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Station Assignment Motivation

Multiple users need access to a shared resource 
each user can wait for a while ... 

but not too long!



Station Assignment Applications
Traffic monitoring systems 

Inventory replenishment 

Wearable health-monitoring systems



Dynamic Allocation Problem

Radio Network: 

•A set of static stations 

•A set of mobile clients 

To upload (or download) packets,  

Clients are allocated to Stations, 

but there are restrictions...  



Model

Slotted time. 
Client c: 

• laxity wc:  
c must transmit to some station at least one packet 
within each wc consecutive time slots while active. 

• bandwidth requirement bc 

Station s: 
• bandwidth capacity Bs:   

maximum aggregated bandwidth of clients  
that may transmit to s in each time slot.



Station Assignment Problem (SA)

Given a set of clients and set of stations, 
assign clients’ transmissions to stations so that: 

1) Each client c transmits to a station at least once 
within each wc time slots. 

2) In each time slot, each s receives from a set of 
clients whose aggregated bc is at most B. 

… minimizing resouces utilized.



SA Problem

b2=B, w2=2 
b3=B, w3=3

SA is more restrictive than UFBP…

available



Models
Centralized, bc=B: 

Windows Scheduling (WS) [Bar-Noy et al.,03 & 07]: clients do not leave. 

WS with Temporary Items [Chan,Wong,05]: allocations are final. 

WS [Farach-Colton et al.,14]: with reallocation at constant cost (1). 

Centralized, bc⩽B: 

SA [Fernandez-Anta et al.,13]: no reallocation. 

SA [Halper et al.,15]: with reallocation at proportional cost (ρ/wc), 
reallocation + channel-usage performance metrics  

(≡ 1 station, unbounded channels). 

This paper: Distributed bc⩽B: 

SA through Learning: with reallocation at proportional cost (ρ/wc), 
reallocation + channel-usage + energy performance metrics  

(set of stations, unbounded channels).



Reallocation Algorithms

Middle-ground between  
online algorithms (infinite cost reallocations)  
and offline algorithms (free reallocations).

Example: bc=B 

a client with laxity 4  
leaves the system



WS-SA Reallocation Algorithms

[Farach-Colton et al., 14] 
•Centralized Preemptive Reallocation: low channel usage.  
•Centralized Classified Reallocation: low reallocation cost.  

[Halper et al., 14] 
•Centralized Classified Preemptive Reallocation:  

trade-offs between low channel usage and low reallocation cost. 

This paper:  
New approach: Distributed Learning Reallocation Algorithms 
Multi-Agent Reinforcement Learning (MARL) with  
Independent Proximal Policy Optimization (IPPO)



Performance Metrics

: number of channels used. 

: cost of reallocations. 

: weight of departed clients. 

: energy consumed by clients. 

ℋ

ℛ

𝒟
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(α,β,𝜸)-approximation 
against current load

•[Halper et al., 15]:
max

r:E(ALG,r)≠∅

ℋ(ALG, r)
ℋ(OPT, r)

≤ α
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r:R(ALG,r)≠∅

ℛ(ALG, r)
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•This paper: additionally

 

 

 

 

ℋ(OPT, r) ≥ ⌈∑
c

B/(bcwc(r))⌉
ℰ(OPT, r) ≥ ∑

c

ϵ min
s

d(c, s, r)δ /wc(r)

ℛ(ALG, r) = ∑
c∈R(ALG,r)

ρ/wc(r)

𝒟(ALG, r) = ∑
c∈D(ALG,r)

1/wc



Distributed Learning Reallocation
• In each control sub-round: 

• each client  

• exchanges information to decide whether to upload 
this round and to which station, 

• broadcasts ID of chosen station, 

• each station 

• activates/deactivates channels and reallocates among 
channels according to ID’s received. 

• In each data sub-round: 

• each client uploading transmits a packet to chosen 
station.



