Deterministic Communication in the Weak Sensor Model

A. Fernández Anta M. A. Mosteiro Christopher Thraves

LADyR (Distributed Algorithms and Networks Lab) Universidad Rey Juan Carlos

OPODIS 2007

Capabilities

- processing
- sensing
- communication

University of California, Berkeley and Intel Berkeley Research Lab.

- range
- memory
- life cycle

PicoBeacon
Berkeley Wireless Research Center

Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Capabilities

- \bullet processing
- \bullet sensing
- communication

- range
- memory
- life cycle

- Hostile or remote environment
 - \Rightarrow deterministic deployment not feasible
 - \Rightarrow controlled random deployment.
 - \Rightarrow unknown topology, except for n and max degree k-1.
- Uniform Density: Random Geometric Graph, Unit Disk Graph, etc.
- Arbitrary Density: Geometric Graph $\mathcal{G}_{n,r,k}$.

- Hostile or remote environment
 - \Rightarrow deterministic deployment not feasible
 - \Rightarrow controlled random deployment.
 - \Rightarrow unknown topology, except for n and max degree k-1.
- Uniform Density: Random Geometric Graph, Unit Disk Graph, etc.
- Arbitrary Density: Geometric Graph $\mathcal{G}_{n,r,k}$.

- Hostile or remote environment
 - \Rightarrow deterministic deployment not feasible
 - \Rightarrow controlled random deployment.
 - \Rightarrow unknown topology, except for n and max degree k-1.
- Uniform Density: Random Geometric Graph, Unit Disk Graph, etc.
- Arbitrary Density: Geometric Graph $\mathcal{G}_{n,r,k}$.

- Hostile or remote environment
 - \Rightarrow deterministic deployment not feasible
 - \Rightarrow controlled random deployment.
 - \Rightarrow unknown topology, except for n and max degree k-1.
- Uniform Density: Random Geometric Graph, Unit Disk Graph, etc.
- Arbitrary Density: Geometric Graph $\mathcal{G}_{n,r,k}$.

Topology Models

Node Deployment in Sensor Networks

- Hostile or remote environment
 - \Rightarrow deterministic deployment not feasible
 - \Rightarrow controlled random deployment.
 - \Rightarrow unknown topology, except for n and max degree k-1.
- Uniform Density: Random Geometric Graph, Unit Disk Graph, etc.
- Arbitrary Density: Geometric Graph $\mathcal{G}_{n,r,k}$.

Node Constraints Models

Sensor Networks

THE WEAK SENSOR MODEL [BGI 92, FCFM 05]

- Constant memory size.
- Limited life cycle.
- SHORT TRANSMISSION RANGE.
- Low-info Channel Contention:
 - Radio TX on a shared Channel.
 - No collision detection.
 - Non-simultaneous RX and TX.

- Discrete TX Power range.
- Local synchronism.
- One channel of communication.
- NO POSITION INFORMATION.
- Unreliability.
- Adversarial wake-up schedule.

tx = transmission.rx = reception.

- Only one channel of communication
 - ⇒ must deal with collision of transmissions!

Popular solution \rightarrow random protocols.

- BUT scarcest resource is energy and
 - random protocols \Rightarrow redundant transmissions!
 - \Rightarrow deterministic protocols may help.

- Only one channel of communication
 - ⇒ must deal with collision of transmissions!

Popular solution \rightarrow random protocols.

- BUT scarcest resource is energy and
 - $random protocols \Rightarrow redundant transmissions!$
 - \Rightarrow deterministic protocols may help.

- Only one channel of communication
 - ⇒ must deal with collision of transmissions!

Popular solution \rightarrow random protocols.

• BUT scarcest resource is energy and

random protocols \Rightarrow redundant transmissions!.

 \Rightarrow deterministic protocols may help.

- Only one channel of communication
 - ⇒ must deal with collision of transmissions!
 - Popular solution \rightarrow random protocols.
- BUT scarcest resource is energy and
 - random protocols \Rightarrow redundant transmissions!.
 - \Rightarrow deterministic protocols may help.

- Sensor Networks application: monitor physical phenomena.
 - ⇒ protocols must guarantee communication infinitely many times.
- Optimization criteria:
 - 1) low energy cost.
 - 2) short delay between transmissions

- Sensor Networks application: monitor physical phenomena.
 - \Rightarrow protocols must guarantee communication infinitely many times.
- Optimization criteria:
 - 1) low energy cost.
 - 2) short delay between transmissions.

