Internet Computing: Using Reputation to Select Workers from a Pool

Evgenia Christoforou, Antonio Fernández Anta, Chryssis Georgiou, and Miguel A. Mosteiro

NETyS 2016

Internet-based task computing

- Increasing demand for processing computationally intensive tasks.
- Powerful parallel machines are expensive and are not globally available.
- Growing use and capabilities of personal computers.
- Wide access to the Internet.

Internet-based task computing

- Increasing demand for processing computationally intensive tasks.
- Powerful parallel machines are expensive and are not globally available.
- Growing use and capabilities of personal computers.
- Wide access to the Internet.

Internet emerges as a viable platform:

Grid and cloud computing.

e.g. EGEE Grid, TERA Grid, Amazon's EC2

Volunteering computing.

e.g. SETI@home, AIDS@home, Folding@home

Crowd computing.

e.g. Amazon Mechanical Turk (human based-computing)

SETI@home by the numbers

As reported in November 2009:

- 278,832 active CPUs (out of a total of 2.4 million) in 234 countries.
- 769 TFLOPs.

SETI@home by the numbers

As reported in November 2009:

- 278,832 active CPUs (out of a total of 2.4 million) in 234 countries.
- 769 TFLOPs.

Proc. power comparable with supercomputers, at a fraction of the cost!

Great potential limited by untrustworthy entities.

Internet-based task computing

A more dynamic and unpredictable setting:

- Number of tasks is not fixed or known a priori:
- It may be anything from one to many, even unbounded.
- Tasks arrive dynamically and continuously.
- Dynamic participation:
- Participating processors (workers) could change over time, not only due to failures.
- Increased frequency of failures:
- Failures are the norm rather than the exception.

Internet-based task computing

A more dynamic and unpredictable setting:

- Number of tasks is not fixed or known a priori:
- It may be anything from one to many, even unbounded.
- Tasks arrive dynamically and continuously.
- Dynamic participation:
- Participating processors (workers) could change over time, not only due to failures.
- Increased frequency of failures:
- Failures are the norm rather than the exception.

A whole new world to study tradeoffs between efficiency and fault tolerance!

Types of workers

Classical distributed computing approach:

- Malicious workers: always return a fabricated incorrect result.
- Altruistic workers: always compute and return a correct result.

[Fernandez-Anta et al.; Konwar; Sarmenta]

Game theoretical approach:

Rational workers: choose the strategy that maximizes benefit.

[Abraham et al;Golle et al;Shneidman et al; Yurkewych;NCA'08;PLOS One'15]

All three types considered:

- Mechanisms with reward/punishment schemes that
 - provide incentives for rationals to be honest
 - cope with malicious actions.

[IPDPS'10;NCA'11;DISC'11;TC'14]

Rewards/punishments

WP_C	worker punishment for being caught cheating	
WC_T	worker cost of computing the task	
WB_Y	worker benefit from master acceptance	
MC_Y	master cost for accepting the worker answer	
MC_A	master cost for auditing worker answer	
MB_R	master benefit from accepting the correct answer	
MP_W	master punishment for accepting a wrong answer	

Task computing scheme

- Master assigns a task to n workers.
- •Workers:
 - Malicious: fabricates a result.
 - Altruistic: computes the result.
 - •Rational: cheats with probability pC.
- Master audits with probability pA.
- •If master audits:
 - computes the task.
 - rewards honest workers and penalizes cheaters.
- •If master does not audit:
 - accepts value returned by "majority" of workers.
 - rewards those in the "majority".

Types of computations

One-shot

- •Model the decisions (cheat or not, audit or not) as a game.
- •Find conditions on the parameters for Nash equilibria.
- •The pC, pA, and n obtained yield correctness at low cost for the master, even in presence of malice.
- Trade-off: probability of correct vs. cost.
- •Constrains: malice, collusion, unreliable communication.

[NCA'08;IPDPS'10;DISC'11;NCA'11;TC'14, PLOS One'15]

Multi-round

- •Evolutionary dynamics: pC and pA updated after each round (n is fixed).
- •Reinforcement learning: update function of worker profit aspiration and master tolerance to loss.
- Objective: eventual correctness.
- Trade-off: time to correct vs. cost.
- •Constrains/features: malice, unreliable communication, reputation system.

[PODC'12, EUROPAR'12, OPODIS'13, JOSS'13, CCPE'13]

Types of computations

One-shot

- Model the decisions (cheat or not, audit or not) as a game.
- •Find conditions on the parameters for Nash equilibria.
- •The pC, pA, and n obtained yield correctness at low cost for the master, even in presence of malice.
- Trade-off: probability of correct vs. cost.
- •Constrains: malice, collusion, unreliable communication.

