Ad-hoc Affectance-selective Families for Layer Dissemination

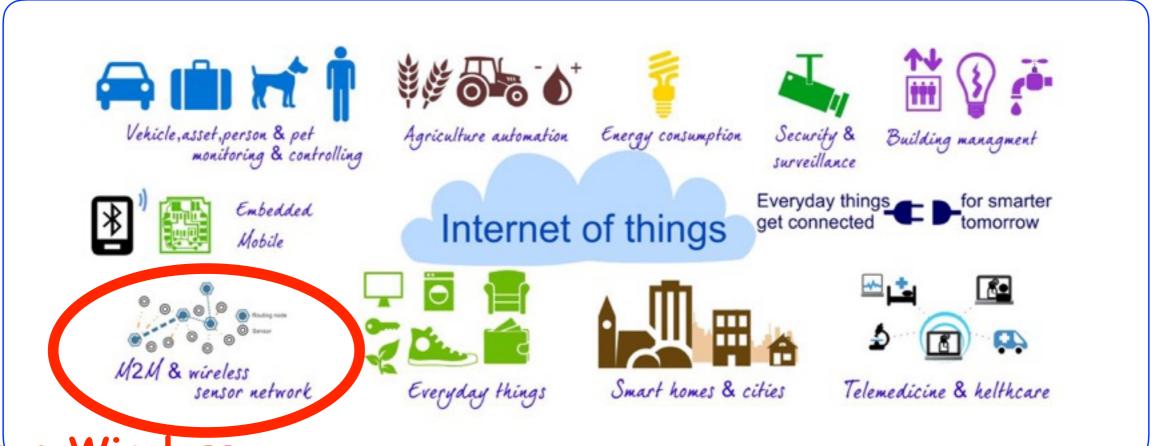
Harshita Kudaravalli and <u>Miguel A. Mosteiro</u>

Pace University

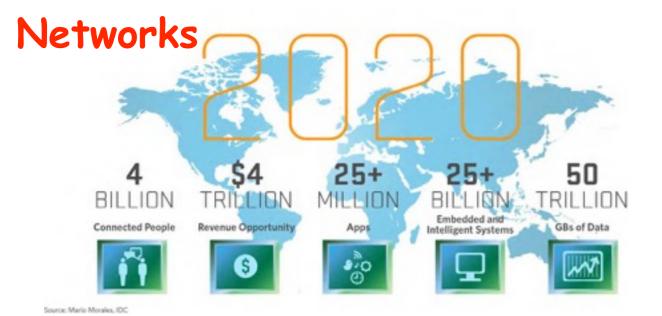
mmosteiro@pace.edu

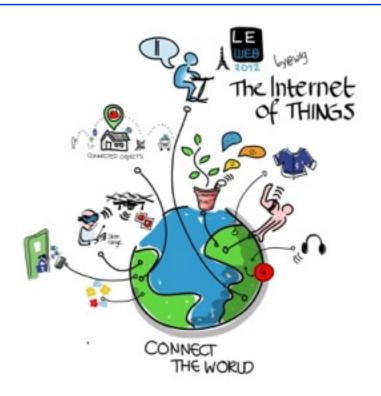
SEA 2017

Application: the Internet of Things



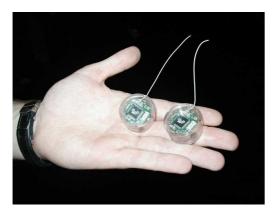
Ad-hoc Wireless





Introduction

A Sensor Network



 $Intel\ Berkeley\ Research\ Lab$

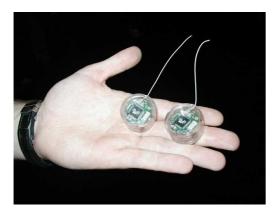
Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Introduction

A Sensor Network



 $Intel\ Berkeley\ Research\ Lab$

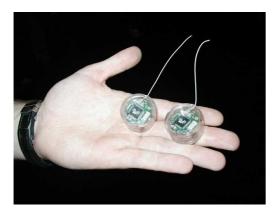
Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Introduction

