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Introduction

Information Dissemination in Radio Networks

Radio Network = abstraction of a radio communication network

A geometric graph.

k nodes
hold a piece of information to diseminate.

k = 1 → Broadcast [BGI’92,KM’98]

k = n → Gossiping [CGLP’01,LP’02]

k arbitrary → k-selection [K’05]

We study
Gossiping in Sensor Networks

M. Farach-Colton, M. A. Mosteiro Sensor Network Gossiping 2/11

Dissemination Problems in Wireless Networks

… 
•  Multiple-message broadcast 
•  Dynamic multiple-message broadcast 
•  etc.
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Models for Wireless Networks
• Topology Models : 

– Undirected Graph 
– Unit Disk Graph 
– Time-varying Graph 

• Node Capabilities Models : 
– Computational Resources 
– Communication Capabilities 
– Weak Sensor Model 

• Interference Models :  
– Radio Network (RN) 
– Signal to Interference plus Noise Ratio (SINR) 
– Affectance (AFF)



RN Model [1]: 
• Collision/success:  

Node y receives if and only if exactly 
one neighbor of y transmits at a given 
time, and y is not transmitting. 

9

[1]  Chlamtac and Kutten. Trans. on Computers. IEEE, 1987. 

Interference Models

y



SINR Model [1]: 
• Collision/success:  

A signal that overcomes  
interference from others  
plus background noise is received.

10

[1] Moscibroda and Wattenhofer. Infocom 2006.  

Interference Models
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Defs. :

↵ > 0 : path-loss exponent.

� � 0 : gain.

p((i, j)) : transmission power on link (i, j).

d(i, j) : Euclidean distance between i and j.

R(t) : set of links transmitting at time t.

N : background noise.
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AFF Model [1,2,3]: 
a(u,(x,y))  

matrix quantifying interference from node 
u on communication through link (x,y). 

• Collision/success:  
For any link (x,y), a transmission from x 
is received by y in t if and only if  
» x transmits in t and  
» ∑u⊆V(t) a(u,(x,y)) < 1, 

V(t)⊆V : set of nodes transmitting in t.  

11

[1] Halldórsson and Wattenhofer. ICALP 2009. 
[3] Fanghänel, Kesselheim and Vöcking. ICALP 2009. 
[3] Kesselheim and Vöcking. DISC 2010. 
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Introduction
DynamicMultiple-Message Broadcast (MMB) [1]:

problem:
packets arrive at some nodes continuously, to be delivered to all nodes

metric:
competitive throughput of deterministic distributed MMB algorithms

analysis:
in the Affectance model:
Affectance subsumes many interference models, e.g. RN and SINR models
conceptual idea: parameterize interference from transmitting nodes into links
introduced [2,3,4] for link scheduling as link-to-link affectance

[1] (non-dynamic MMB) Khabbazian-Kowalski PODC 2011
[2] Halldórsson-Wattenhofer, ICALP 2009
[3] Kesselheim, PODC 2012
[4] Kesselheim-Vöcking, DISC 2010

M. A. Mosteiro Dynamic Multiple-Message Broadcast 2/14

Dynamic Multi-Broadcast [ACM-FOMC 2014]
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Introduction
Contributions:

introduce new model characteristics:
(based on comm network, affectance function, and a chosen BFS tree)

– maximum average tree-layer affectance K
– maximum fast-paths affectanceM

show how these characteristics influence broadcast time complexity:
if one uses a specific BFS tree (GBST [1]) that minimizesM(K +M)

single broadcast can be done in time D+ O(M(K +M) log3 n)
extend this to dynamic packet arrival model and the MMB problem:

new MMB algorithm reaching throughput of Ω(1/(αK log n))
... also simulations for RN

[1] Gąsieniec-Peleg-Xin, DC 2007

M. A. Mosteiro Dynamic Multiple-Message Broadcast 3/14

Affectance Characterization
Maximum average tree-layer affectance

Quantifies the difficulty to disseminate from one layer to the next one.

K(T, s) = max
d

max
V′⊆Vd(T)

aV′(L(V ′))
|L(V ′)|

M. A. Mosteiro Dynamic Multiple-Message Broadcast 7/14

Dynamic Multi-Broadcast [ACM-FOMC 2014]
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Affectance Characterization
Maximum fast-paths affectance

Quantifies the difficulty for dissemination on a path due to other paths.

M(T, s) = max
d,r

max
ℓ∈Frd(T)

aFrd(T)(ℓ)

M. A. Mosteiro Dynamic Multiple-Message Broadcast 8/14

Dynamic Multi-Broadcast [ACM-FOMC 2014]
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Dissemination 
bottleneck is from 
layer to layer!!

Dynamic Multi-Broadcast [ACM-FOMC 2014]
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Each layer is a 
bipartite graph.