[NCA'08;IPDPS'10;DISC'11;NCA'11;TC'14, PLOS One'15]

Multi-round

- Evolutionary dynamics: pC and pA updated after each round (n is fixed).
- •Reinforcement learning: update function of worker profit aspiration and master tolerance to loss.
- Objective: eventual correctness.
- Trade-off: time to correct vs. cost.
- •Constrains/features: malice, unreliable communication, reputation system.

[PODC'12, EUROPAR'12, OPODIS'13, JOSS'13, CCPE'13]

But, workers may not be available all the time! Why not taking advantage of N>>n? (Internet scale)

Our contributions

- We present a mechanism that
 - 1. it is resilient to non-responsive and unreliable workers:
 - responsiveness reputation: replies/assignments ratio.
 - 3 truthfulness reputations: ~BOINC, [OPODIS'13], [Sonnek et al.].
 - 2. leverages availability of N>>n workers: the master chooses the most reputable n workers for each computation.

Our contributions

- We present a mechanism that
 - 1. it is resilient to non-responsive and unreliable workers:
 - responsiveness reputation: replies/assignments ratio.
 - 3 truthfulness reputations: ~BOINC, [OPODIS'13], [Sonnek et al.].
 - 2. leverages availability of N>>n workers: the master chooses the most reputable n workers for each computation.
- We study feasibility in absence of rationals:
 - showing pools of workers such that eventual correctness
 - cannot be achieved unless the master always audits
 - achieved forever with minimal auditing.

Our contributions

We present a mechanism that

- 1. it is resilient to non-responsive and unreliable workers:
 - responsiveness reputation: replies/assignments ratio.
 - 3 truthfulness reputations: ~BOINC, [OPODIS'13], [Sonnek et al.].
- 2. leverages availability of N>>n workers:
 the master chooses the most reputable n workers for each computation.
- •We study feasibility in absence of rationals: showing pools of workers such that eventual correctness
 - · cannot be achieved unless the master always audits
 - · achieved forever with minimal auditing.
- Experimental evaluation:

complements analysis for scenarios where rational workers exist. reputation-types comparison showing reliability/cost trade-offs.

Types of reputation

Responsiveness:

$$\rho(w) = \frac{\mathtt{replies}(w) + 1}{\mathtt{assignments}(w) + 1}$$

•Truthfulness:

LINEAR:

[Sonnek et al.]

$$\rho(w) = \frac{\texttt{audited-correct}(w) + 1}{\texttt{audited}(w) + 1}$$

EXPONENTIAL:

[OPODIS'13]

$$\rho(w) = \frac{\kappa^{\text{audited-correct}(w)}}{\kappa^{\text{audited}(w)}}, \kappa > 1$$

BOINC:

$$\rho(w) = 1 - \frac{1}{\mathtt{streak}(w)} \ (0 \ \mathtt{if} \ \mathtt{streak}(w) < 10)$$

Algorithm 1 Master's Algorithm

```
1 p_{\mathcal{A}} \leftarrow x, where x \in [p_{\mathcal{A}}^{min}, 1]
     for i \leftarrow 0 to N do
            select_i \leftarrow 0; reply\_select_i \leftarrow 0; audit\_reply\_select_i \leftarrow 0; correct\_audit_i \leftarrow 0; streak_i \leftarrow 0
            \rho_{rs_i} \leftarrow 1; initialize \rho_{tr_i} // initially all workers have the same reputation
      for r \leftarrow 1 to \infty do
           W^r \leftarrow \{i \in \mathcal{N} : i \text{ is chosen as one of the } n \text{ workers with the highest } \rho_i = \rho_{rs_i} \cdot \rho_{tr_i} \}
          \forall i \in W^r : select_i \leftarrow select_i + 1
          send a task T to all workers in W^r
           collect replies from workers in W^r for t time
10
          wait for t time collecting replies as received from workers in W^r
          R \leftarrow \{i \in W^r : a \text{ reply from } i \text{ was received by time } t\}
11
           \forall i \in R : reply\_select_i \leftarrow reply\_select_i + 1
12
           update responsiveness reputation \rho_{rs_i} of each worker i \in W^r
13
14
           audit the received answers with probability p_A
15
           if the answers were not audited then
16
               accept the value m returned by workers R_m \subseteq R,
                        where \forall m', \rho_{tr_{R_m}} \geq \rho_{tr_{R_{m'}}} // weighted majority of workers in R
17
18
           else // the master audits
19
               foreach i \in R do
20
                   audit\_reply\_select_i \leftarrow audit\_reply\_select_i + 1
21
                   if i \in F then streak_i \leftarrow 0 // F \subseteq R is the set of responsive workers caught cheating
22
                   else correct\_audit_i \leftarrow correct\_audit_i + 1, streak_i \leftarrow streak_i + 1 // honest responsive
23
                   update truthfulness reputation \rho_{tr_i} // depending on the type used
24
               if \rho_{tr_R} = 0 then p_A \leftarrow \min\{1, p_A + \alpha_m\}
25
               else
                     p_{\mathcal{A}}' \leftarrow p_{\mathcal{A}} + \alpha_m (\rho_{tr_E}/\rho_{tr_B} - \tau)
26
                     p_{\mathcal{A}} \leftarrow \min\{1, \max\{p_{\mathcal{A}}^{min}, p_{\mathcal{A}}'\}\}
27
          \forall i \in W^r: return \Pi_i to worker i // the payoff of workers in W^r \setminus R is zero
28
```