A Sensor Network

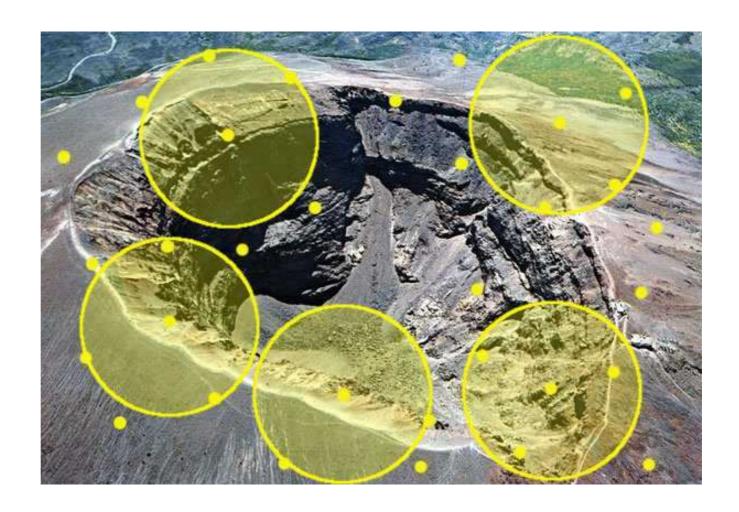


 $Intel\ Berkeley\ Research\ Lab$

Capabilities

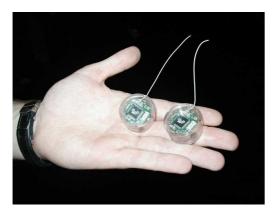
- processing
- sensing
- communication

- range
- memory
- life cycle



Introduction

A Sensor Network



 $Intel\ Berkeley\ Research\ Lab$

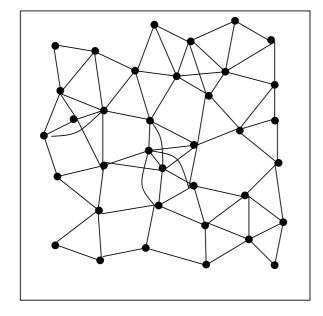
Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Dissemination Problems in Wireless Networks

Radio Network = abstraction of a radio communication network



A geometric graph.

k nodes hold a piece of information to diseminate.

- $k = 1 \rightarrow Broadcast$ [BGI'92,KM'98]
- $k = n \rightarrow Gossiping [CGLP'01,LP'02]$
- k arbitrary $\rightarrow k$ -selection [K'05]

•

- *Multiple-message* broadcast
- *Dynamic* multiple-message broadcast
- *etc*.

Models for Wireless Networks

Topology Models :

- Undirected Graph
- Unit Disk Graph
- Time-varying Graph

Node Capabilities Models :

- Computational Resources
- Communication Capabilities
- Weak Sensor Model

• Interference Models:

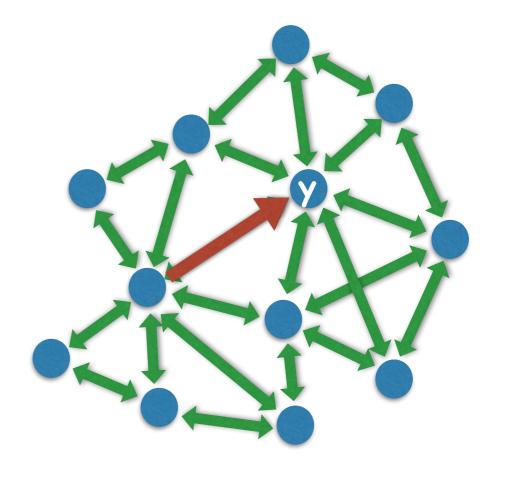
- Radio Network (RN)
- Signal to Interference plus Noise Ratio (SINR)
- Affectance (AFF)

Interference Models

RN Model [1]:

Collision/success:

Node y receives if and only if exactly one neighbor of y transmits at a given time, and y is not transmitting.



^[1] Chlamtac and Kutten. Trans. on Computers. IEEE, 1987.

