the other hand rep-
utation types EXPONENTIAL and BOINC perform slightly better when the pool size
is small. Comparing reputation types EXPONENTIAL and BOINC, while reputation
BOINC shows that has slightly faster convergence, this is traded for at least double
auditing than reputation EXPONENTIAL. On the other hand, reputation EXPONENTIAL
is accepting a greater number of incorrect results until convergence. This is a clear ex-

Simulations: workers always available (d=1)

initial 
pA=0.5

initial 
pA=1

# rational / # malicious = 5/4 4/5 1/8

SLOW &
EXPENSIVE

n=9, convergence: pA = pAmin = 0.01
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Fig. 1: Simulation results with full availability. First row plots are for initial pA = 0.5. Second
row plots are for initial pA = 1. The bottom (red) errorbars present the number of incorrect
results accepted until convergence (pA = p

min

A ), the middle (green) errorbars present the number
of audits until convergence; and finally the upper (blue) errorbars present the number of rounds
until convergence, in 100 instantiations. In plots (a1) and (a2) the ratio of rational/malicious is
5/4. In plots (b1) and (b2) the ratio of rational/malicious is 4/5. In plots (c1) and (c2) the ratio of
rational/malicious is 1/8. The x-axes symbols are as follows, L: LINEAR, E: EXPONENTIAL and
B: BOINC reputation; p5: pool size 5, p9: pool size 9 and p99: pool size 99.

and audit these workers, and hence to establish valid reputation for the workers and to
reinforce the rational ones to be honest. For both reputation types (EXPONENTIAL and
BOINC) this is a costly procedure also in terms of auditing for all rational/malicious
ratios. (The effect on the number of audits is more acute for reputation BOINC as the
pool size increases.) As for the number of incorrect results accepted until convergence,
with reputation EXPONENTIAL they still increase with the pool size. However, reputa-
tion BOINC is much more robust with respect to this metric, essentially guaranteeing
that no incorrect result is accepted.

Comparing now the performance of the different reputation types based on our
evaluation metrics, it seems that reputation LINEAR performs better when the size of
the pool is big compared to the other two reputation types. On the other hand rep-
utation types EXPONENTIAL and BOINC perform slightly better when the pool size
is small. Comparing reputation types EXPONENTIAL and BOINC, while reputation
BOINC shows that has slightly faster convergence, this is traded for at least double
auditing than reputation EXPONENTIAL. On the other hand, reputation EXPONENTIAL
is accepting a greater number of incorrect results until convergence. This is a clear ex-

Simulations: workers always available (d=1)

initial 
pA=0.5

initial 
pA=1

# rational / # malicious = 5/4 4/5 1/8

LESS
AUDITS

n=9, convergence: pA = pAmin = 0.01



Simulations: workers partially available (d⩽1)
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Fig. 2: Simulation results with partial availability: (a1)-(a2) initial pA = 0.5, (b1)-(b2) initial
pA = 1 . For (a1)-(b1) The bottom (red) errorbars present the number of incorrect results ac-
cepted until convergence (pA = p

min

A ). For (a2)-(b2) the bottom (red) errorbars present the
number of incorrect results accepted after convergence. For all plots, the middle (green) errorbars
present the number of audits until convergence; and finally the upper (blue) errorbars present the
number of rounds until convergence, in 100 instantiations. The x-axes symbols are as follows, L:
reputation LINEAR, E: reputation EXPONENTIAL, B: reputation BOINC, S1: 9 altruistic workers
with d = 1, S2: 1 altruistic with d = 1 and 8 altruistic workers with d = 0.5, S3: 1 altruistic with
d = 1 and 8 malicious workers with d = 0.5, S4: 9 rational workers with d = 1, S5: 1 rational
with d = 1 and 8 rational workers with d = 0.5, S6: 1 rational with d = 1 and 8 malicious
workers with d = 0.5.

picted scenarios reputation BOINC seems like is a good approach, theory tells us that it
can only be used when we have info on the workers types.

Figure 2 (a2)-(b2), depicts more scenarios with different workers types ratios, in the
presence of rational and malicious workers. Following the same methodology as be-
fore, we compare a base case (scenario S4) where all workers are rational with d = 1,
with a scenarios where one rational with d = 1 exists and the rest are rational (scenario
S5) or malicious (scenario S6) with d = 0.5. We can observe that in the base scenario
S4, the mechanism is performing better than in the other two scenarios, for reputation
metrics (1),(2) and (4), independently of the reputation type. What we observe is that

N=9, n=5, convergence: pA = pAmin = 0.01



Simulations: workers partially available (d⩽1)

initial pA = 0.5 1

L−S1 L−S2 L−S3 E−S1 E−S2 E−S3 B−S1 B−S2 B−S3
0

20

40

60

80

100

120

140

160

180

200

reputation type/scenario

ro
u

n
d

 

 
convergence
audits
incorrect results   .

L−S1 L−S2 L−S3 E−S1 E−S2 E−S3 B−S1 B−S2 B−S3
0

20

40

60

80

100

120

140

160

180

200

reputation type/scenario

ro
u

n
d

 

 
convergence
audits
incorrect results   .

(a1) (b1)

L−S4 L−S5 L−S6 E−S4 E−S5 E−S6 B−S4 B−S5 B−S6
0

50

100

150

200

250

reputation type/scenario

ro
u

n
d

 

 
convergence
audits
incorrect results after convergence   .

L−S4 L−S5 L−S6 E−S4 E−S5 E−S6 B−S4 B−S5 B−S6
0

50

100

150

200

250

reputation type/scenario

ro
u

n
d

 

 
convergence
audits
incorrect results after convergence   .

