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Station Assignment Motivation

Multiple users need access to a shared resource
each user can wait for a while ...




Station Assignment Applications

Traffic monitoring systems

Wearable health-monitoring systems
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Dynamic Allocation Problem

Radio Network:

*A set of static stations
*A set of mobile clients

To upload (or download) packets,
Clients are allocated to Stations,

but there are restrictions...



Model

Slotted time.
Client c:

* laxity we:
¢ must transmit to some station at least one packet
within each w. consecutive time slots while active.

* bandwidth requirement b,

Station s:

* bandwidth capacity Bs:
maximum aggregated bandwidth of clients
that may transmit to s in each time slot.



Station Assignment Problem (SA)

Given a set of clients and set of stations,
assign clients’ transmissions to stations so that:

1) Each client ¢ transmits to a station at least once
within each w. time slots.

2) In each time slot, each s receives from a set of
clients whose aggregated b, is at most B.

.. minimizing resouces utilized.



SA Problem
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SA is more restrictive than UFRP...



Models

Centralized, b.=B:
Windows Scheduling (WS) [Bar-Noy et al.,03 & 07]: clients do not leave.
WS with Temporary Items [Chan,Wong,05]: allocations are final.
WS [Farach-Colton et al.,14]: with reallocation at constant cost (1).
Centralized, b.<B:
SA [Fernandez-Anta et al.,13]: no reallocation.

SA [Halper et al.,15]: with reallocation at proportional cost (p/wc),
reallocation + channel-usage performance metrics
(= 1 station, unbounded channels).

This paper: Distributed b <B:

SA through Learning: with reallocation at proportional cost (p/w.),
reallocation + channel-usage + energy performance metrics
(set of stations, unbounded channels).



Reallocation Algorithms

Middle-ground between
online algorithms (infinite cost reallocations)
and of fline algorithms (free reallocations).

Example: b.=B

3 || & [ > 3| 2| 3 3|5

' . channel released
| reallocation

2l4f2] [2]4]2] [2]4f2]2][2]2]2]2

d

a client with laxity 4
leaves the system




WS-SA Reallocation Algorithms

[Farach-Colton et al., 14]
*Centralized Preemptive Reallocation: low channel usage.
Centralized Classified Reallocation: low reallocation cost.

[Halper et al., 14]
*Centralized Classified Preemptive Reallocation:
trade-offs between low channel usage and low reallocation cost.

This paper:
New approach: Distributed Learning Reallocation Algorithms
Multi-Agent Reinforcement Learning (MARL) with

Independent Proximal Policy Optimization (IPPO)




Performance Metrics

*[Halper et al., 15]:

H(ALG,r)
max <a
rEALG.N£p # (OPT, 1)
RALG, )
max <

r'RALG,r)£Q 9, (ALG, r ) B

* This paper: additionally

max E(ALG,r) <y (a.,p,7)-approximation
rEALGH#g E(OPT, 1) against current load
/. number of channels used. #(OPT, r) > ZB/(chc(”))
R cost of reallocations. &(OPT,r) > émin d(c, s, r)°/w.(r)
. weight of departed clients. RALG, = Y. plwlr)

cER(ALG,r)

& energy consumed by clients. DALG, )= ), lw,
ceD(ALG,r)



Distributed Learning Reallocation

e Tn each control sub-round:
e cach client

e exchanges information to decide whether to upload
this round and to which station,

e broadcasts ID of chosen station,
e each station

e activates/deactivates channels and reallocates among
channels according to ID's received.

e Tn each data sub-round:

e each client uploading transmits a packet to chosen
station.



MARL Formal Framework

Decentralized Partially Observable Markov Decision Process

(Dec-POMDP)

if c uploads:
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otherwise

reward function R(c,r) for client c
after action taken in round r
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we need to learn a policy
to maximize this reward
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Policy Optimization
Goal: learn a policy to maximize expected reward.

Our state space is too large (locations),

= compute exact action-value function (Q) and/or

state-value function (V) is time consuming,

= we use instead a policy gradient method to estimate

an advantage-value function A=Q-V.



Policy Optimization

Independent Proximal Policy Optimization (IPPO):
[Schulman et al., 17 & de Witt et al.,20]

=improve stability avoiding change policy too much:

- . advantage function
Ty = arg max Er [L(ﬂe, 79, a,,(c), S”(C))] esti mc?’red as in

n, 4
/ \ [Schulman et al.,15]
policy

empirical min< AT 1+ €> Afo), if Ac)=0

ﬂeold(ar(c) | S,,(C)) ’

by stochastic average
gradient ascent ( ry(a(c)|s,(c))
max

ﬂﬁold(ar(c) | Sr(c)) ,

1 - €> Ar(C), otherwise



SA Protocol

Algorithm 1: SA protocol for each client ¢ € V.. Coord, are the loca-
tion coordinates of station o. X (o) is the value of the indicator variable
X(o(e,r), 7). we, be are as defined in the model section. T' is the parametric
number of iterations between policy updates (a.k.a. minibatch size).
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Oprev < 0

Wieft < We

7 < uniform distribution over integers in [0, m)|

11 // Minibatch iteration counter
forr=1,2,... do

// control subround

x < choose a number in [0, m] at random with probability distribution 7
if z #£ 0 then

L broadcast (c, w, bc, x)

receive (o, Coord,, X(c,0)) from station o = x

R; + compute reward using Coords, X (o), 0prev, Wieft and x
// Equations 1 and 2
if + =T then
compute advantage estimators 1211, cee Ar using R1,...,Rr
// Equation 4 in [20]
update // Equation 3
1<+ 0

11+ 1

// data subround

if £ # 0 then

upload to station x
Oprev < T

Wieft < We

else

| Wieft < Wieft — 1




Energy Cost / Minimum Energy Cost
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Simulations
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With respect to previous centralized scheduler, similar reallocations
ratio with a distributed scheduler. First energy evaluation.
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