Interference Models

SINR Model [1]:

Collision/success:

A signal that overcomes interference from others plus background noise is received.

$$\frac{p((x,y))}{d(x,y)^{\alpha}} \ge \beta \left(\sum_{(u,v) \in \mathcal{R}(t) \setminus (x,y)} \frac{p((u,v))}{d(u,y)^{\alpha}} + N \right)$$

Defs.:

 $\alpha > 0$: path-loss exponent.

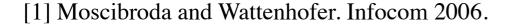
 $\beta \geq 0$: gain.

p((i,j)): transmission power on link (i,j).

d(i,j): Euclidean distance between i and j.

 $\mathcal{R}(t)$: set of links transmitting at time t.

N: background noise.



Interference Models

AFF Model [1,2,3]:

a(u,(x,y))

matrix quantifying interference from node u on communication through link (x,y).

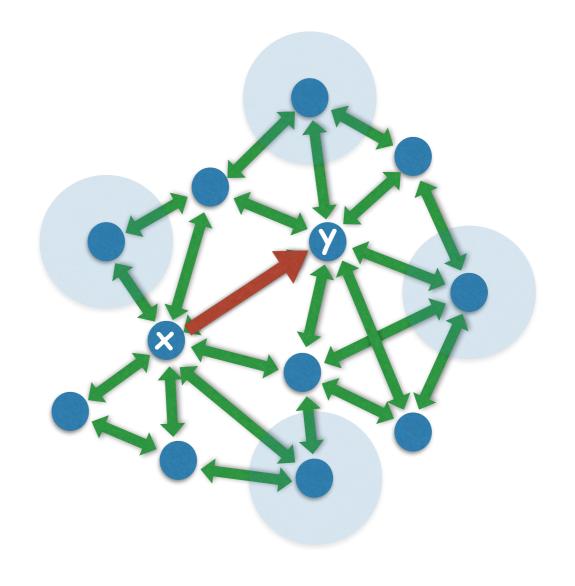
Collision/success:

For any link (x,y), a transmission from x is received by y in t if and only if

» x transmits in t and

» $\sum_{u \in V(t)} \alpha(u,(x,y)) < 1$,

 $V(t)\subseteq V$: set of nodes transmitting in t.



- [1] Halldórsson and Wattenhofer. ICALP 2009.
- [3] Fanghänel, Kesselheim and Vöcking. ICALP 2009.
- [3] Kesselheim and Vöcking. DISC 2010.

Introduction

Dynamic Multiple-Message Broadcast (MMB) [1]:

- problem: packets arrive at some nodes continuously, to be delivered to all nodes
- *metric*: **competitive throughput** of deterministic distributed MMB algorithms
- analysis:

in the **Affectance model**:

- Affectance subsumes many interference models, e.g. RN and SINR models
- conceptual idea: parameterize interference from transmitting **nodes into links**
- introduced [2,3,4] for link scheduling as link-to-link affectance

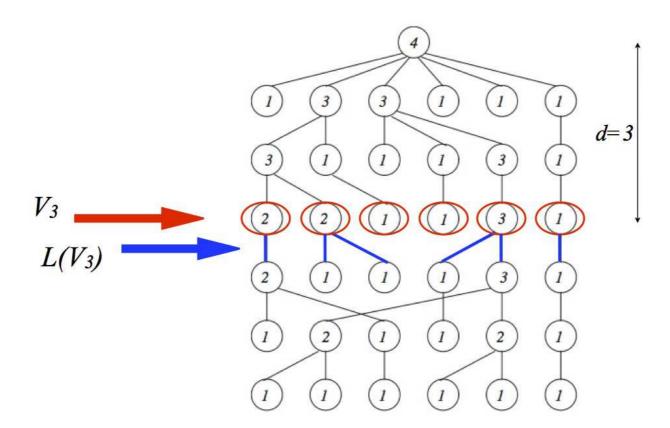
- [1] (non-dynamic MMB) Khabbazian-Kowalski PODC 2011
- [2] Halldórsson-Wattenhofer, ICALP 2009
- [3] Kesselheim, PODC 2012
- [4] Kesselheim-Vöcking, DISC 2010

Affectance Characterization

Maximum average tree-layer affectance

Quantifies the difficulty to disseminate from one layer to the next one.