Dynamic Multi-Broadcast [ACM-FOMC 2014]



Layer Dissemination [SEA 2017]

V
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Bipartite network with 

• V : set of transmitters 

• W : set of receivers 

• Fw : set of transmitters connected to w∈W 
Layer Dissemination problem: 

• Each w∈W must receive at least one successful transmission 
from some v∈Fw, despite interference.



V

W

1 2 3 4 5 6 7

1 2 3 4 5 6 7

INPUT: Affectance matrix A=[a(u,(v,w))] 
and a family F = {Fw | w∈W} of subsets of 
transmitters connected to each receiver: 
F1={1} 
F2={1,3} 
F3={3} 
F4={3,5,7} 
…

OUTPUT: Family S = {St | t=1,2,3,… } 
of subsets of transmitters 
transmitting in each time slot: 
S1={1,5,7} 
S2={2,3,4,6} 
S3={1,4,7} 
S4={2,5} 
…

Layer Dissemination



Affectance-selective Families
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Defs. :

↵ > 0 : path-loss exponent.

� � 0 : gain.

p((i, j)) : transmission power on link (i, j).

d(i, j) : Euclidean distance between i and j.

R(t) : set of links transmitting at time t.

N : background noise.

A family S = {S1, S2, . . . , St

} of subsets of [n] is a↵ectance-selective on the

family F = {F1, F2, . . . , Fn

} of subsets of [n] if and only if, for each w 2 [n],

there exists j 2 [t] such that:

• |F
w

\ S

j

| � 1, and

• for some v 2 (F

w

\ S

j

) it is

P
u2Sj

a(u, (v, w)) < 1.

We say that the family S has length t, and that each w is a↵ectance-selected.

1

[1]  B.S.Chlebus, L. Gasieniec, A. Gibbons, A. Pelc,and W. Rytter. Deterministic broadcasting in ad hoc radio networks. 
Distributed Computing, 15(1):27–38, 2002.  

Transmissions 
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Subsets of  
 transmitters



Maximum Average Affectance:

H. Kudaravalli and M. A. Mosteiro 20:5

v œ Fw there is a column in A corresponding to the pair (v, w). Then, we say that a family
S = {S1, S2, . . . , Ss} of subsets of [n] is a�ectance-selective on the family F if for each
w œ [n] there exists j œ [s] such that:

|Fw fl Sj | Ø 1, and

for some v œ (Fw fl Sj) it is
q

uœSj
a(u, (v, w)) < 1.

We say that the family S has length s, and that each w is a�ectance-selected, or simply
selected for short.

In terms of Layer Dissemination, labeling the transmitters as well as the receivers with
consecutive integers in [n], each Fw œ F is the subset of transmitters connected to receiver
w, A is the a�ectance matrix, and each value a(u, (v, w)) in A corresponds to the a�ectance
of node u on link (v, w). Then, the family S is a solution for Layer Dissemination setting
each node in set St œ S to transmit in time slot t, for each t œ [s].

4 Our Results

In this work, for a given family F = {F1, F2, . . . , Fn} of subsets of integers in [n] and a
given a�ectance matrix A, we first show the existence of a family S of subsets of [n] that is
a�ectance-selective on F . Under certain conditions on the relation between F and A, the
family S is proved to have a number of sets that is in O(1 + log n log A). That is, at most
logarithmic on n and logarithmic on the maximum average a�ectance A. The latter is
a characterization based on F and A. Specifically,

A = max
wœ[n]

max
F ™Fw

ÿ

vœF

ÿ

uœ[n]

a(u, (v, w))/|F |.

The condition assumed is that the maximum average a�ectance is not more than an a
constant factor larger than the maximum degree. This is a fair assumption for multi-hop
radio networks given that interference is a local restriction rather than local.

The proof of that bound is existential because it is based on the probabilistic method (as
in [4]). Nevertheless, it provides a method to derive algorithms for Layer Dissemination. We
present two Layer Dissemination distributed protocols, one randomized and one deterministic.
We show that both protocols have the same running time guarantee, which is asymptotically
the same as the size of the a�ectance-selective family shown. That is, O(1 + log n log A).
The randomized protocol is Monte Carlo, it is very simple (a version of Decay [1]), and only
requires knowledge of n, A, and two constants. The deterministic protocol (inspired on [4])
provides worst-case guarantees, but nodes need to know the topology and the a�ectance
matrix A, and its computational complexity is exponential.

We also include simulations to evaluate the impact of using a more accurate model
of interference. We compare our randomized protocol with previous work for the Radio
Network and SINR models. Our experimental results show a striking improvement in
performance because the Radio Network protocol neglects interference from non-neighboring
nodes, whereas SINR protocols do not take advantage of low interference from nodes that,
although located at a short distance, are blocked by obstacles. Our results also show that for
the particular inputs tested our randomized protocol performs better than predicted by our
theoretical analysis.

