Algebraic Computations in Anonymous VANET

Dariusz R. Kowalski Augusta Univ. Miguel A. Mosteiro Pace Univ. Austin Powlette Pace Univ.

NETYS 2024

Anonymous Dynamic Networks (ADN)

• Fixed set of n nodes

- No identifiers or labels
- Synchronous communication : At each round
 - a node broadcasts a message to its neighbors
 - receives the messages of its neighbors
 - executes some local computation
- 1-interval connectivity
 - communication links may change from round to round, but
 - at each round the network is connected
- Distinguished nodes
 - $0 < \ell < n$ "counted" network nodes with ℓ known to the algorithm.

(Counting not solvable with $\ell = 0$ or ℓ unknown.)

Congested ADN with Opportunistic Connectivity

- Fixed set of n nodes
 - No identifiers or labels, internal memory limited to $O(\log n)$ bits
- Synchronous communication : At each round
 - a node broadcasts a $O(\log n)$ bits message to its neighbors
 - receives the messages of its neighbors
 - executes some local computation
- T-connected
 - communication links may change from round to round, but
 - the union of T snapshot graphs is connected.
- Distinguished nodes
 - $0 < \ell < n$ "counted" network nodes with ℓ known to the algorithm. (Counting not solvable with $\ell = 0$ or ℓ unknown.)

Computation framework suitable for VANET: Anonymous Vehicular Adhoc Networks (A-VANET)

privacy!

inexpensive devices!

mobility!

Restricted Methodical Counting [Kowalski-Mosteiro,22]

Algebraic computations require to know or compute *n* (Counting Problem). Moreover, many are doable with a counting algorithm (e.g. AVG, SUM). We focus on the Counting Problem.

RMC key ideas:

- ℓ counted network nodes and $n \ell$ uncounted network nodes.
- try network size estimates $k = 2^{i}(\ell + 1)$ and binary search after estimate k > n.
- all nodes share some "potential" values for some function of k iterations.
- counted nodes remove potential every now and then to evaluate k.
- carefully designed alarms allow to detect correct or wrong k.

epochs:

- one for each estimate k
- initialize potentials: $\Phi_{uncounted} = \ell, \Phi_{counted} = 0$

p(k) phases:

(to let counted remove "enough" potential ρ)

r(*k*) rounds:

(to "average" the current potentials Φ)

epochs:

- one for each estimate k
- initialize potentials: $\Phi_{uncounted} = \ell, \Phi_{counted} = 0$

p(k) phases:

(to let counted remove "enough" potential ρ)

r(*k*) rounds:

(to "average" the current potentials Φ)

mass distribution:

– broadcast Φ and receive neighbors' Φ_i

 $\Phi = \Phi + \sum \Phi_i / d(k) - |N| \Phi / d(k)$

truncated to $O(\log n)$ bits

- counted remove potential: $\rho = \rho + \Phi, \Phi = 0$

epochs:

- one for each estimate k
- initialize potentials: $\Phi_{uncounted} = \ell, \Phi_{counted} = 0$

p(k) phases:

(to let counted remove "enough" potential ρ)

r(*k*) rounds:

(to "average" the current potentials Φ)

mass distribution:

– broadcast Φ and receive neighbors' Φ_i

 $\Phi = \Phi + \sum \Phi_i / d(k) - |N| \Phi / d(k)$

truncated to $O(\log n)$ bits

- counted remove potential: $\rho = \rho + \Phi, \Phi = 0$

epochs:

- one for each estimate k
- initialize potentials: $\Phi_{uncounted} = \ell, \Phi_{counted} = 0$

p(k) phases:

(to let counted remove "enough" potential ρ)

r(*k*) rounds:

(to "average" the current potentials Φ)

mass distribution:

– broadcast Φ and receive neighbors' Φ_i

 $\Phi = \Phi + \sum \Phi_i / d(k) - |N| \Phi / d(k)$

truncated to $O(\log n)$ bits

- counted remove potential: $\rho = \rho + \Phi, \Phi = 0$

epochs:

- one for each estimate k
- initialize potentials: $\Phi_{uncounted} = \ell, \Phi_{counted} = 0$

p(k) phases:

(to let counted remove "enough" potential ρ)

r(*k*) rounds:

(to "average" the current potentials Φ)

mass distribution:

– broadcast Φ and receive neighbors' Φ_i

 $\Phi = \Phi + \sum \Phi_i / d(k) - |N| \Phi / d(k)$

truncated to $O(\log n)$ bits

- counted remove potential: $\rho = \rho + \Phi, \Phi = 0$
- counted decide according to ho
- counted notify if $k \ge n$
- try next k if needed

After p(k) phases...

RMC theory and practice

RMC is simple (light implementation),

works with restricted resources, and tolerates disconnections \Rightarrow suitable for A-VANET computations, but!

... the current theoretical analysis applies to adversarial dynamicity:

$$\tilde{O}\left(\frac{n^{1+2T(1+\epsilon)}}{\ell i_{\min}^2}\right) \Rightarrow \tilde{O}(n^{9+10\epsilon}) \text{, for } T = 5, \ i \in \Theta(n), \ \ell \in O(1).$$

On the other hand, lower bounds known:

 $\Omega(\log n)$ and $\Omega(\mathcal{D})$

Large polynomial gap!! \Rightarrow we evaluate experimentally on real traffic.

Hypothesis: large polynomial speed-ups on real traffic.

Simulation Techniques

Simulations

Input topologies:

- Extracted from traces of taxi trips in NYC with proximity defined by street location. (Massive database, technical challenge.)
- "Enhanced" path with proximity defined by short reachability. (Simulates highways.)

Parameters:

- $n = \{128, 256, 500, 600, \dots, 1000\}$ network size
- $\ell = \{30, n/4 1\}$ counted nodes
- $T = \{1, 2.5, 5, 11\}$ connectivity
- Other algorithm parameters and asymptotic notation constants fixed to small values.

Evaluated against:

• RMC theoretical running time.

NYC Taxi Traffic Data Extraction

Results

Fig. 1: NYC taxi traffic input for $\ell = 30$ and $\mathcal{T} = 5$. Dotted lines correspond to functions of *n* bounding the running time.

Fig. 3: NYC taxi traffic input for $\ell = n/4 - 1$ and $\mathcal{T} = 5$. Dotted lines correspond to functions of n bounding the running time.

Fig. 2: Highway input for $\ell = 30$ and $\mathcal{T} = 11$. Dotted lines correspond to functions of n bounding the running time.

Fig. 4: Highway input for $\ell = n/4 - 1$ and $\mathcal{T} = 11$. Dotted lines correspond to functions of n bounding the running time.

In the topologies tested, RMC is $\approx n^7$ times faster than the worst-case theoretical running time, confirming our hypothesis.

Thank you!

mmosteiro@pace.edu