for each round of computation

Algorithm 1 Master's Algorithm

```
1 p_{\mathcal{A}} \leftarrow x, where x \in [p_{\mathcal{A}}^{min}, 1]
     for i \leftarrow 0 to N do
            select_i \leftarrow 0; reply\_select_i \leftarrow 0; audit\_reply\_select_i \leftarrow 0; correct\_audit_i \leftarrow 0; streak_i \leftarrow 0
            \rho_{rs_i} \leftarrow 1; initialize \rho_{tr_i} // initially all workers have the same reputation
     for r \leftarrow 1 to \infty do
          W^r \leftarrow \{i \in \mathcal{N} : i \text{ is chosen as one of the } n \text{ workers with the highest } \rho_i = \rho_{rs_i} \cdot \rho_{tr_i} \}
 6
          \forall i \in W^r : select_i \leftarrow select_i + 1
 7
          send a task T to all workers in W^r
 9
          collect replies from workers in W^r for t time
10
          wait for t time collecting replies as received from workers in W^r
11
          R \leftarrow \{i \in W^r : a \text{ reply from } i \text{ was received by time } t\}
          \forall i \in R : reply\_select_i \leftarrow reply\_select_i + 1
12
          update responsiveness reputation \rho_{rs_i} of each worker i \in W^r
13
14
          audit the received answers with probability p_A
15
          if the answers were not audited then
16
               accept the value m returned by workers R_m \subseteq R,
                       where \forall m', \rho_{tr_{R_m}} \geq \rho_{tr_{R_{m'}}} // weighted majority of workers in R
17
18
          else // the master audits
19
               foreach i \in R do
20
                   audit\_reply\_select_i \leftarrow audit\_reply\_select_i + 1
21
                   if i \in F then streak_i \leftarrow 0 // F \subseteq R is the set of responsive workers caught cheating
22
                   else correct\_audit_i \leftarrow correct\_audit_i + 1, streak_i \leftarrow streak_i + 1 // honest responsive
23
                   update truthfulness reputation \rho_{tr_i} // depending on the type used
24
               if \rho_{tr_R} = 0 then p_A \leftarrow \min\{1, p_A + \alpha_m\}
25
               else
                    p_A' \leftarrow p_A + \alpha_m (\rho_{tr_E}/\rho_{tr_B} - \tau)
26
                    p_{\mathcal{A}} \leftarrow \min\{1, \max\{p_{\mathcal{A}}^{min}, p_{\mathcal{A}}'\}\}
27
          \forall i \in W^r: return \Pi_i to worker i // the payoff of workers in W^r \setminus R is zero
28
```

select
workers
according to
reputation

Algorithm 1 Master's Algorithm

```
1 p_{\mathcal{A}} \leftarrow x, where x \in [p_{\mathcal{A}}^{min}, 1]
     for i \leftarrow 0 to N do
            select_i \leftarrow 0; reply\_select_i \leftarrow 0; audit\_reply\_select_i \leftarrow 0; correct\_audit_i \leftarrow 0; streak_i \leftarrow 0
            \rho_{rs_i} \leftarrow 1; initialize \rho_{tr_i} // initially all workers have the same reputation
     for r \leftarrow 1 to \infty do
           W^r \leftarrow \{i \in \mathcal{N} : i \text{ is chosen as one of the } n \text{ workers with the highest } \rho_i = \rho_{rs_i} \cdot \rho_{tr_i} \}
 6
          \forall i \in W^r : select_i \leftarrow select_i + 1
 7
           send a task T to all workers in W^r
 8
 9
           collect replies from workers in W^r for t time
10
           wait for t time collecting replies as received from workers in W^r
11
           R \leftarrow \{i \in W^r : a \text{ reply from } i \text{ was received by time } t\}
           \forall i \in R : reply\_select_i \leftarrow reply\_select_i + 1
12
13
           update responsiveness reputation \rho_{rs_i} of each worker i \in W^r
14
           audit the received answers with probability p_A
15
           if the answers were not audited then
16
               accept the value m returned by workers R_m \subseteq R,
                        where \forall m', \rho_{tr_{R_m}} \geq \rho_{tr_{R_{m'}}} // weighted majority of workers in R
17
18
           else // the master audits
19
               foreach i \in R do
20
                   audit\_reply\_select_i \leftarrow audit\_reply\_select_i + 1
21
                   if i \in F then streak_i \leftarrow 0 // F \subseteq R is the set of responsive workers caught cheating
22
                   else correct\_audit_i \leftarrow correct\_audit_i + 1, streak_i \leftarrow streak_i + 1 // honest responsive
23
                   update truthfulness reputation \rho_{tr_i} // depending on the type used
24
               if \rho_{tr_R} = 0 then p_A \leftarrow \min\{1, p_A + \alpha_m\}
25
               else
                     p_{\mathcal{A}}' \leftarrow p_{\mathcal{A}} + \alpha_m (\rho_{tr_E}/\rho_{tr_B} - \tau)
26
                     p_{\mathcal{A}} \leftarrow \min\{1, \max\{p_{\mathcal{A}}^{min}, p_{\mathcal{A}}'\}\}
27
           \forall i \in W^r: return \Pi_i to worker i // the payoff of workers in W^r \setminus R is zero
28
```

