
Algebraic Computations in
Anonymous VANET

NETYS 2024

Austin Powlette
Pace Univ.

Dariusz R. Kowalski
Augusta Univ.

Miguel A. Mosteiro
Pace Univ.

• Fixed set of n nodes
– No identifiers or labels

• Synchronous communication : At each round
– a node broadcasts a message to its neighbors
– receives the messages of its neighbors
– executes some local computation

• 1-interval connectivity
– communication links may change from round to round, but
– at each round the network is connected

• Distinguished nodes

• “counted” network nodes with known to the algorithm.
 (Counting not solvable with or unknown.)

0 < ℓ < n ℓ
ℓ = 0 ℓ

Anonymous Dynamic Networks (ADN)

• Fixed set of n nodes
– No identifiers or labels, internal memory limited to bits

• Synchronous communication : At each round
– a node broadcasts a bits message to its neighbors
– receives the messages of its neighbors
– executes some local computation

• T-connected
– communication links may change from round to round, but
– the union of T snapshot graphs is connected.

• Distinguished nodes

• “counted” network nodes with known to the algorithm.
 (Counting not solvable with or unknown.)

O(log n)

O(log n)

0 < ℓ < n ℓ
ℓ = 0 ℓ

Congested ADN with
Opportunistic Connectivity

inexpensive devices!

privacy!

mobility!

Computation framework suitable for VANET:
Anonymous Vehicular Adhoc Networks (A-VANET)

Algebraic computations require to know or compute (Counting Problem).
Moreover, many are doable with a counting algorithm (e.g. AVG, SUM).
We focus on the Counting Problem.

RMC key ideas:

• counted network nodes and uncounted network nodes.

• try network size estimates and binary search after
estimate .

• all nodes share some “potential” values for some function of
iterations.

• counted nodes remove potential every now and then to evaluate .

• carefully designed alarms allow to detect correct or wrong .

n

ℓ n − ℓ
k = 2i(ℓ + 1)

k > n
k

k
k

Restricted Methodical Counting
[Kowalski-Mosteiro,22]

RMC Epoch Example
epochs:

– one for each estimate
– initialize potentials:

k
Φuncounted = ℓ, Φcounted = 0

k?

k?

k?

k?

k?
k?

 phases:
(to let counted remove “enough” potential)

p(k)
ρ

 rounds:
(to “average” the current potentials)

r(k)
Φ

k?

k?

k?

k?

k?

k?
k?

=ρ

RMC Epoch Example
epochs:

– one for each estimate
– initialize potentials:

k
Φuncounted = ℓ, Φcounted = 0

 phases:
(to let counted remove “enough” potential)

p(k)
ρ

 rounds:
(to “average” the current potentials)

r(k)
Φ

– counted remove potential: ρ = ρ + Φ, Φ = 0

mass distribution:
– broadcast and receive neighbors’

–

Φ Φi
Φ = Φ + ∑

i∈N

Φi /d(k) − |N |Φ/d(k)

k?

truncated to bitsO(log n)

RMC Epoch Example
epochs:

– one for each estimate
– initialize potentials:

k
Φuncounted = ℓ, Φcounted = 0

 phases:
(to let counted remove “enough” potential)

p(k)
ρ

 rounds:
(to “average” the current potentials)

r(k)
Φ

– counted remove potential: ρ = ρ + Φ, Φ = 0

mass distribution:
– broadcast and receive neighbors’

–

Φ Φi
Φ = Φ + ∑

i∈N

Φi /d(k) − |N |Φ/d(k)

k?

k?

k?

k?

k?
k?

=ρ

k?

truncated to bitsO(log n)

RMC Epoch Example
epochs:

– one for each estimate
– initialize potentials:

k
Φuncounted = ℓ, Φcounted = 0

 phases:
(to let counted remove “enough” potential)

p(k)
ρ

 rounds:
(to “average” the current potentials)

r(k)
Φ

– counted remove potential: ρ = ρ + Φ, Φ = 0

mass distribution:
– broadcast and receive neighbors’

–

Φ Φi
Φ = Φ + ∑

i∈N

Φi /d(k) − |N |Φ/d(k)

k?

k?

k?

k?

k?
k?

=ρ

k?

truncated to bitsO(log n)

RMC Epoch Example
epochs:

– one for each estimate
– initialize potentials:

k
Φuncounted = ℓ, Φcounted = 0

 phases:
(to let counted remove “enough” potential)

p(k)
ρ

 rounds:
(to “average” the current potentials)

r(k)
Φ

– counted remove potential: ρ = ρ + Φ, Φ = 0

mass distribution:
– broadcast and receive neighbors’

–

Φ Φi
Φ = Φ + ∑

i∈N

Φi /d(k) − |N |Φ/d(k)

=ρ
– counted decide according to
– counted notify if
– try next if needed

ρ
k ≥ n

k

k?

k?

k?

k?

k?
k?

After phases…p(k)

k?

truncated to bitsO(log n)

RMC is simple (light implementation),
works with restricted resources, and tolerates disconnections

⟹ suitable for A-VANET computations, but!

… the current theoretical analysis applies to adversarial dynamicity:

 , for .

On the other hand, lower bounds known:
 and

Large polynomial gap!! ⟹ we evaluate experimentally on real traffic.

Hypothesis: large polynomial speed-ups on real traffic.