- Sensor Networks application: monitor physical phenomena.
 - ⇒ protocols must guarantee communication infinitely many times.
- Optimization criteria:
 - 1) low energy cost.
 - 2) short delay between transmissions.

- Sensor Networks application: monitor physical phenomena.
 - ⇒ protocols must guarantee communication infinitely many times.
- Optimization criteria:
 - 1) low energy cost.
 - 2) short delay between transmissions.

- Multi-hop requires precise definition of non-colliding transmissions.
 - Clear Reception at node x time slot t:

 Any one node in N(x) transmit and x does not transmit
 - Clear Transmission of node x time slot t: Only x transmits in $N^2(x)$.

- Multi-hop requires precise definition of non-colliding transmissions.
 - Clear Reception at node x time slot t: Any one node in N(x) transmit and x does not transmit.
 - Clear Transmission of node x time slot t: Only x transmits in $N^2(x)$.

- Multi-hop requires precise definition of non-colliding transmissions.
 - Clear Reception at node x time slot t: Any one node in N(x) transmit and x does not transmit.
 - Clear Transmission of node x time slot t: Only x transmits in $N^2(x)$.

• Recurrent generalizations:

- Recurring Selection (single-hop RN, k out of n active)
 Every active node clearly transmits
 infinitely many times.
- Recurring Reception (multi-hop SN, max degree k-1) Every active node clearly receive from all neighbors infinitely many times.
- Recurring Transmission (multi-hop SN, max degree k-1)
 Every active node clearly transmit to all neighbors infinitely many times.

- Recurrent generalizations:
 - Recurring Selection (single-hop RN, k out of n active)
 Every active node clearly transmits infinitely many times.
 - Recurring Reception (multi-hop SN, max degree k 1)
 Every active node clearly receive from all neighbors infinitely many times.
 - Recurring Transmission (multi-hop SN, max degree k-1) Every active node clearly transmit to all neighbors infinitely many times.

- Recurrent generalizations:
 - Recurring Selection (single-hop RN, k out of n active)
 Every active node clearly transmits infinitely many times.
 - Recurring Reception (multi-hop SN, max degree k-1) Every active node clearly receive from all neighbors infinitely many times.
 - Recurring Transmission (multi-hop SN, max degree k-1) Every active node clearly transmit to all neighbors infinitely many times.

- Recurrent generalizations:
 - Recurring Selection (single-hop RN, k out of n active)
 Every active node clearly transmits infinitely many times.
 - Recurring Reception (multi-hop SN, max degree k-1) Every active node clearly receive from all neighbors infinitely many times.
 - Recurring Transmission (multi-hop SN, max degree k-1) Every active node clearly transmit to all neighbors infinitely many times.

Related Work

Message passing:

[ABLP'92] Each node receives from all neighbors in $O(k^2 \log^2 n/\log(k \log n))$. \rightarrow synchronous start. $\omega(1)$ -degree bipartite-graphs requiring $\Omega(k \log k)$. \rightarrow not embeddable in GG.

• Broadcast & gossiping:

 $[\mathrm{CGR'00},\,\mathrm{CGOR'00},\,\mathrm{CR'03},\,\mathrm{CGGPR'02}] \to \mathrm{synchronous}$ start, global clock, etc.

• Selection

[Kowalski'05] Static, $\exists O(k \log(n/k)), +[I'02]: O(k \text{ polylog } n). \rightarrow$ synchronous start. Dynamic $O(k^2 \log n). \rightarrow$ nodes turn off upon succ. transmission.

• Selective families:

[I'02] $\exists (k,n)$ -selective families of size O(k polylog n). [DR'83] (m,k,n)-selectors must be $\Omega(\min\{n,k^2\log_k n\})$ when m=k. [DBGV'03] (k,k,n)-selectors must be $\geq (k-1)^2\log n/(4\log(k-1)+O(1))$ and $\exists (k,k,n)$ -selectors of size $O(k^2\ln(n/k))$. All \rightarrow synchronous start.