send task and collect replies

28

```
Algorithm 1 Master's Algorithm
 1 p_{\mathcal{A}} \leftarrow x, where x \in [p_{\mathcal{A}}^{min}, 1]
     for i \leftarrow 0 to N do
            select_i \leftarrow 0; reply\_select_i \leftarrow 0; audit\_reply\_select_i \leftarrow 0; correct\_audit_i \leftarrow 0; streak_i \leftarrow 0
            \rho_{rs_i} \leftarrow 1; initialize \rho_{tr_i} // initially all workers have the same reputation
      for r \leftarrow 1 to \infty do
           W^r \leftarrow \{i \in \mathcal{N} : i \text{ is chosen as one of the } n \text{ workers with the highest } \rho_i = \rho_{rs_i} \cdot \rho_{tr_i} \}
          \forall i \in W^r : select_i \leftarrow select_i + 1
           send a task T to all workers in W^r
 8
 9
           collect replies from workers in W^r for t time
10
           wait for t time collecting replies as received from workers in W^r
11
           R \leftarrow \{i \in W^r : a \text{ reply from } i \text{ was received by time } t\}
           \forall i \in R : reply\_select_i \leftarrow reply\_select_i + 1
12
13
           update responsiveness reputation \rho_{rs_i} of each worker i \in W^r
14
           audit the received answers with probability p_A
15
           if the answers were not audited then
16
               accept the value m returned by workers R_m \subseteq R,
                        where \forall m', \rho_{tr_{R_m}} \geq \rho_{tr_{R_{m'}}} // weighted majority of workers in R
17
18
           else // the master audits
19
               foreach i \in R do
20
                   audit\_reply\_select_i \leftarrow audit\_reply\_select_i + 1
21
                   if i \in F then streak_i \leftarrow 0 // F \subseteq R is the set of responsive workers caught cheating
22
                   else correct\_audit_i \leftarrow correct\_audit_i + 1, streak_i \leftarrow streak_i + 1 // honest responsive
23
                   update truthfulness reputation \rho_{tr_i} // depending on the type used
24
               if \rho_{tr_R} = 0 then p_A \leftarrow \min\{1, p_A + \alpha_m\}
25
               else
                     p_{\mathcal{A}}' \leftarrow p_{\mathcal{A}} + \alpha_m (\rho_{tr_E}/\rho_{tr_B} - \tau)
26
                     p_{\mathcal{A}} \leftarrow \min\{1, \max\{p_{\mathcal{A}}^{min}, p_{\mathcal{A}}'\}\}
27
```

 $\forall i \in W^r$: **return** Π_i to worker i // the payoff of workers in $W^r \setminus R$ is zero