$$K(T,s) = \max_{d} \max_{V' \subseteq V_d(T)} \frac{a_{V'}(L(V'))}{|L(V')|}$$

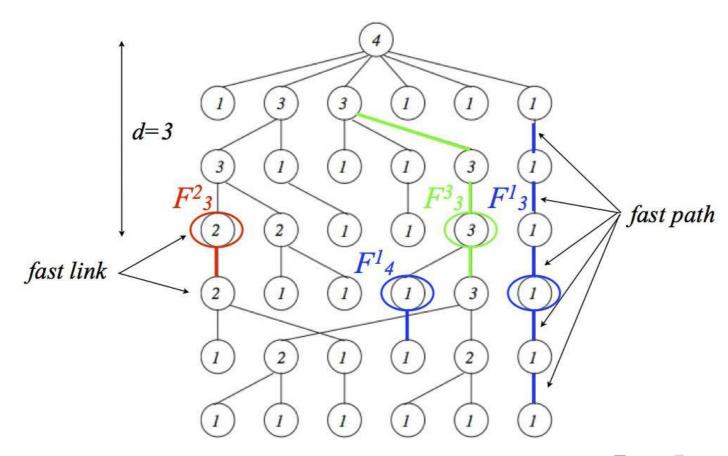


Affectance Characterization

Maximum fast-paths affectance

Quantifies the difficulty for dissemination on a path due to other paths.

$$M(T,s) = \max_{d,r} \max_{\ell \in F_d^r(T)} a_{F_d^r(T)}(\ell)$$



Introduction

Contributions:

• introduce new model characteristics:

(based on comm network, affectance function, and a chosen BFS tree)

- maximum average tree-layer affectance K
- maximum fast-paths affectance M
- show how these characteristics influence broadcast time complexity: if one uses a specific BFS tree (GBST [1]) that minimizes M(K + M) single broadcast can be done in time $D + O(M(K + M) \log^3 n)$
- extend this to dynamic packet arrival model and the MMB problem: new MMB algorithm reaching throughput of $\Omega(1/(\alpha K \log n))$
- ... also simulations for RN

Dissemination bottleneck is from layer to layer!!

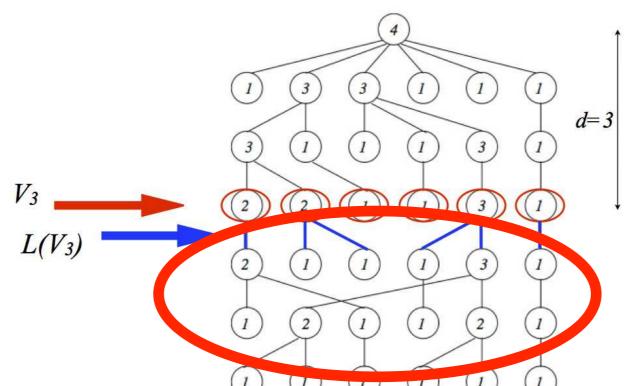
[1] Gașieniec-Peleg-Xin, DC 2007

Affectance Characterization

Maximum average tree-layer affectance

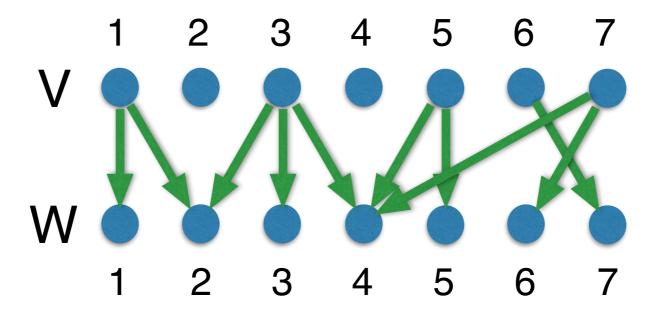
Quantifies the difficulty to disseminate from one layer to the next one.

$$K(T,s) = \max_{d} \max_{V' \subseteq V_d(T)} \frac{a_{V'}(L(V'))}{|L(V')|}$$



Each layer is a bipartite graph.

Layer Dissemination [SEA 2017]

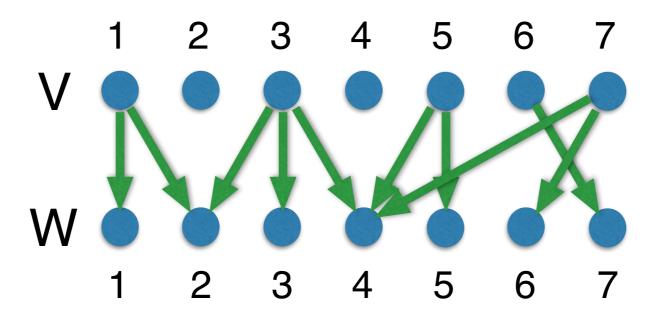


Bipartite network with

- V: set of transmitters
- W: set of receivers
- F_w: set of transmitters connected to w∈W

Layer Dissemination problem:

• Each $w \in W$ must receive at least one successful transmission from some $v \in F_w$, despite interference.



INPUT: Affectance matrix A=[a(u,(v,w))] and a family $F=\{F_w \mid w\in W\}$ of subsets of transmitters connected to each receiver:

$$F_1 = \{1\}$$

$$F_2 = \{1,3\}$$

$$F_3 = {3}$$

$$F_4 = \{3, 5, 7\}$$

<u>OUTPUT</u>: Family $S = \{S_{t} \mid t=1,2,3,...\}$ of subsets of transmitters transmitting in each time slot:

$$S_1=\{1,5,7\}$$

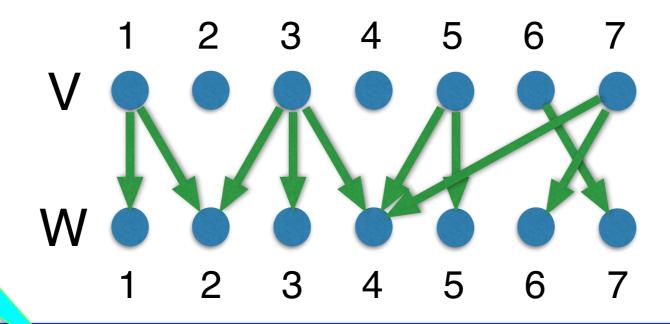
 $S_2=\{2,3,4,6\}$

•••

•••

Affectance-selective Families

Transmissions schedule



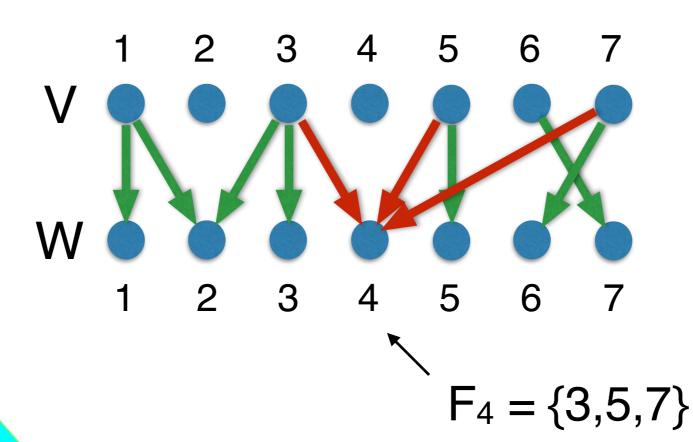
A family $S = \{S_1, S_2, \dots, S_t\}$ of subsets of [n] is affectance-selective on the family $F = \{F_1, F_2, \dots, F_n\}$ of subsets of [n] if and only if, for each $w \in [n]$, there exists $j \in [t]$ such that:

• $|F_w \cap S_j| \ge 1$, and

- Subsets of transmitters
- for some $v \in (F_w \cap S_j)$ it is $\sum_{u \in S_j} a(u, (v, w)) < 1$.

We say that the family S has length t, and that each w is affectance-selected.

[1] B.S.Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. Deterministic broadcasting in ad hoc radio networks. *Distributed Computing*, 15(1):27–38, 2002.