SEA 2017
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F4 = {3,5,7}

Layer Dissemination

Bound family 
size on network 
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20:6 Ad-hoc A�ectance-selective Families for Layer Dissemination

5 Analysis

5.1 Existence of an A�ectance-selective Family of Polylogarithmic Size

The proof of the following theorem, based on the probabilistic method, is left to the Appendix.

I Theorem 1. For any n > 0, consider a family F = {F1, F2, . . . , Fn} of subsets of
integers in [n] and any a�ectance matrix A defined on F . For each w œ [n], let Aw =
maxF ™Fw

q
vœF

q
uœ[n] a(u, (v, w))/|F | be the maximum average a�ectance on w. If there

exists a constant c > 1 such that Aw Æ c|Fw| for all w œ [n], then, there exists a family
S = {S1, S2, . . . , Ss} that is a�ectance-selective on F , and its size s satisfies

s œ O
!
1 + log n log A

"
,

where A = maxwœ[n] Aw is the maximum average a�ectance.

The bound shown matches the O(1 + log � log |F|) bound for the Radio Network model
in [4], because in our setting the number of subsets to select is |F| = n, and in the Radio
Network model it is A = � ≠ 1.

5.2 Randomized Layer Dissemination Protocol

The proof of Theorem 1, showing the existence of an a�ectance-selective family, yields a Monte
Carlo distributed randomized protocol for Layer Dissemination applicable to settings where
the conditions of the theorem hold. I.e., there exists a constant c bounding Aw Æ c|Fw| for
each receiver w. The protocol requires that all transmitters have knowledge of the maximum
average a�ectance A, the constant c, the number of transmitters n, and the constant d < 1
computed in the proof of Theorem 1. The protocol, detailed in Algorithm 1, is a version of
the Decay protocol [1] extended to the a�ectance model. Its correctness and running time
are established in the following theorem.

1 b Ω 1 + 1/(2c)
2 m Ω Á2 log1/d nË
3 for i = 0, 1, 2, . . . , max{Álogb(2A)Ë, 0} do

4 for m times do

5 transmit with probability 1/bi

Algorithm 1: Randomized Layer Dissemination protocol for each node v œ
V . A = maxwœW Aw, is the maximum average a�ectance, where Aw =
maxF ™Fw

q
vœF

q
uœV a(u, (v, w))/|F | is the maximum average a�ectance on w, d < 1

is a constant as computed in the proof of Theorem 1, and c > 1 is the constant bounding
Aw Æ c|Fw| for each receiver w.

I Theorem 2. Consider a layer of a Radio Network with a�ectance matrix A and topology
G = (V, W, E), where |V | = |W | = n, where for each receiver w œ W there is at least
one transmitter v œ V such that (v, w) œ E. Then, if there exists a constant c > 1 such
that Aw Æ c|Fw| for all w œ W , where Aw = maxF ™Fw

q
vœF

q
uœV a(u, (v, w))/|F | is the

maximum average a�ectance on w, Algorithm 1 solves the Layer Dissemination problem with

Existence of Aff-selective families:

Logarithmic in the 
network 

characterization.

Layer Dissemination



• Assume each v transmits with some probability p. 
• Probabilistic method: show that the probability of a given w not being 

selected is < 1. 
• Prove Markov-type inequality: to bound such probability by the expected 

average affectance on w. 
• Prob is <1 if p is within a constant-factor b range -> try all. 
• Union bound: after enough number of rounds, the probability of any w not 

being selected is still less than 1 -> add some multiplicity m.

Layer Dissemination
Sketch of proof:



Proof of Thm 1 yields a randomized protocol of same length:

20:6 Ad-hoc A�ectance-selective Families for Layer Dissemination
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I Theorem 2. Consider a layer of a Radio Network with a�ectance matrix A and topology
G = (V, W, E), where |V | = |W | = n, where for each receiver w œ W there is at least
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vœF

q
uœV a(u, (v, w))/|F | is the

maximum average a�ectance on w, Algorithm 1 solves the Layer Dissemination problem with

to settings where the conditions of the theorem hold. I.e., there exists a constant c
bounding Aw  c|Fw| for each receiver w. The protocol requires that all transmitters
have knowledge of the maximum average affectance A, the constant c, the number
of transmitters n, and the constant d < 1 computed in the proof of Theorem 1. The
protocol, detailed in Algorithm 1, is a version of the Decay protocol [1] extended to
the affectance model. Its correctness and running time are established in the following
theorem.