Algorithm 1 Master's Algorithm

```
1 p_{\mathcal{A}} \leftarrow x, where x \in [p_{\mathcal{A}}^{min}, 1]
     for i \leftarrow 0 to N do
            select_i \leftarrow 0; reply\_select_i \leftarrow 0; audit\_reply\_select_i \leftarrow 0; correct\_audit_i \leftarrow 0; streak_i \leftarrow 0
            \rho_{rs_i} \leftarrow 1; initialize \rho_{tr_i} // initially all workers have the same reputation
      for r \leftarrow 1 to \infty do
          W^r \leftarrow \{i \in \mathcal{N} : i \text{ is chosen as one of the } n \text{ workers with the highest } \rho_i = \rho_{rs_i} \cdot \rho_{tr_i} \}
          \forall i \in W^r : select_i \leftarrow select_i + 1
          send a task T to all workers in W^r
 9
          collect replies from workers in W^r for t time
10
          wait for t time collecting replies as received from workers in W^r
11
          R \leftarrow \{i \in W^r : a \text{ reply from } i \text{ was received by time } t\}
          \forall i \in R : reply\_select_i \leftarrow reply\_select_i + 1
12
12
          update responsiveness reputation \rho_{rs_i} of each worker i \in W^r
14
          audit the received answers with probability p_A
15
          if the answers were not audited then
16
               accept the value m returned by workers R_m \subseteq R,
17
                        where \forall m', \rho_{tr_{R_m}} \geq \rho_{tr_{R_{m'}}} // weighted majority of workers in R
18
          else // the master audits
19
               foreach i \in R do
20
                   audit\_reply\_select_i \leftarrow audit\_reply\_select_i + 1
21
                   if i \in F then streak_i \leftarrow 0 // F \subseteq R is the set of responsive workers caught cheating
22
                   else correct\_audit_i \leftarrow correct\_audit_i + 1, streak_i \leftarrow streak_i + 1 // honest responsive
23
                   update truthfulness reputation \rho_{tr_i} // depending on the type used
24
               if \rho_{tr_R} = 0 then p_A \leftarrow \min\{1, p_A + \alpha_m\}
25
               else
                    p_A' \leftarrow p_A + \alpha_m (\rho_{tr_E}/\rho_{tr_B} - \tau)
26
                    p_{\mathcal{A}} \leftarrow \min\{1, \max\{p_{\mathcal{A}}^{min}, p_{\mathcal{A}}'\}\}
27
          \forall i \in W^r: return \Pi_i to worker i // the payoff of workers in W^r \setminus R is zero
28
```

update responsiveness reputation

Algorithm 1 Master's Algorithm

```
1 p_{\mathcal{A}} \leftarrow x, where x \in [p_{\mathcal{A}}^{min}, 1]
     for i \leftarrow 0 to N do
            select_i \leftarrow 0; reply\_select_i \leftarrow 0; audit\_reply\_select_i \leftarrow 0; correct\_audit_i \leftarrow 0; streak_i \leftarrow 0
            \rho_{rs_i} \leftarrow 1; initialize \rho_{tr_i} // initially all workers have the same reputation
      for r \leftarrow 1 to \infty do
          W^r \leftarrow \{i \in \mathcal{N} : i \text{ is chosen as one of the } n \text{ workers with the highest } \rho_i = \rho_{rs_i} \cdot \rho_{tr_i} \}
          \forall i \in W^r : select_i \leftarrow select_i + 1
          send a task T to all workers in W^r
          collect replies from workers in W^r for t time
10
          wait for t time collecting replies as received from workers in W^r
11
          R \leftarrow \{i \in W^r : a \text{ reply from } i \text{ was received by time } t\}
12
          \forall i \in R : reply\_select_i \leftarrow reply\_select_i + 1
          update responsiveness reputation \rho_{rs_i} of each worker i \in W^r
13
11
          audit the received answers with probability p_A
15
          if the answers were not audited then
16
               accept the value m returned by workers R_m \subseteq R,
                        where \forall m', \rho_{tr_{R_m}} \geq \rho_{tr_{R_{m'}}} // weighted majority of workers in R
17
18
          else // the master audits
19
               foreach i \in R do
20
                   audit\_reply\_select_i \leftarrow audit\_reply\_select_i + 1
21
                   if i \in F then streak_i \leftarrow 0 // F \subseteq R is the set of responsive workers caught cheating
22
                   else correct\_audit_i \leftarrow correct\_audit_i + 1, streak_i \leftarrow streak_i + 1 // honest responsive
23
                   update truthfulness reputation \rho_{tr_i} // depending on the type used
24
               if \rho_{tr_R} = 0 then p_A \leftarrow \min\{1, p_A + \alpha_m\}
25
               else
                    p_A' \leftarrow p_A + \alpha_m (\rho_{tr_E}/\rho_{tr_B} - \tau)
26
                    p_{\mathcal{A}} \leftarrow \min\{1, \max\{p_{\mathcal{A}}^{min}, p_{\mathcal{A}}'\}\}
27
          \forall i \in W^r: return \Pi_i to worker i // the payoff of workers in W^r \setminus R is zero
28
```

