Fault-Tolerant Aggregation: Flow Update Meets Mass Distribution

Carlos Baquero

HASLab, INESC Tec, Universidade do Minho cbm@di.uminho.pt

Joint work with (alpha order):
Paulo Sérgio Almeida, Martín Farach-Colton, Paulo Jesus, Miguel Mosteiro
Universidade do Minho, Rutgers University

OPODIS, December, 2011

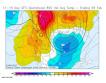
Motivation - Distributed Data Aggregation

- Important building block of distributed applications
- Transmission of raw data may not be scalable/economic
- Raw data may not fit in memory footprints
- Raw data may be highly redundant
- Applications often rely on data summaries

Motivation - Application Examples

- To obtain network statistics and administration information:
 - Network size
 - Total resources available
 - Average session time
 - Max./Min. network load
 -

- Monitor and control a covered area (WSN):
 - Min./Max. temperature
 - Average humidity
 - Concentration of a toxic substance
 - Noise level
 -



Aggregation Approaches

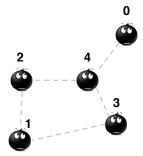
Several classes of aggregation algorithms

- Hierarchic: TAG
- Sketches: FM-Sketches, Extrema Propagation
- Sampling: Randomized Reports, Sample & Collide
- Averaging: Push-Sum, Push-Pull

Both Hierarchic and Averaging allow high precision aggregates.

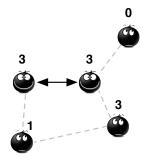
Averaging

- Iterative *Averaging* process
- Topology independent
- Result produced at all nodes
- Correctness ⇒ "mass conservation":



Averaging

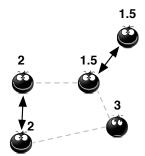
- Iterative Averaging process
- Topology independent
- Result produced at all nodes
- Correctness ⇒ "mass conservation":



Averaging

- Iterative Averaging process
- Topology independent
- Result produced at all nodes
- Correctness ⇒ "mass conservation":

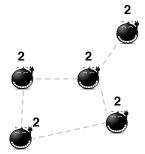
$$\sum_{i \in \mathcal{V}} v_i = \sum_{i \in \mathcal{V}} e_i^t = k$$



Averaging

- Iterative Averaging process
- Topology independent
- Result produced at all nodes
- Correctness ⇒ "mass conservation":

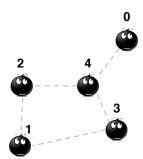
$$\sum_{i \in \mathcal{V}} v_i = \sum_{i \in \mathcal{V}} e_i^t = k$$



Message loss:

$\Sigma = 10$

- Loss of mass
- Violation of "mass conservation"
- Convergence to a wrong value

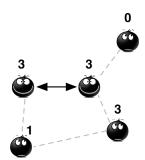


Message loss:

t = 1

 $\Sigma = 10$

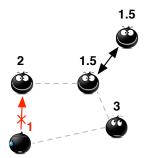
- Loss of mass
- Violation of "mass conservation"
- Convergence to a wrong value



Message loss:

t = 2 $\sum = 9$

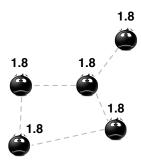
- Loss of mass
- Violation of "mass conservation"
- Convergence to a wrong value



Message loss:

t =∞ ∑= 9

- Loss of mass
- Violation of "mass conservation"
- Convergence to a wrong value



Flow Updating (DAIS 2009, IEEE SRDS 2010)

Robust aggregation algorithm for dynamic networks:

- Independent from the routing topology (gossip-based)
- Converges to the correct result at all nodes
- Supports message loss and node crashes
- Self-adapts to changes in input values

Flow Updating

- Based on the concept of flow from graph theory
 - Examples: water flow, electrical current
- Each node maintains flows to neighbors
 - Flows converge to symmetrical values
- Update flows by sending idempotent messages
- Keep the initial input values unchanged
- Compute the aggregate from the initial value and flows

Mass Distribution with Flow Updating

Flow Updating. Works very in empirical evaluations, but:

- Convergence in not monotonic
- Protocols have eluded analysis

MDFU was developed: Mass Distribution with Flow Updating

- Monotonic convergence
- Bounds for fault free and for stochastic message loss

Model and Notation

- Synchronous rounds
- Undirected connected graph G(V,E)
- For $i \in V$: neighbors N_i , degree $|N_i|$
- For $(i,j) \in E$: $D_{ij} = \max\{|N_i|, |N_j|\}, \Delta = \max_{i \in V} |N_i|$
- For edge and round, message failure probability f