Maximum Average Affectance:

Bound family

size on network

characteristic

$$\overline{A} = \max_{w \in [n]} \max_{F \subseteq F_w} \sum_{v \in F} \sum_{u \in [n]} a(u, (v, w)) / |F|.$$

Existence of Aff-selective families:

▶ **Theorem 1.** For any n > 0, consider a family $\mathcal{F} = \{F_1, F_2, \ldots, F_n\}$ of subsets of integers in [n] and any affectance matrix A defined on \mathcal{F} . For each $w \in [n]$, let $\overline{A}_w = \max_{F \subseteq F_w} \sum_{v \in F} \sum_{u \in [n]} a(u, (v, w)) / |F|$ be the maximum average affectance on w. If there exists a constant c > 1 such that $\overline{A}_w \leq c|F_w|$ for all $w \in [n]$, then, there exists a family $\mathcal{S} = \{S_1, S_2, \ldots, S_s\}$ that is affectance-selective on \mathcal{F} , and its size s satisfies

$$s \in O\left(1 + \log n \log \overline{A}\right)$$
,

where $\overline{A} = \max_{w \in [n]} \overline{A}_w$ is the maximum average affectance.

Logarithmic in the network characterization.

Sketch of proof:

- Assume each v transmits with some probability p.
- <u>Probabilistic method</u>: show that the probability of a given w not being selected is < 1.
- Prove Markov-type inequality: to bound such probability by the expected average affectance on w.
- Prob is <1 if p is within a constant-factor b range -> try all.
- <u>Union bound</u>: after enough number of rounds, the probability of any w not being selected is still less than $1 \rightarrow add$ some multiplicity m.

We redefine S as the family $\{S_{i,j}\}$ of subsets of [n] where the set $S_{i,j}$ is obtained including each $v \in [n]$ in $S_{i,j}$ independently with probability $p = 1/b^i$, for each $i = 0, 1, 2, ..., \max\{\lceil \log_b(2\overline{A})\rceil, 0\}$ and each j = 1, 2, ..., m.

$$Pr(\exists w \in [n]: Z_w = 0) \le nd^m$$
 \longrightarrow $s \in O(1 + \log n \log \overline{A})$

Proof of Thm 1 yields a randomized protocol of same length:

```
\begin{array}{c} \mathbf{1} \ b \leftarrow 1 + 1/(2c) \\ \mathbf{2} \ m \leftarrow \lceil 2 \log_{1/d} n \rceil \\ \mathbf{3} \ \mathbf{for} \ i = 0, 1, 2, \dots, \max\{\lceil \log_b(2\overline{A}) \rceil, 0\} \ \mathbf{do} \\ \mathbf{4} \ \mid \ \mathbf{for} \ m \ times \ \mathbf{do} \\ \mathbf{5} \ \mid \ \operatorname{transmit} \ \text{with probability} \ 1/b^i \end{array}
```

Algorithm 1: Randomized Layer Dissemination protocol for each node $v \in$

Theorem 2 Consider a layer of a Radio Network with affectance matrix A and topology G = (V, W, E), where |V| = |W| = n, where for each receiver $w \in W$ there is at least one transmitter $v \in V$ such that $(v, w) \in E$. Then, if there exists a constant c > 1 such that $\overline{A}_w \le c|F_w|$ for all $w \in W$, where $\overline{A}_w = \max_{F \subseteq F_w} \sum_{v \in F} \sum_{u \in V} a(u, (v, w))/|F|$ is the maximum average affectance on w, Algorithm 1 solves the Layer Dissemination problem with high probability v, and the running time is in $O(1 + \log n \log \overline{A})$, where $\overline{A} = \max_{w \in W} \overline{A}_w$ is the maximum average affectance.