audit with probability pA

Algorithm 1 Master's Algorithm

```
1 p_{\mathcal{A}} \leftarrow x, where x \in [p_{\mathcal{A}}^{min}, 1]
     for i \leftarrow 0 to N do
            select_i \leftarrow 0; reply\_select_i \leftarrow 0; audit\_reply\_select_i \leftarrow 0; correct\_audit_i \leftarrow 0; streak_i \leftarrow 0
            \rho_{rs_i} \leftarrow 1; initialize \rho_{tr_i} // initially all workers have the same reputation
      for r \leftarrow 1 to \infty do
          W^r \leftarrow \{i \in \mathcal{N} : i \text{ is chosen as one of the } n \text{ workers with the highest } \rho_i = \rho_{rs_i} \cdot \rho_{tr_i} \}
          \forall i \in W^r : select_i \leftarrow select_i + 1
          send a task T to all workers in W^r
          collect replies from workers in W^r for t time
10
          wait for t time collecting replies as received from workers in W^r
          R \leftarrow \{i \in W^r : a \text{ reply from } i \text{ was received by time } t\}
11
          \forall i \in R : reply\_select_i \leftarrow reply\_select_i + 1
12
          update responsiveness reputation \rho_{rs_i} of each worker i \in W^r
13
14
          audit the received answers with probability p_A
15
          if the answers were not audited then
16
               accept the value m returned by workers R_m \subseteq R,
17
                        where \forall m', \rho_{tr_{R_m}} \geq \rho_{tr_{R_{m'}}} // weighted majority of workers in R
18
          else // the master audits
19
               foreach i \in R do
20
                   audit\_reply\_select_i \leftarrow audit\_reply\_select_i + 1
21
                   if i \in F then streak_i \leftarrow 0 // F \subseteq R is the set of responsive workers caught cheating
22
                   else correct\_audit_i \leftarrow correct\_audit_i + 1, streak_i \leftarrow streak_i + 1 // honest responsive
23
                   update truthfulness reputation \rho_{tr_i} // depending on the type used
24
               if \rho_{tr_R} = 0 then p_A \leftarrow \min\{1, p_A + \alpha_m\}
25
               else
                    p_A' \leftarrow p_A + \alpha_m (\rho_{tr_E}/\rho_{tr_B} - \tau)
26
                    p_{\mathcal{A}} \leftarrow \min\{1, \max\{p_{\mathcal{A}}^{min}, p_{\mathcal{A}}'\}\}
27
          \forall i \in W^r: return \Pi_i to worker i // the payoff of workers in W^r \setminus R is zero
28
```

if NOT audited, accept majority weighted by truthfulness rep

Algorithm 1 Master's Algorithm

```
1 p_{\mathcal{A}} \leftarrow x, where x \in [p_{\mathcal{A}}^{min}, 1]
     for i \leftarrow 0 to N do
            select_i \leftarrow 0; reply\_select_i \leftarrow 0; audit\_reply\_select_i \leftarrow 0; correct\_audit_i \leftarrow 0; streak_i \leftarrow 0
            \rho_{rs_i} \leftarrow 1; initialize \rho_{tr_i} // initially all workers have the same reputation
      for r \leftarrow 1 to \infty do
           W^r \leftarrow \{i \in \mathcal{N} : i \text{ is chosen as one of the } n \text{ workers with the highest } \rho_i = \rho_{rs_i} \cdot \rho_{tr_i} \}
          \forall i \in W^r : select_i \leftarrow select_i + 1
           send a task T to all workers in W^r
           collect replies from workers in W^r for t time
10
           wait for t time collecting replies as received from workers in W^r
           R \leftarrow \{i \in W^r : a \text{ reply from } i \text{ was received by time } t\}
11
           \forall i \in R : reply\_select_i \leftarrow reply\_select_i + 1
12
13
           update responsiveness reputation \rho_{rs_i} of each worker i \in W^r
14
           audit the received answers with probability p_A
15
           if the answers were not audited then
16
               accept the value m returned by workers R_m \subseteq R,
                        where \forall m', \rho_{tr_{R_m}} \geq \rho_{tr_{R_{m'}}} // weighted majority of workers in R
17
18
           else // the master audits
19
               foreach i \in R do
20
                   audit\_reply\_select_i \leftarrow audit\_reply\_select_i + 1
21
                   if i \in F then streak_i \leftarrow 0 // F \subseteq R is the set of responsive workers caught cheating
22
                   else correct\_audit_i \leftarrow correct\_audit_i + 1, streak_i \leftarrow streak_i + 1 // honest responsive
23
                   update truthfulness reputation \rho_{tr_i} // depending on the type used
24
               if \rho_{tr_R} = 0 then p_A \leftarrow \min\{1, p_A + \alpha_m\}
25
               else
                     p_A' \leftarrow p_A + \alpha_m (\rho_{tr_E}/\rho_{tr_B} - \tau)
26
                     p_{\mathcal{A}} \leftarrow \min\{1, \max\{p_{\mathcal{A}}^{min}, p_{\mathcal{A}}'\}\}
27
           \forall i \in W^r: return \Pi_i to worker i // the payoff of workers in W^r \setminus R is zero
28
```