- Message complexity oblivious deterministic $\geq k$.
- $O(kn \log n)$ -delay message-complexity-optimal: Primed Selection.
- Recurring Selection-lower-bound
 - ⇒ Recurring Reception and Recurring Transmission lower bounds
 - $\Omega(k^2 \log n / \log k)$ -delay for Recurring Selection
 - (mapping (m, k, n)-selectors \leftrightarrow Recurring Selection)
 - \(\Omega(kn)\) for Recurring Selection with equiperiodic protocols.
 (memory limitations motivate)
- Choosing appropriately node periods, for $k \leq n^{1/6\log\log n}$, Primed Selection also delay-optimal for equiperiodic protocols .
- $O(k^2 \log k)$ -delay adaptive-protocol, using Primed Selection.
- Randomized message-complexity lower bound unknown. Best upper bound: delay $O(k \log n)$ and $O(\log n)$ exp message complex deterministic outperform randomized for $k \in o(\log n)$

- Message complexity oblivious deterministic $\geq k$.
- $O(kn \log n)$ -delay message-complexity-optimal: Primed Selection.
- Recurring Selection-lower-bound
 - ⇒ Recurring Reception and Recurring Transmission lower bounds
 - $\Omega(k^2 \log n / \log k)$ -delay for Recurring Selection
 - (mapping (m, k, n)-selectors \leftrightarrow Recurring Selection)
 - $\Omega(kn)$ for Recurring Selection with equiperiodic protocols.
- Choosing appropriately node periods, for $k \leq n^{1/6 \log \log n}$, Primed Selection also delay-optimal for equiperiodic protocols.
- $O(k^2 \log k)$ -delay adaptive-protocol, using Primed Selection.
- Randomized message-complexity lower bound unknown. Best upper bound: delay $O(k \log n)$ and $O(\log n)$ exp message complex deterministic outperform randomized for $k \in o(\log n)$.

- Message complexity oblivious deterministic $\geq k$.
- $O(kn \log n)$ -delay message-complexity-optimal: Primed Selection.
- Recurring Selection-lower-bound
 ⇒ Recurring Reception and Recurring Transmission lower bound
 - $\Omega(\kappa \log n / \log \kappa)$ -delay for Recurring Selection.
 - $\Omega(kn)$ for Requering Selection with equipmental k
 - (memory limitations motivate)
- Choosing appropriately node periods, for $k \leq n^{1/6\log\log n}$, Primed Selection also delay-optimal for equiperiodic protocols.
- $O(k^2 \log k)$ -delay adaptive-protocol, using Primed Selection.
- Randomized message-complexity lower bound unknown. Best upper bound: delay $O(k \log n)$ and $O(\log n)$ exp message compl. \Rightarrow deterministic outperform randomized for $k \in o(\log n)$.

- Message complexity oblivious deterministic $\geq k$.
- $O(kn \log n)$ -delay message-complexity-optimal: Primed Selection.
- Recurring Selection-lower-bound
 - \Rightarrow Recurring Reception and Recurring Transmission lower bounds.
 - $\Omega(k^2 \log n / \log k)$ -delay for Recurring Selection. (mapping (m, k, n)-selectors \leftrightarrow Recurring Selection)
 - $\Omega(kn)$ for Recurring Selection with equiperiodic protocols. (memory limitations motivate)
- Choosing appropriately node periods, for $k \leq n^{1/6\log\log n}$, Primed Selection also delay-optimal for equiperiodic protocols .
- $O(k^2 \log k)$ -delay adaptive-protocol, using Primed Selection.
- Randomized message-complexity lower bound unknown. Best upper bound: delay $O(k \log n)$ and $O(\log n)$ exp message complexed deterministic outperform randomized for $k \in o(\log n)$.

- Message complexity oblivious deterministic $\geq k$.
- $O(kn \log n)$ -delay message-complexity-optimal: Primed Selection.
- Recurring Selection-lower-bound
 - \Rightarrow Recurring Reception and Recurring Transmission lower bounds.
 - $\Omega(k^2 \log n / \log k)$ -delay for Recurring Selection. (mapping (m, k, n)-selectors \leftrightarrow Recurring Selection)
 - $\Omega(kn)$ for Recurring Selection with equiperiodic protocols. (memory limitations motivate)
- Choosing appropriately node periods, for $k \leq n^{1/6\log\log n}$, Primed Selection also delay-optimal for equiperiodic protocols.
- $O(k^2 \log k)$ -delay adaptive-protocol, using Primed Selection.
- Randomized message-complexity lower bound unknown. Best upper bound: delay $O(k \log n)$ and $O(\log n)$ exp message compl. \Rightarrow deterministic outperform randomized for $k \in o(\log n)$.

- Message complexity oblivious deterministic $\geq k$.
- $O(kn \log n)$ -delay message-complexity-optimal: Primed Selection.
- Recurring Selection-lower-bound
 - \Rightarrow Recurring Reception and Recurring Transmission lower bounds.
 - $\Omega(k^2 \log n / \log k)$ -delay for Recurring Selection. (mapping (m, k, n)-selectors \leftrightarrow Recurring Selection)
 - $\Omega(kn)$ for Recurring Selection with equiperiodic protocols. (memory limitations motivate)
- Choosing appropriately node periods, for $k \leq n^{1/6\log\log n}$, Primed Selection also delay-optimal for equiperiodic protocols.
- $O(k^2 \log k)$ -delay adaptive-protocol, using Primed Selection.
- Randomized message-complexity lower bound unknown. Best upper bound: delay $O(k \log n)$ and $O(\log n)$ exp message compl. \Rightarrow deterministic outperform randomized for $k \in o(\log n)$.

