Brief Announcement:

Unbounded Contention Resolution in Multiple-access Channels

Antonio Fernández Anta $\underline{\text{Miguel A. Mosteiro}}^{2,3}$ Jorge Ramón Muñoz $\underline{\text{Jorge Ramón Muñoz}}^3$

¹Institute IMDEA Networks

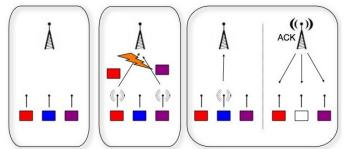
²Dept. of Computer Science, Rutgers University

³LADyR, GSyC, Universidad Rey Juan Carlos

PODC 2011

Shared Resource Contention

• k-Selection in Radio Networks:


"unknown size-k subset of n network nodes must access a unique shared channel of communication, each of them at least once."

• Q: k-Selection in O(k) with n and k unknown?

Radio Network Model

- usual assumptions (time slotted, negligible computation cost, etc.)
- single-hop.
- static k-Selection (batched message arrivals).
- communication through radio broadcast on a shared channel:
 - no message transmitted \rightarrow background noise.
 - more than one node transmits \rightarrow interference noise.
 - exactly one node transmits → all other nodes receive message and the sender receives an ack.
 - nodes can not distinguish between interference and background noise.

Related Work

- Gerèb-Graus, Tsantilas'92: $arbitrary\ k$ -relations realization in $\Theta(k + \log n \log \log n)$ w.h.p. \rightarrow known k.
- Greenberg, Leiserson'89: randomized routing of bounded number of messages in fat-trees
- Farach-Colton, Mosteiro'07:

 sensor network gossiping

 linear sawtooth technique embedded

 → known n, asymptotic analysis.
- - $\rightarrow \Theta(k \log \log k / \log \log \log k)$ w.h.p. linear sawtooth technique described, no analysis.
- Fernández-Anta, Mosteiro'10: $Log\text{-}fails\ Adaptive\ in} < 8k + O(\log^2(1/\varepsilon)),\ \text{w.p.} \ge 1 - 2\varepsilon$ $\Rightarrow \text{known\ } n$.

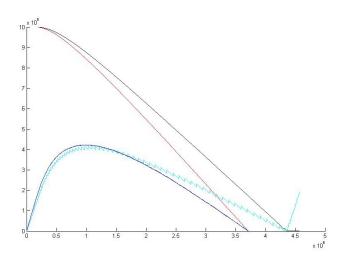
Results

Randomized k-selection protocols for batched arrivals in one-hop Radio Networks:

- One-fail Adaptive $< 8k + O(\log^2 k)$, w.p. $\ge 1 2/(1 + k)$
- Exponential Back-on/Back-off < 4(e+1)k, w.p. $\ge 1 1/k^{\Theta(1)}$

Time-optimal (with high probability, modulo a small constant) work without collision detection, unknown k and n.

- improves over Log-fails Adaptive removing knowledge of n.
- EBOBO (sawtooth) analyzed down to constants.
- experimental evaluation.


One-fail Adaptive $\rightarrow 8k + O(\log^2 k)$ w.p. $\ge 1 - 2/(1 + k)$

Protocol for node x (without constants)

```
Concurrent Task 1:
    \sigma = 0, \hat{\kappa} = 4. (msg-received counter, density estimate)
    for each communication step
         if step is even (Algorithm BT)
              transmit \langle x, message \rangle with probability 1/(1 + \log(\sigma + 1)).
         if step is odd (Algorithm AT)
              transmit \langle x, message \rangle with probability 1/\hat{\kappa}.
              \hat{\kappa} = \hat{\kappa} + 1. (new estimate)
Concurrent Task 2:
    upon receiving a message from other node
        \sigma = \sigma + 1. (update counter)
         if step is even (Algorithm BT)
              \hat{\kappa} = \max{\{\hat{\kappa} - 3, 4\}}. (new estimate)
         if step is odd (Algorithm AT)
              \hat{\kappa} = \max{\{\hat{\kappa} - 4, 4\}}. (new estimate)
Concurrent Task 3:
    upon delivering message, stop.
```

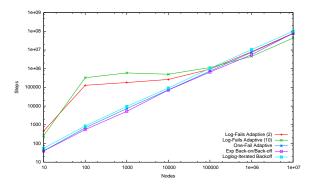
One-fail Adaptive

Illustration of estimate progress

Exponential Back-on/Back-off $\rightarrow 4(e+1)k$, w.p. $\geq 1 - 1/k^{\Theta(1)}$

Window size adjustment

```
for i = \{1, 2, \dots\}


w = 2^i

while w \ge 1

choose uniformly a step within the next w steps

w = w(1 - 1/e)
```

Simulations

k	10	10^{2}	10^{3}	10^{4}	10^{5}	106	107	Analysis
Log-fails Adaptive $\xi_t=1/2$	46.4	1292.4	181.9	26.6	9.4	8.0	7.8	7.8
Log-fails Adaptive $\xi_t = 1/10$	26.3	3289.2	593.8	50.3	11.5	4.5	4.4	4.4
One-fail Adaptive	4.0	6.9	7.4	7.4	7.4	7.4	7.4	7.4
Exp Back-on/Back-off	4.0	5.5	5.2	7.2	6.6	5.6	7.9	14.9
Loglog-iterated Back-off	5.6	8.6	9.6	9.2	10.5	10.5	10.1	$\Theta\left(\frac{\log \log k}{\log \log \log k}\right)$

Ratio steps/nodes as a function of the number of nodes k.

Thank you