Dynamic Windows Scheduling with Reallocation

Martín Farach-Colton¹ Katia Leal² Miguel A. Mosteiro³ Christopher Thraves⁴

¹Department of Computer Science, Rutgers University, USA & Tokutek Inc.

²GSyC, Universidad Rey Juan Carlos, Madrid, Spain

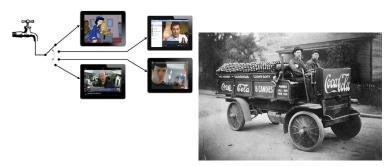
³Dept. of Computer Science, Kean University, Union, NJ, USA

⁴LAAS-CNRS, Toulouse, France

SEA 2014

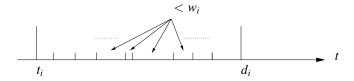
Motivation

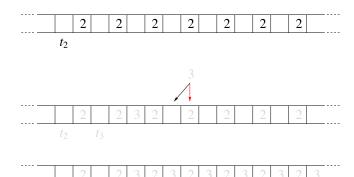
Multiple users need to access a shared limited resource, each user can wait for a while



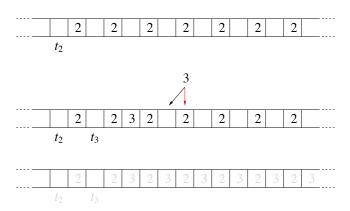
... but not too long!

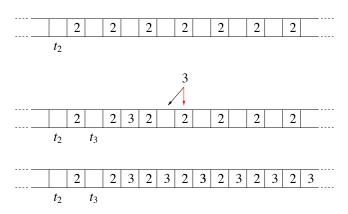
Motivation


• E.g. communication networks, media streaming, inventory replenishment, etc.

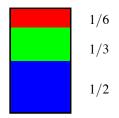

We focus on

scheduling clients' transmissions to communication channels and slotted time.


- Each client c_i characterized by
 - active cycle (arrival time t_i and departure time d_i)
 - laxity (window) w_i


• A channel can receive only one transmission at a time!

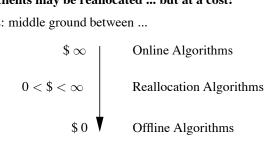
• A channel can receive only one transmission at a time!


• A channel can receive only one transmission at a time!

WS vs. UFBP

Why is WS more challenging?

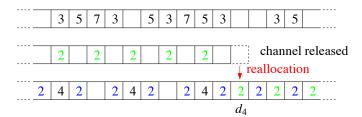
UFBP:



WS:

- Windows Scheduling (WS) (Bar-Noy et al. 03,07): clients do not leave.
- WS with Temporary Items (Chan-Wong 05): assignments are final.
- WS with Reallocation (this work): clients may be reallocated ... but at a cost!

Reallocation algorithms: middle ground between ...



Reallocation also studied in Job Scheduling, Load Balancing, UFBP, etc.

The Assignment Problem

Given a set of clients and an infinite set of channels, assign clients' transmissions to channels so that,

- while client c_i is active $\exists \geq 1$ transmission from c_i to *some* channel scheduled in any w_i consecutive time slots.
- there is at most one client assigned to each channel in each time slot.

Performance Metric

Competitive analysis:

• Bar-Noy et al. 03,07 (against current load):

$$\max_{r} \frac{ALG(r)}{OPT(r)}$$

• Chan-Wong 05 (against peak load):

$$\frac{\max_{r} ALG(r)}{\max_{r} OPT(r)}$$

• this work (against current load):

$$\max_{t} \left(\frac{R(r)}{r} + \frac{ALG(r)}{OPT(r)} \right)$$

Rounds defined by departures/arrivals.

ALG(r) = # channels used by ALG in round r.

OPT(r) = minimum # channels needed in round r.

R(r) = # reallocations incurred by ALG up to round r.

Our Contribution

Preemptive Reallocation:
upon each arrival/departure: consolidate to good offline packing

 Lazy Reallocation: reallocate only when number of channels exceeds a threshold

Classified Reallocation:

classify clients by laxity (more later)

first online WS protocol for

dynamic scenarios (clients may leave)

with theoretical guarantees (against current load)

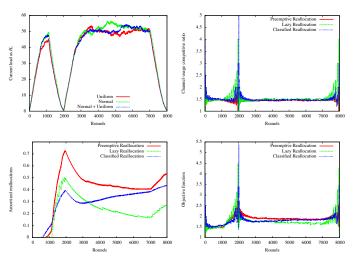
- WS performance metric including reallocations
- simulations for all three protocols

Classified Reallocation

Main ideas:

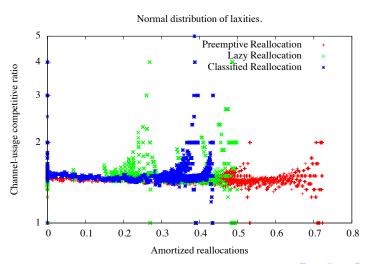
- assume laxities powers of 2
- do not "mix" laxities,
 - i.e., for any given channel, all clients assigned have the same laxity
- allow at most one non-full channel for each active laxity
 - \Rightarrow at most $\log w_{\text{max}}/w_{\text{min}}$ channels sub-optimally used
 - \Rightarrow when a client leaves at most **one reallocation** is needed.
- what if $\log w_{\text{max}}$ is large?
 - \Rightarrow have **one more channel** for all clients with $w \ge 2\lceil \lceil n \rceil \rceil$
 - \Rightarrow linear reallocations only after n is doubled or halved

Classified Reallocation


Theorem

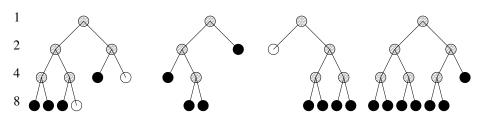
For any set of clients with laxity 2^i , $i=0,1,\ldots$, the schedule obtained by the Classified Reallocation algorithm requires at most 3r/2 reallocations up to round r, and for any round r such that n(r)>0 clients are active, the number of channels reserved is at most

$$OPT(r) + 1 + \log\left(\frac{\min\{w_{\max}(r), \lceil \lceil n(r) \rceil \rceil\}}{w_{\min}(r)}\right)$$

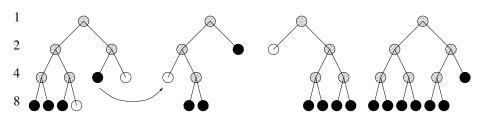

Simulations

Performance along rounds for normally distributed inputs.

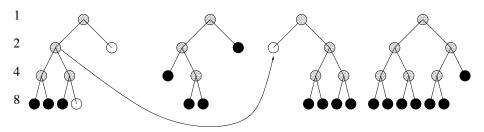
Simulations


Channel usage vs. reallocations.

Thank you


Preemptive Reallocation

Use packed broadcast trees:


Preemptive Reallocation

Use packed broadcast trees:

Preemptive Reallocation

Use packed broadcast trees:

