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Introduction

Topology Models
Node Deployment in Sensor Networks

Hostile or remote environment

⇒ deterministic deployment not feasible

⇒ controlled random deployment.

⇒ unknown topology, except for n and max degree k − 1.

Uniform Density: Random Geometric Graph, Unit Disk Graph, etc.

Arbitrary Density: Geometric Graph Gn,r,k.
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Introduction

Node Constraints Models
Sensor Networks

The Weak Sensor Model
[BGI 92, FCFM 05]

Constant memory size.

Limited life cycle.

Short transmission range.

Low-info channel contention:

Radio tx on a shared
channel.
No collision detection.
Non-simultaneous rx and tx.

Discrete tx power range.

Local synchronism.

One channel of communication.

No position information.

Unreliability.

Adversarial wake-up schedule.

tx = transmission.

rx = reception.
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Introduction

Why Deterministic Communication?

Only one channel of communication

⇒ must deal with collision of transmissions!

Popular solution → random protocols.

BUT scarcest resource is energy and

random protocols ⇒ redundant transmissions!.

⇒ deterministic protocols may help.
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Introduction

Problem Definition

Sensor Networks application: monitor physical phenomena.

⇒ protocols must guarantee communication infinitely many times.

Optimization criteria:

1) low energy cost.

2) short delay between transmissions.
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Introduction

Problem Definition

Multi-hop requires precise definition of non-colliding transmissions.

Clear Reception at node x time slot t:
Any one node in N(x) transmit and x does not transmit.

Clear Transmission of node x time slot t:
Only x transmits in N2(x).
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Introduction

Problem Definition

Recurrent generalizations:

Recurring Selection (single-hop RN, k out of n active)
Every active node clearly transmits
infinitely many times.

Recurring Reception (multi-hop SN, max degree k − 1)
Every active node clearly receive from all neighbors
infinitely many times.

Recurring Transmission (multi-hop SN, max degree k − 1)
Every active node clearly transmit to all neighbors
infinitely many times.
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Introduction

Related Work

Message passing:

[ABLP’92] Each node receives from all neighbors in
O(k2 log2 n/ log(k log n)). → synchronous start. ω(1)-degree
bipartite-graphs requiring Ω(k log k). → not embeddable in GG.

Broadcast & gossiping:

[CGR’00, CGOR’00, CR’03, CGGPR’02] → synchronous start, global
clock, etc.

Selection

[Kowalski’05] Static, ∃O(k log(n/k)), +[I’02]: O(k polylog n). →
synchronous start. Dynamic O(k2 log n). → nodes turn off upon succ.
transmission.

Selective families:

[I’02] ∃(k, n)-selective families of size O(k polylog n).
[DR’83] (m,k, n)-selectors must be Ω(min{n, k2 log

k
n}) when m = k.

[DBGV’03] (k, k, n)-selectors must be ≥ (k − 1)2 log n/(4 log(k − 1) + O(1))
and ∃(k, k, n)-selectors of size O(k2 ln(n/k)).
All → synchronous start.
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Introduction

Our Results

Study deterministic oblivious (no history) and adaptive protocols for
Recurring Selection, Recurring Reception and Recurring Transmission.

Message complexity oblivious deterministic ≥ k.

O(kn log n)-delay message-complexity-optimal: Primed Selection.

Recurring Selection-lower-bound
⇒ Recurring Reception and Recurring Transmission lower bounds.

Ω(k2 log n/ log k)-delay for Recurring Selection.
(mapping (m,k, n)-selectors ↔ Recurring Selection)
Ω(kn) for Recurring Selection with equiperiodic protocols.
(memory limitations motivate)

Choosing appropriately node periods, for k ≤ n1/6 log log n, Primed
Selection also delay-optimal for equiperiodic protocols .

O(k2 log k)-delay adaptive-protocol, using Primed Selection.

Randomized message-complexity lower bound unknown.
Best upper bound: delay O(k log n) and O(log n) exp message compl.
⇒ deterministic outperform randomized for k ∈ o(log n).
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Oblivious Protocols

A. Fernández Anta, M. A. Mosteiro, Christopher Thraves Deterministic Communication in the Weak Sensor Model12/18



Oblivious Protocols

Primed Selection

Theorem

Any oblivious deterministic algorithm for Recurring Selection, single-hop RN,

asynch. start, k active nodes ⇒ message complexity is > k.

Primed Selection:

For each node i with assigned prime number p(i),

node i transmits with period p(i).
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Oblivious Protocols

Primed Selection

Theorem

Single-hop RN, asynch. start, k active nodes, Primed Selection solves the

Recurring Selection with delay O(kn log n) and optimal message complexity k.

Theorem

SN, k − 1 max. degree, Primed Selection solves the Recurring Reception with

delay O(kn log n) and optimal message complexity k.

Theorem

SN, k − 1 max. degree, Primed Selection solves the Recurring Transmission

with delay O(kn log n) and message complexity 7k.
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Oblivious Protocols

Equiperiodic Protocols

Memory limitations ⇒ periodicity.

Definition

Equiperiodic protocol: set of schedules s.t. in each schedule, every two
consecutive transmissions are separated by the same number of time slots.

Theorem

Single-hop RN, asynch. start, k active nodes, any oblivious equiperiodic

protocol has delay ≥ kn.

Using log log n-factors composite numbers instead of primes...

Theorem

Single-hop RN, asynch. start, k ≤ n1/6 log log n active nodes, using a compact

set of periods, Primed Selection solves Recurring Selection with optimal

message complexity k and O(kn) delay, optimal for equiperiodic protocols.
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Adaptive Protocols

Reduced Primed Selection

Primed Selection using O(k) coprime periods yields O(k2 log k) delay.
BUT, how do we guarantee every pair of neighbors use different period?

Further assumptions:

Relax memory limitation to O(k + log n) bits.
Double density to be able to half radii of transmission.

Sketch of protocol:

Leave first k primes available.
Assign next k primes as before.
Nodes use big primes to compete for small primes
using Primed Selection with r/2.

Theorem

SN, k − 1 max. degree, asynch. start, after pre-processing, the delay of

Reduced Primed Selection is O(k2 log k) and the message complexity is k.
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Thank you
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