De-randomization yields a deterministic protocol of same length:

```
// Initialization
 p \leftarrow 0
 2 b \leftarrow 1 + 1/(2c)
 \mathbf{3} \ m \leftarrow \max\{\lceil \log_b(2\overline{A})\rceil, 0\}
 4 W_0' \leftarrow \{w \in W : \overline{A}_w \le 1/2\}
 5 for r = 1, ..., m do W'_r \leftarrow \{w \in W : b^{r-1}/2 < \overline{A}_w \le b^r/2\}
    // Protocol
 6 for each time slot while \exists r = 0, 1, \dots, m : W'_r \neq \emptyset do
         if p \leq 1/(2b\overline{A}) then
              p \leftarrow 1
              r \leftarrow 0
        set V'[1...n] array of booleans
                                                                                                   // V'[i] \equiv i transmits
         for i = 1, 2, ..., n do
11
              \mathbb{E}_{true} \leftarrow \mathbb{E}_{V'[i+1...n]} \left( \# \text{ selected in } W'_r | V'[i] = true \right)
            \mathbb{E}_{false} \leftarrow \mathbb{E}_{V'[i+1...n]} \left( \# \text{ selected in } W'_r \middle| V'[i] = false \right)
            V'[i] \leftarrow \mathbb{E}_{true} > \mathbb{E}_{false}
       if V'[v] then transmit
       W'_r \leftarrow W'_r \setminus \{w | w \text{ was selected}\}
       p \leftarrow p/b
17
        r \leftarrow r + 1
  Algorithm 2: Deterministic Layer Dissemination protocol for each node v \in
```

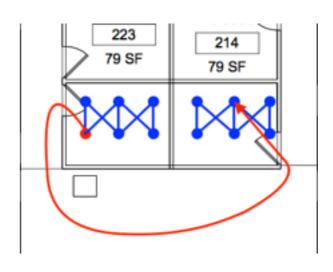
... but computing those expectations is exponential, due to computing probs of low affectance.

50?

Are affectance-based protocols better? worse?

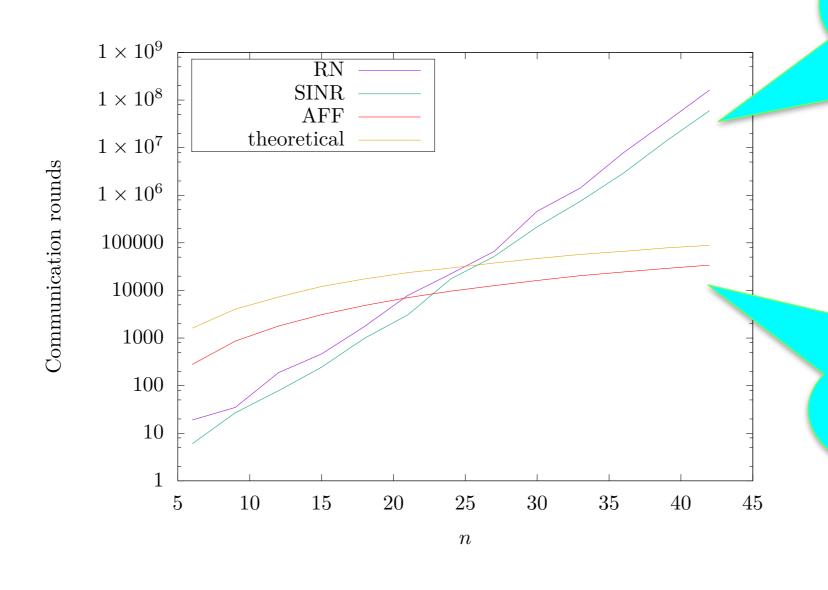
Let's try some experiments!

Simulations topology



Simulation protocols:

- Transform Montecarlo into Las Vegas protocols:
 - count how many rounds to complete dissemination.
- Affectance model evaluation:
 - Compare performance with an RN protocol and and SINR protocol.
 - Successful transmission according to Affectance model.
 - Compare also with theoretical performance.



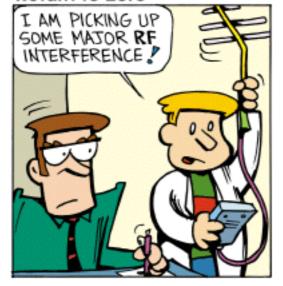
RN & SINR are exponential under affectance!

Better than theoretical bound!

Thank you!

Miguel A. Mosteiro Pace University mmosteiro@pace.edu

Return to Zero



EEWeb.com