(a2) (b2)

Fig. 2: Simulation results with partial availability: (a1)-(a2) initial pA = 0.5, (b1)-(b2) initial
pA = 1 . For (a1)-(b1) The bottom (red) errorbars present the number of incorrect results ac-
cepted until convergence (pA = p

min

A ). For (a2)-(b2) the bottom (red) errorbars present the
number of incorrect results accepted after convergence. For all plots, the middle (green) errorbars
present the number of audits until convergence; and finally the upper (blue) errorbars present the
number of rounds until convergence, in 100 instantiations. The x-axes symbols are as follows, L:
reputation LINEAR, E: reputation EXPONENTIAL, B: reputation BOINC, S1: 9 altruistic workers
with d = 1, S2: 1 altruistic with d = 1 and 8 altruistic workers with d = 0.5, S3: 1 altruistic with
d = 1 and 8 malicious workers with d = 0.5, S4: 9 rational workers with d = 1, S5: 1 rational
with d = 1 and 8 rational workers with d = 0.5, S6: 1 rational with d = 1 and 8 malicious
workers with d = 0.5.

picted scenarios reputation BOINC seems like is a good approach, theory tells us that it
can only be used when we have info on the workers types.

Figure 2 (a2)-(b2), depicts more scenarios with different workers types ratios, in the
presence of rational and malicious workers. Following the same methodology as be-
fore, we compare a base case (scenario S4) where all workers are rational with d = 1,
with a scenarios where one rational with d = 1 exists and the rest are rational (scenario
S5) or malicious (scenario S6) with d = 0.5. We can observe that in the base scenario
S4, the mechanism is performing better than in the other two scenarios, for reputation
metrics (1),(2) and (4), independently of the reputation type. What we observe is that
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N=9, n=5, convergence: pA = pAmin = 0.01



Simulations: workers partially available (d⩽1)

initial pA = 0.5 1
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Fig. 2: Simulation results with partial availability: (a1)-(a2) initial pA = 0.5, (b1)-(b2) initial
pA = 1 . For (a1)-(b1) The bottom (red) errorbars present the number of incorrect results ac-
cepted until convergence (pA = p

min

A ). For (a2)-(b2) the bottom (red) errorbars present the
number of incorrect results accepted after convergence. For all plots, the middle (green) errorbars
present the number of audits until convergence; and finally the upper (blue) errorbars present the
number of rounds until convergence, in 100 instantiations. The x-axes symbols are as follows, L:
reputation LINEAR, E: reputation EXPONENTIAL, B: reputation BOINC, S1: 9 altruistic workers
with d = 1, S2: 1 altruistic with d = 1 and 8 altruistic workers with d = 0.5, S3: 1 altruistic with
d = 1 and 8 malicious workers with d = 0.5, S4: 9 rational workers with d = 1, S5: 1 rational
with d = 1 and 8 rational workers with d = 0.5, S6: 1 rational with d = 1 and 8 malicious
workers with d = 0.5.

picted scenarios reputation BOINC seems like is a good approach, theory tells us that it
can only be used when we have info on the workers types.

Figure 2 (a2)-(b2), depicts more scenarios with different workers types ratios, in the
presence of rational and malicious workers. Following the same methodology as be-
fore, we compare a base case (scenario S4) where all workers are rational with d = 1,
with a scenarios where one rational with d = 1 exists and the rest are rational (scenario
S5) or malicious (scenario S6) with d = 0.5. We can observe that in the base scenario
S4, the mechanism is performing better than in the other two scenarios, for reputation
metrics (1),(2) and (4), independently of the reputation type. What we observe is that
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N=9, n=5, convergence: pA = pAmin = 0.01



Simulations: workers partially available (d⩽1)

initial pA = 0.5 1
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Fig. 2: Simulation results with partial availability: (a1)-(a2) initial pA = 0.5, (b1)-(b2) initial
pA = 1 . For (a1)-(b1) The bottom (red) errorbars present the number of incorrect results ac-
cepted until convergence (pA = p

min

A ). For (a2)-(b2) the bottom (red) errorbars present the
number of incorrect results accepted after convergence. For all plots, the middle (green) errorbars
present the number of audits until convergence; and finally the upper (blue) errorbars present the
number of rounds until convergence, in 100 instantiations. The x-axes symbols are as follows, L:
reputation LINEAR, E: reputation EXPONENTIAL, B: reputation BOINC, S1: 9 altruistic workers
with d = 1, S2: 1 altruistic with d = 1 and 8 altruistic workers with d = 0.5, S3: 1 altruistic with
d = 1 and 8 malicious workers with d = 0.5, S4: 9 rational workers with d = 1, S5: 1 rational
with d = 1 and 8 rational workers with d = 0.5, S6: 1 rational with d = 1 and 8 malicious
workers with d = 0.5.

picted scenarios reputation BOINC seems like is a good approach, theory tells us that it
can only be used when we have info on the workers types.

Figure 2 (a2)-(b2), depicts more scenarios with different workers types ratios, in the
presence of rational and malicious workers. Following the same methodology as be-
fore, we compare a base case (scenario S4) where all workers are rational with d = 1,
with a scenarios where one rational with d = 1 exists and the rest are rational (scenario
S5) or malicious (scenario S6) with d = 0.5. We can observe that in the base scenario
S4, the mechanism is performing better than in the other two scenarios, for reputation
metrics (1),(2) and (4), independently of the reputation type. What we observe is that
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CONVERGENCE
EVEN WITH 

LOW AVAILABILITY

N=9, n=5, convergence: pA = pAmin = 0.01



Ongoing and future work
• Application of repeated games framework for provable guarantees in 

multiround computations. 

• Experimental comparison of both approaches.  

• Integration of our mechanisms into emBoinc.



Thank you! 