- Message complexity oblivious deterministic $\geq k$.
- $O(kn \log n)$ -delay message-complexity-optimal: Primed Selection.
- Recurring Selection-lower-bound
 - ⇒ Recurring Reception and Recurring Transmission lower bounds.
 - $\Omega(k^2 \log n / \log k)$ -delay for Recurring Selection. (mapping (m, k, n)-selectors \leftrightarrow Recurring Selection)
 - $\Omega(kn)$ for Recurring Selection with equiperiodic protocols. (memory limitations motivate)
- Choosing appropriately node periods, for $k \leq n^{1/6\log\log n}$, Primed Selection also delay-optimal for equiperiodic protocols .
- $O(k^2 \log k)$ -delay adaptive-protocol, using Primed Selection.
- Randomized message-complexity lower bound unknown. Best upper bound: delay $O(k \log n)$ and $O(\log n)$ exp message compl. \Rightarrow deterministic outperform randomized for $k \in o(\log n)$.

Our Results

Study deterministic oblivious (no history) and adaptive protocols for Recurring Selection, Recurring Reception and Recurring Transmission.

- Message complexity oblivious deterministic $\geq k$.
- $O(kn \log n)$ -delay message-complexity-optimal: Primed Selection.
- Recurring Selection-lower-bound
 - \Rightarrow Recurring Reception and Recurring Transmission lower bounds.
 - $\Omega(k^2 \log n / \log k)$ -delay for Recurring Selection. (mapping (m, k, n)-selectors \leftrightarrow Recurring Selection)
 - $\Omega(kn)$ for Recurring Selection with equiperiodic protocols. (memory limitations motivate)
- Choosing appropriately node periods, for $k \leq n^{1/6\log\log n}$, Primed Selection also delay-optimal for equiperiodic protocols .
- $O(k^2 \log k)$ -delay adaptive-protocol, using Primed Selection.
- Randomized message-complexity lower bound unknown. Best upper bound: delay $O(k \log n)$ and $O(\log n)$ exp message compl. \Rightarrow deterministic outperform randomized for $k \in o(\log n)$.

Our Results

Study deterministic oblivious (no history) and adaptive protocols for Recurring Selection, Recurring Reception and Recurring Transmission.

- Message complexity oblivious deterministic $\geq k$.
- $O(kn \log n)$ -delay message-complexity-optimal: Primed Selection.
- Recurring Selection-lower-bound
 - \Rightarrow Recurring Reception and Recurring Transmission lower bounds.
 - $\Omega(k^2 \log n / \log k)$ -delay for Recurring Selection. (mapping (m, k, n)-selectors \leftrightarrow Recurring Selection)
 - Ω(kn) for Recurring Selection with equiperiodic protocols. (memory limitations motivate)
- Choosing appropriately node periods, for $k \leq n^{1/6\log\log n}$, Primed Selection also delay-optimal for equiperiodic protocols.
- $O(k^2 \log k)$ -delay adaptive-protocol, using Primed Selection.
- Randomized message-complexity lower bound unknown. Best upper bound: delay $O(k \log n)$ and $O(\log n)$ exp message compl. \Rightarrow deterministic outperform randomized for $k \in o(\log n)$.

1 Introduction

2 Oblivious Protocols

3 Adaptive Protocols

Oblivious Protocols

Oblivious Protocols

Theorem

Any oblivious deterministic algorithm for Recurring Selection, single-hop RN, asynch. start, k active nodes \Rightarrow message complexity is > k.

PRIMED SELECTION:

For each node i with assigned prime number p(i), node i transmits with period p(i).

Theorem

Any oblivious deterministic algorithm for Recurring Selection, single-hop RN, asynch. start, k active nodes \Rightarrow message complexity is > k.

PRIMED SELECTION:

For each node i with assigned prime number p(i), node i transmits with period p(i).

Theorem

Single-hop RN, asynch. start, k active nodes, Primed Selection solves the Recurring Selection with delay $O(kn \log n)$ and optimal message complexity k.

Theorem

SN, k-1 max. degree, Primed Selection solves the Recurring Reception with delay $O(kn \log n)$ and optimal message complexity k.