Õ (n1+2T(1+ϵ)

ℓi2
min) ⇒ Õ(n9+10ϵ) T = 5, i ∈ Θ(n), ℓ ∈ O(1)

Ω(log n) Ω(𝒟)

RMC theory and practice

Simulation Techniques
epochs:

– one for each estimate
– initialize potentials:

k
Φuncounted = ℓ, Φcounted = 0

 phases:
(to let counted remove “enough” potential)

p(k)
ρ

 rounds:
(to “average” the current potentials)

r(k)
Φ

– counted remove potential: ρ = ρ + Φ, Φ = 0

mass distribution:
– broadcast and receive neighbors’

–

Φ Φi
Φ = Φ + ∑

i∈N

Φi /d(k) − |N |Φ/d(k)

– counted decide according to
– counted notify if
– try next if needed

ρ
k ≥ n

k

change # phases function
until incorrect

change # rounds function
until incorrect

change threshold functions
until incorrect

truncated to bitsO(log n)

Simulations
Input topologies:
• Extracted from traces of taxi trips in NYC with proximity defined

by street location. (Massive database, technical challenge.)
• “Enhanced” path with proximity defined by short reachability.

(Simulates highways.)
Parameters:
• network size
• counted nodes
• connectivity
• Other algorithm parameters and asymptotic notation constants

fixed to small values.
Evaluated against:
• RMC theoretical running time.

n = {128,256,500,600,…,1000}
ℓ = {30,n/4 − 1}
T = {1,2.5,5,11}

NYC Taxi Traffic Data Extraction

netconvert

Manhattan
OpenStreetMap

duarouter

2013 Manhattan
Taxi Traffic Data

road
network

set of
routes

with Bluetooth
function active

1000 xml files:
interaction among
1000 cars info

Results

10 D. R. Kowalski et al.

6 Discussion of results

All the presented results reflect the average behavior over multiple executions
of the simulator. The discussion and plots that follow correspond to a subset of
cases, but similar results were obtained for others. We evaluated the performance
in number of taken communication rounds.

Fig. 1: NYC taxi traffic input for ` = 30 and T = 5.
Dotted lines correspond to functions of n bounding the running time.

Figures 1 and 3 show the number of rounds as n grows for the NYC taxi
traffic input for constant ` = 30 and ` = n/4 � 1 respectively. As explained
above our graph analysis yielded T = 5, on average, for this temporal graph
input.

Figures 2 and 4 on the other hand show the number of rounds as n grows for
the highway traffic input for constant ` = 30 and ` = n/4 � 1 respectively. As
explained above, on average this temporal graph input has T = 11.

Our main observations follow.

– Our experimental study confirms our hypothesis that in networks with good
expansion properties (such as A-VANETs) the heuristic RMC is overwhelm-
ingly faster than the worst-case theoretical running time of RMC. We observe
that for NYC taxi traffic data, the heuristic RMC is sub-quadratic, whereas
on highway traffic it is mildly above quadratic (see Figures 1 and 2), both
for constant `.
Having a constant number of counted nodes yields stronger results, as know-
ing ` does not reveal any information about n. Nevertheless, we have simu-
lated the case of linear ` because anyway not enough information is revealed

Privacy Preserving Vehicular Adhoc Network Computations 11

Fig. 2: Highway input for ` = 30 and T = 11.
Dotted lines correspond to functions of n bounding the running time.

Fig. 3: NYC taxi traffic input for ` = n/4� 1 and T = 5.
Dotted lines correspond to functions of n bounding the running time.

Privacy Preserving Vehicular Adhoc Network Computations 11

Fig. 2: Highway input for ` = 30 and T = 11.
Dotted lines correspond to functions of n bounding the running time.

Fig. 3: NYC taxi traffic input for ` = n/4� 1 and T = 5.
Dotted lines correspond to functions of n bounding the running time.

12 D. R. Kowalski et al.

Fig. 4: Highway input for ` = n/4� 1 and T = 11.
Dotted lines correspond to functions of n bounding the running time.

as the constant is unknown. For ` = n/4 � 1 we observe that for NYC taxi
traffic data RMC is linear, whereas on highway traffic it is mildly above
linear (see Figures 3 and 4).
These results show that RMC is indeed much more efficient than the (very
pessimistic) theoretical running time of eO(n3+2T (1+✏)/`), while preserving
RMC’s simplicity and resilience to failures, even in a very restrictive envi-
ronment where memory, message size, and connectivity are harshly limited.

– Recall that the experimental approach was to increase the speed-ups until the
answer of the algorithm becomes incorrect. We observed in our experiments
a threshold behavior: up to the obtained speed-up, in 100% of the execu-
tions the computation is correct, whereas for speed-ups above the threshold,
almost all computations are incorrect.

– We did not observe a significant impact on the asymptotic running time
as a function of n by the variety of other parameters tested: frequency of
topology changes, number of cycle disconnections, and not even connectivity
parameter T in the case of NYC taxi traffic graph, where smaller T was
obtained by merging the constituent graphs of the temporal graph in groups.
Notice that merging constituent graphs is equivalent to adding links between
nodes that are otherwise not connected directly, which in turn produces an
effect similar to the increase of the communication range of nodes.

– We also observed an interdependence between the number of phases p and
the number of counted nodes `, beyond their mathematical dependence (i.e.
p = 2k1+✏ ln k1+✏

/`). In fact, a significant reduction on the number of phases
for a constant ` would require to increase the number of counted nodes to
maintain correctness, but if ` is constant such increase is not feasible.

In the topologies tested, RMC is times faster than the worst-case
theoretical running time, confirming our hypothesis.

≈ n7

Thank you!
mmosteiro@pace.edu