1 b 1+1/(2c)
2 m d2log1/d ne
3 for i = 0,1,2, . . . ,max{dlogb(2A)e,0} do
4 for m times do
5 transmit with probability 1/bi

Algorithm 1: Randomized Layer Dissemination protocol for each node v 2
V . A = maxw2W Aw, is the maximum average affectance, where Aw =
maxF✓Fw

P
v2F

P
u2V a(u,(v,w))/|F | is the maximum average affectance on w,

d < 1 is a constant as computed in the proof of Theorem 1, and c > 1 is the
constant bounding Aw  c|Fw| for each receiver w.

Theorem 2 Consider a layer of a Radio Network with affectance matrix A and topol-
ogy G = (V,W,E), where |V | = |W | = n, where for each receiver w 2W there is at
least one transmitter v 2 V such that (v,w) 2 E. Then, if there exists a constant c > 1
such that Aw  c|Fw| for all w 2W, where Aw = maxF✓Fw

P
v2F

P
u2V a(u,(v,w))/|F |

is the maximum average affectance on w, Algorithm 1 solves the Layer Dissemination
problem with high probability 1, and the running time is in O(1+ logn logA), where
A = maxw2W Aw is the maximum average affectance.

Proof. The first claim follows from the proof of Theorem 1, together with computing
the value m that makes Pr (9w 2 [n] : Zw = 0) ndm  1/n. The running time follows
from the number of iterations in Algorithm 1.

For settings where only n and c are known to the transmitters, we can run the loop
in Line 3 of Algorithm 1 for dlogb(2(n�1))e times, since we know that Aw  (n�1)
for any w 2W . The running time in that case would be 1+O(log2 n) steps.

5.3 Deterministic Layer Dissemination Protocol
Algorithm 1 is simple and it is easily distributed because only requires knowledge
of a few global parameters (namely A, c, and n), and also does not require intensive
computations at each node. However, the running time guarantee is only stochastic.
In this section we present a deterministic algorithm that provides the same running
time guarantee but worst-case, although to implement it distributedly knowledge of the
graph G and the affectance matrix A is required.

1We say that an event occurs with high probability if it occurs with probability at least 1�1/nk, for some
constant k > 0.

9

Layer Dissemination



De-randomization yields a deterministic protocol of same length:

20:8 Ad-hoc A�ectance-selective Families for Layer Dissemination

// Initialization

1 p Ω 0
2 b Ω 1 + 1/(2c)
3 m Ω max{Álogb(2A)Ë, 0}
4 W Õ

0 Ω {w œ W : Aw Æ 1/2}
5 for r = 1, . . . , m do W Õ

r Ω {w œ W : br≠1/2 < Aw Æ br/2}

// Protocol

6 for each time slot while ÷r = 0, 1, . . . , m : W Õ
r ”= ÿ do

7 if p Æ 1/(2bA) then

8 p Ω 1
9 r Ω 0

10 set V Õ[1 . . . n] array of booleans // V Õ[i] © i transmits

11 for i = 1, 2, . . . , n do

12 Etrue Ω EV Õ[i+1...n]
!
# selected in W Õ

r

--V Õ[i] = true
"

13 Efalse Ω EV Õ[i+1...n]
!
# selected in W Õ

r

--V Õ[i] = false
"

14 V Õ[i] Ω Etrue > Efalse

15 if V Õ[v] then transmit
16 W Õ

r Ω W Õ
r \

)
w

--w was selected
*

17 p Ω p/b

18 r Ω r + 1
Algorithm 2: Deterministic Layer Dissemination protocol for each node v œ
V . A = maxwœW Aw, is the maximum average a�ectance, where Aw =
maxF ™Fw

q
vœF

q
uœV a(u, (v, w))/|F | is the maximum average a�ectance on w, and

c > 1 is the constant bounding Aw Æ c|Fw| for each w.… but computing those expectations is exponential, 
due to computing probs of low affectance.
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Are affectance-based protocols better? worse? 

Let’s try some experiments!

So?



Simulations topology

Layer Dissemination



Simulation protocols:

• Transform Montecarlo into Las Vegas protocols: 
– count how many rounds to complete dissemination. 

• Affectance model evaluation: 
– Compare performance with an RN protocol and and SINR protocol. 
– Successful transmission according to Affectance model. 
– Compare also with theoretical performance.

Layer Dissemination



Simulations results

20:12 Ad-hoc A�ectance-selective Families for Layer Dissemination

1 rounds Ω 0
2 while ÷w œ W : w did not receive do

3 rounds + +
4 if rounds © v mod dilution then

5 with probability 1/density, v transmits the message
6 return rounds

Algorithm 4: Algorithm 1 in [9] for each transmitter v œ V . density and dilution are
parameters of the network as defined in [9].
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Figure 2 Simulation results.

RN & SINR are 
exponential under 

affectance!

Better than 
theoretical bound!

Layer Dissemination



Thank you!
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