MARL Formal Framework
Decentralized Partially Observable Markov Decision Process 
(Dec-POMDP)  

⟨Vc, S, A, PS, O, PO, R, W⟩

Γ − ⌈ |s(c, r) − s(c, r − 1) |
|Vs | ⌉ ρ

wc(r)
− η ⋅ X(s(c, r), r) − ϵ ⋅ d(c, s, r)δ

Γ − ξ ⋅ wc(r)

Γ − ξ/wc(r)

if  wc(r) > wc /κ

otherwise

if c uploads:

if c does not upload: reallocations 
cost

channel usage 
cost

energy 
cost

reward function R(c,r) for client c  
after action taken in round r

we need to learn a policy  
to maximize this reward



Policy Optimization
Goal: learn a policy to maximize expected reward. 

Our state space is too large (locations), 

⇒ compute exact action-value function (Q) and/or 
state-value function (V) is time consuming, 

⇒ we use instead a policy gradient method to estimate 
an advantage-value function A=Q-V.



Policy Optimization

πθ = arg max
πθ

Êr [L(πθ, πθold
, ar(c), sr(c))]

,min ( πθ(ar(c) |sr(c))
πθold

(ar(c) |sr(c))
,1 + ϵ) ̂Ar(c) if  ̂Ar(c) ≥ 0

,max ( πθ(ar(c) |sr(c))
πθold

(ar(c) |sr(c))
,1 − ϵ) ̂Ar(c) otherwise

policy

empirical  
average

advantage function  
estimated as in  

[Schulman et al.,15]

by stochastic  
gradient ascent

Independent Proximal Policy Optimization (IPPO):  
[Schulman et al.,17 & de Witt et al.,20] 

improve stability avoiding change policy too much:⇒



SA Protocol
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Algorithm 1: SA protocol for each client c 2 Vc. Coord� are the loca-
tion coordinates of station �. X(�) is the value of the indicator variable
X(�(c, r), r). wc, bc are as defined in the model section. T is the parametric
number of iterations between policy updates (a.k.a. minibatch size).
1 �prev  0
2 wleft  wc

3 ⇡  uniform distribution over integers in [0,m]
4 i 1 // Minibatch iteration counter
5 for r = 1, 2, . . . do

// control subround
6 x choose a number in [0,m] at random with probability distribution ⇡
7 if x 6= 0 then
8 broadcast hc, wc, bc, xi
9 receive h�, Coord�, X(c,�)i from station � = x

10 Ri  compute reward using Coord�, X(�),�prev, wleft and x
// Equations 1 and 2

11 if i = T then
12 compute advantage estimators Â1, . . . , ÂT using R1, . . . , RT

// Equation 4 in [20]
13 update ⇡ // Equation 3
14 i 0

15 i i+ 1
// data subround

16 if x 6= 0 then
17 upload to station x
18 �prev  x
19 wleft  wc

20 else
21 wleft  wleft � 1



Simulations

14 L. Dong et al.

Fig. 2. Energy ratio per round.

Fig. 3. Reallocation ratio per round.
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Fig. 2. Energy ratio per round.

Fig. 3. Reallocation ratio per round.
With respect to previous centralized scheduler, similar reallocations 

ratio with a distributed scheduler. First energy evaluation. 
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not evaluated in that work. We conclude that we achieve similar performance
with a distributed algorithm that uses only local information, in contrast with
the centralized scheduler in [11]. On the other hand our algorithm requires a
learning phase as preprocessing, but anyway as mentioned earlier preprocessing
time becomes negligible in the limit for long enough usage of the network.

The latter observations, combined with the stations providing new ID’s ac-
cording to client location, and informing new clients upon arrival of the policies
learned previously by other clients, show the potential of our approach to SA
when clients have all the same bandwidth requirement: our system computes
policies for SA by distributed learning, to be used for future clients at no addi-
tional scheduling cost.

Open problems left for future work include studying the impact of different
bandwidth requirements, making relevant the consideration of channel usage ra-
tio. To encourage more cooperative actions, a centralized critic can be introduced
to help improving global performance. Due to the graph nature of the network,
incorporating Graph Neural Network (GNN) is also worth exploring. A theoret-
ical analysis of convergence of MARL in the SA problem is also a fundamental
open question.

Fig. 1. Active clients aggregated weight per round.
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|Vc|=100, |Vs|=10, wc=2(random), bc=B, ϵ=1, ρ=1, 𝜂=1, 𝜉=1, 𝛅=2

energy reallocations

active 
clients
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