Theorem

SN, k-1 max. degree, Primed Selection solves the Recurring Transmission with delay $O(kn \log n)$ and message complexity 7k.

Theorem

Single-hop RN, asynch. start, k active nodes, Primed Selection solves the Recurring Selection with delay $O(kn \log n)$ and optimal message complexity k.

Theorem

SN, k-1 max. degree, Primed Selection solves the Recurring Reception with delay $O(kn\log n)$ and optimal message complexity k.

Γ heorem

SN, k-1 max. degree, Primed Selection solves the Recurring Transmission with delay $O(kn \log n)$ and message complexity 7k.

Theorem

Single-hop RN, asynch. start, k active nodes, Primed Selection solves the Recurring Selection with delay $O(kn \log n)$ and optimal message complexity k.

Theorem

SN, k-1 max. degree, Primed Selection solves the Recurring Reception with delay $O(kn \log n)$ and optimal message complexity k.

Theorem

SN, k-1 max. degree, Primed Selection solves the Recurring Transmission with delay $O(kn \log n)$ and message complexity 7k.

Memory limitations \Rightarrow periodicity.

Definition

Equiperiodic protocol: set of schedules s.t. in each schedule, every two consecutive transmissions are separated by the same number of time slots.

Theorem

Single-hop RN, asynch. start, k active nodes, any oblivious equiperiodic protocol has $delay \geq kn$.

Using log log n-factors composite numbers instead of primes...

Theorem

Memory limitations \Rightarrow periodicity.

Definition

Equiperiodic protocol: set of schedules s.t. in each schedule, every two consecutive transmissions are separated by the same number of time slots.

Theorem

Single-hop RN, asynch. start, k active nodes, any oblivious equiperiodic protocol has $delay \geq kn$.

Using $\log \log n$ -factors composite numbers instead of primes...

Theorem

Memory limitations \Rightarrow periodicity.

Definition

Equiperiodic protocol: set of schedules s.t. in each schedule, every two consecutive transmissions are separated by the same number of time slots.

Theorem

Single-hop RN, asynch. start, k active nodes, any oblivious equiperiodic protocol has $delay \geq kn$.

Using $\log \log n$ -factors composite numbers instead of primes...

Theorem

Memory limitations \Rightarrow periodicity.

Definition

Equiperiodic protocol: set of schedules s.t. in each schedule, every two consecutive transmissions are separated by the same number of time slots.

Theorem

Single-hop RN, asynch. start, k active nodes, any oblivious equiperiodic protocol has $delay \geq kn$.

Using $\log \log n$ -factors composite numbers instead of primes...

Theorem

Adaptive Protocols

Adaptive Protocols

Primed Selection using O(k) coprime periods yields $O(k^2 \log k)$ delay. BUT, how do we guarantee every pair of neighbors use different period?

- Further assumptions:
 - Relax memory limitation to $O(k + \log n)$ bits
 - Double density to be able to half radii of transmission.
- Sketch of protocol:
 - Leave first k primes available.
 - Assign next k primes as before
 - Nodes use big primes to compete for small primes using Primed Selection with r/2.

Theorem

Primed Selection using O(k) coprime periods yields $O(k^2 \log k)$ delay. BUT, how do we guarantee every pair of neighbors use different period?

- Further assumptions:
 - Relax memory limitation to $O(k + \log n)$ bits.
 - Double density to be able to half radii of transmission.
- Sketch of protocol:
 - Leave first k primes available.
 - Assign next k primes as before
 - Nodes use big primes to compete for small primes using Primed Selection with r/2.

Theorem

Primed Selection using O(k) coprime periods yields $O(k^2 \log k)$ delay. BUT, how do we guarantee every pair of neighbors use different period?

- Further assumptions:
 - Relax memory limitation to $O(k + \log n)$ bits.
 - Double density to be able to half radii of transmission.
- Sketch of protocol:
 - Leave first k primes available.
 - Assign next k primes as before.
 - Nodes use big primes to compete for small primes using Primed Selection with r/2.

Theorem

Primed Selection using O(k) coprime periods yields $O(k^2 \log k)$ delay. BUT, how do we guarantee every pair of neighbors use different period?

- Further assumptions:
 - Relax memory limitation to $O(k + \log n)$ bits.
 - Double density to be able to half radii of transmission.
- Sketch of protocol:
 - \bullet Leave first k primes available.
 - Assign next k primes as before.
 - Nodes use big primes to compete for small primes using Primed Selection with r/2.

Theorem

Thank you