if audited, update truthfulness reputation

Algorithm 1 Master's Algorithm

```
1 p_{\mathcal{A}} \leftarrow x, where x \in [p_{\mathcal{A}}^{min}, 1]
     for i \leftarrow 0 to N do
            select_i \leftarrow 0; reply\_select_i \leftarrow 0; audit\_reply\_select_i \leftarrow 0; correct\_audit_i \leftarrow 0; streak_i \leftarrow 0
            \rho_{rs_i} \leftarrow 1; initialize \rho_{tr_i} // initially all workers have the same reputation
      for r \leftarrow 1 to \infty do
          W^r \leftarrow \{i \in \mathcal{N} : i \text{ is chosen as one of the } n \text{ workers with the highest } \rho_i = \rho_{rs_i} \cdot \rho_{tr_i} \}
          \forall i \in W^r : select_i \leftarrow select_i + 1
          send a task T to all workers in W^r
          collect replies from workers in W^r for t time
10
          wait for t time collecting replies as received from workers in W^r
          R \leftarrow \{i \in W^r : a \text{ reply from } i \text{ was received by time } t\}
11
          \forall i \in R : reply\_select_i \leftarrow reply\_select_i + 1
12
          update responsiveness reputation \rho_{rs_i} of each worker i \in W^r
13
          audit the received answers with probability p_A
14
15
          if the answers were not audited then
16
               accept the value m returned by workers R_m \subseteq R,
                        where \forall m', \rho_{tr_{R_m}} \geq \rho_{tr_{R_{m'}}} // weighted majority of workers in R
17
18
          else // the master audits
19
               foreach i \in R do
20
                   audit\_reply\_select_i \leftarrow audit\_reply\_select_i + 1
21
                   if i \in F then streak_i \leftarrow 0 // F \subseteq R is the set of responsive workers caught cheating
22
                   else correct\_audit_i \leftarrow correct\_audit_i + 1, streak_i \leftarrow streak_i + 1 // honest responsive
23
                   update truthfulness reputation \rho_{tr_i} // depending on the type used
24
               if \rho_{tr_R} = 0 then p_A \leftarrow \min\{1, p_A + \alpha_m\}
                                                                                        tolerance
25
               else
                     p_{\mathcal{A}}' \leftarrow p_{\mathcal{A}} + \alpha_m (\rho_{tr_F}/\rho_{tr_B} - \tau)
26
                                                                                           to loss
                     p_{\mathcal{A}} \leftarrow \min\{1, \max\{p_{\mathcal{A}}^{min}, p_{\mathcal{A}}'\}\}
27
```

 $\forall i \in W^r$: **return** Π_i to worker i // the payoff of workers in $W^r \setminus R$ is zero

 \dots and pA

28

Algorithm 1 Master's Algorithm

```
1 p_{\mathcal{A}} \leftarrow x, where x \in [p_{\mathcal{A}}^{min}, 1]
     for i \leftarrow 0 to N do
            select_i \leftarrow 0; reply\_select_i \leftarrow 0; audit\_reply\_select_i \leftarrow 0; correct\_audit_i \leftarrow 0; streak_i \leftarrow 0
            \rho_{rs_i} \leftarrow 1; initialize \rho_{tr_i} // initially all workers have the same reputation
      for r \leftarrow 1 to \infty do
          W^r \leftarrow \{i \in \mathcal{N} : i \text{ is chosen as one of the } n \text{ workers with the highest } \rho_i = \rho_{rs_i} \cdot \rho_{tr_i} \}
          \forall i \in W^r : select_i \leftarrow select_i + 1
          send a task T to all workers in W^r
          collect replies from workers in W^r for t time
10
          wait for t time collecting replies as received from workers in W^r
11
          R \leftarrow \{i \in W^r : a \text{ reply from } i \text{ was received by time } t\}
          \forall i \in R : reply\_select_i \leftarrow reply\_select_i + 1
12
13
          update responsiveness reputation \rho_{rs_i} of each worker i \in W^r
          audit the received answers with probability p_A
14
15
          if the answers were not audited then
16
               accept the value m returned by workers R_m \subseteq R,
                        where \forall m', \rho_{tr_{R_m}} \geq \rho_{tr_{R_{m'}}} // weighted majority of workers in R
17
18
          else // the master audits
19
               foreach i \in R do
20
                   audit\_reply\_select_i \leftarrow audit\_reply\_select_i + 1
21
                   if i \in F then streak_i \leftarrow 0 // F \subseteq R is the set of responsive workers caught cheating
22
                   else correct\_audit_i \leftarrow correct\_audit_i + 1, streak_i \leftarrow streak_i + 1 // honest responsive
23
                   update truthfulness reputation \rho_{tr_i} // depending on the type used
24
               if \rho_{tr_R} = 0 then p_A \leftarrow \min\{1, p_A + \alpha_m\}
                                                                                        tolerance
25
               else
                     p_{\mathcal{A}}' \leftarrow p_{\mathcal{A}} + \alpha_m (\rho_{tr_F}/\rho_{tr_B} - \tau)
26
                                                                                            to loss
                     p_{\mathcal{A}} \leftarrow \min\{1, \max\{p_{\mathcal{A}}^{min}, p_{\mathcal{A}}'\}\}
27
```