Target Computation, and Node State

- Each nodes holds inputs value v_i
- Each nodes needs to compute $\overline{v} = \sum_{i=1}^{n} v_i/n$
- No global knowledge
 - n is unknown
 - Nodes only know: N_i and D_{ij}
 - Nodes compute e_i a local estimate of \overline{v}
- Nodes track for each neighbor:
 - inbound flow in F_{in}
 - outbound flow in F_{out}
- Nodes compute e_i a local estimate of \overline{v}
- $e_i = v_i + \sum_{j \in N_i} (F_{in}(j) F_{out}(j))$

MDFU Algorithm

```
// initialization e_i \leftarrow v_i; for each j \in N_i do F_{in}(j) \leftarrow 0; F_{out}(j) \leftarrow e_i / (2D_{ij}); end
```

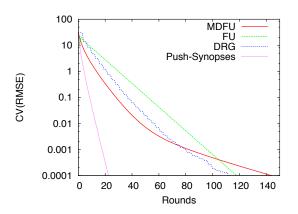
```
foreach round do
      // communication phase
      foreach i \in N_i do
            Send j message \langle i, F_{out}(j) \rangle;
      end
      foreach \langle j, F \rangle received do
            F_{in}(j) \leftarrow F:
      end
      // computation phase
      e_i \leftarrow v_i + \sum_{j \in N_i} (F_{in}(j) - F_{out}(j));
      foreach j \in N_i do
            F_{out}(j) \leftarrow F_{out}(j) + e_i/(2D_{ii});
      end
end
```

Analytical Results

- For any target precision $0 < \xi < 1$
- Estimates within $[(1-\xi)\overline{v},(1+\xi)\overline{v}]$
- For f = 0, a graph of size n and conductance $\Phi(G)$
- Convergence time (in rounds) is at most: $2 * \ln \frac{n}{\xi} * \frac{1}{\Phi(G)^2}$
- Precision grows exponentially with rounds
- Under f > 0 we derived multiplicative overheads over f = 0

Comparative Results (no message loss)

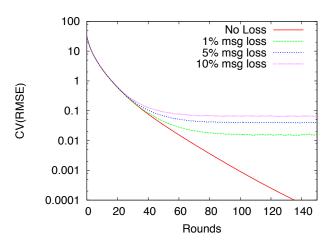
Erdos-Renyi Random Network G(V, E), |V| = 1000, |E| = 5000



- DRG and Push-Synopses will not tolerate message loss
- CV(RMSE) = $\sqrt{\sum_{i \in V} (e_i \overline{v})^2 / n} / \overline{v}$

MDFU under message loss f

Erdos-Renyi Random Network G(V, E), |V| = 1000, |E| = 5000



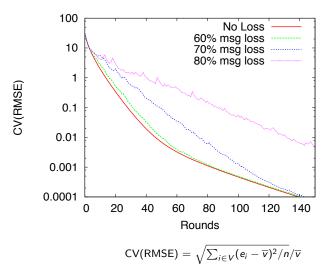
- Convergence, not to \overline{v} , but to a bias point in $[(1-f)\overline{v},\overline{v}]$
- Mass is added as sent, in F_{out} , but not received in F_{in}

MDFU with Linear Prediction

- As node estimates converge, in neighbor nodes $e_x \approx e_y$
- Since flow F_{out} increases by $e_i/(2D_{ij})$
- In each edge flow growth velocities also converge
- When messages are not received, in an edge, one can (linearly) predict how F_{in} should have grown in an edge
- just multiply the last increase by the rounds with no message
- results are surprisingly good . . .

MDFU-LP under very high message loss f

Erdos-Renyi Random Network G(V, E), |V| = 1000, |E| = 5000

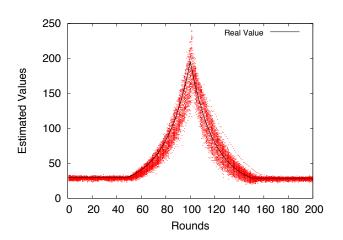


MDFU-LP with input value variation

- Most averaging algorithms (PUSH-*) distribute mass
- They restart when node input value v_i changes
- Ongoing convergence is lost
- A recent exception is LiMoSense (ALGOSENSOR'11)
- MDFU (MDFU-LP) handle *v_i* variations with no modifications

MDFU-LP with input value variation

Erdos-Renyi Random Network G(V, E), |V| = 1000, |E| = 5000, f = 10%.



Closing remarks

- High precision distributed aggregation requires averaging
- Traditional "mass" exchange approaches should give way to idempotent algorithms, like *Flow Updating*
- Future work can include.
 - Asynchrony in MDFU (already studied in FU)
 - More complex aggregates: Cumulative Distribution Functions
 - Strategies to further increase convergence speed