 $\forall i \in W^r$: **return** Π_i to worker i // the payoff of workers in $W^r \setminus R$ is zero

Algorithm 2 Algorithm for Rational Worker *i*

```
1 p_{Ci} \leftarrow y, where y \in [0, 1]
     repeat forever
          wait for a task T from the master
 3
          if available then
 4
                decide whether to cheat or not independently with distribution P(cheat) = p_{Ci}
 5
               if the decision was to cheat then
 6
                   send arbitrary solution to the master
                   get payoff \Pi_i
                   p_{Ci} \leftarrow \max\{0, \min\{1, p_{Ci} + \alpha_w(\Pi_i - a_i)\}\}
 9
10
               else
                   send compute(T) to the master
11
12
                   get payoff \Pi_i
                   p_{Ci} \leftarrow \max\{0, \min\{1, p_{Ci} - \alpha_w(\Pi_i - WC_{\mathcal{T}} - a_i)\}\}
13
```

cheat with probability pC

Algorithm 2 Algorithm for Rational Worker i

```
1 p_{Ci} \leftarrow y, where y \in [0, 1]
     repeat forever
          wait for a task T from the master
 3
          if available then
                decide whether to cheat or not independently with distribution P(cheat) = p_{Ci}
                if the decision was to cheat then
 6
                   send arbitrary solution to the master
                   get payoff \Pi_i
                   p_{Ci} \leftarrow \max\{0, \min\{1, p_{Ci} + \alpha_w(\Pi_i - a_i)\}\}
 9
10
               else
                   send compute(T) to the master
11
12
                   get payoff \Pi_i
                   p_{Ci} \leftarrow \max\{0, \min\{1, p_{Ci} - \alpha_w(\Pi_i - WC_{\mathcal{T}} - a_i)\}\}
13
```

cheat with probability pC

update pC

Algorithm 2 Algorithm for Rational Worker i

```
p_{Ci} \leftarrow y, where y \in [0, 1]
     repeat forever
          wait for a task T from the master
          if available then
               decide whether to cheat or not independently with distribution P(cheat) = p_{Ci}
               if the decision was to cheat then
 6
                   send arbitrary solution to the master
                   get payoff \Pi_i
                   p_{Ci} \leftarrow \max\{0, \min\{1, p_{Ci} + \alpha_w(\Pi_i - a_i)\}\}
 9
                else
                   send compute(T) to the master
11
12
                   get payoff \Pi_i
                   p_{Ci} \leftarrow \max\{0, \min\{1, p_{Ci} - \alpha_w(\Pi_i - WC_{\mathcal{T}} - a_i)\}\}
13
```

profit aspiration

Feasibility without rationals

Theorem 3. Consider a system in which workers are either altruistic or malicious and there is at least one altruistic worker i with $d_i = 1$ in the pool. Eventual correctness is satisfied if the mechanism of Algorithm 1 is used with the responsiveness reputation and any of the truthfulness reputations LINEAR or EXPONENTIAL.

Theorem 4. Consider a system in which workers are either altruistic or malicious and there is at least one altruistic worker i with $d_i = 1$ in the pool. In this system, the mechanism of Algorithm 1 is used with the responsiveness reputation and the truthfulness reputation BOINC. Then, eventual correctness is satisfied if and only if the number of altruistic workers with $d_i < 1$ is smaller than n.

N=9, n=5, convergence: pA = pAmin = 0.01

initial pA =

0.5

1

N=9, n=5, convergence: pA = pAmin = 0.01

WITH

LOTS OF MALICIOUS BOINC IS BETTER

	M	R
S4		9)d=1
S5		1)d=1 8)d=0.5
S6	8)d=0.5	1)d=1

initial pA =

0.5

N=9, n=5, convergence: pA = pAmin = 0.01

CONVERGENCE

EVEN WITH

LOW AVAILABILITY

Ongoing and future work

- Application of repeated games framework for provable guarantees in multiround computations.
- Experimental comparison of both approaches.
- Integration of our mechanisms into emBoinc.

Thank you!