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Anonymous Dynamic Networks

Communication links change.


Due to mobility, failures, etc.
No node identifiers. 


Due to massive number of nodes, low 
cost, etc. 
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• Fixed set of n nodes

– no identifiers or labels

• Synchronous communication: At each round

– a node broadcasts a message to its neighbors

– receives the messages of its neighbors

– executes some local computation

• Topology: 
– at each round the network is connected

– dynamicity:

» standard ADN: links change arbitrarily ➝ too pessimistic 

» in practice: good expansion is the norm rather than the exception!!

» for this work: known lower bound on


                         Isoperimetric numbers: , 


 each network-topology graph, 

 set of links between  and . 

i(G) = min
X:X ⊂ V,

|X | ≤ |V | /2

|∂X |
|X |

G = (V, E)
∂X ⊆ E X V∖X

Anonymous Dynamic Networks



Fault-tolerant Consensus: 

« Given a distributed system of  processors, 


all agree on a value and stop »
Profusely studied in Distributed Computing.

n

Network Average Consensus

Network Consensus: 

« Given a network of  nodes, each holding an input value , 


every node obtains same  and stop »
Profusely studied in Systems and Control Theory.

Popular functions: average, sum, maximum, etc .

n xi
f(x1, x2, …, xn)



How to reach consensus 

in a dynamic crowd 


without revealing identity?

Average Consensus in ADNs

You all look the same, 
did I see you before?

I don’t know! You also 
look the same as 
everyone else!!

Moreover: low-cost nodes ➝ 

start-up and late failures may occur ➝ 


n may be unknown!
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• Network Average Consensus Algorithm with  supervisors: 

isoperimetric Scalable Coordinated Anonymous Local Aggregation (iSCALA)

ℓ > 0

− based on Methodical multi-Counting (prev. known) but

− designed to use known isoperimetric dynamicity to improve time complexity

− MMC (and others) inefficient for (practical) good expansion networks

− iSCALA intrinsically adapts to changes 




Contributions
We study: 


Network Average Consensus in Anonymous Dynamic Networks 

» unknown number of nodes

» known (lower bound on) isoperimetric numbers


We show:

• Randomized Network Average Consensus not possible without known number  
 of distinguished nodes, we call them supervisors

Given that: same applies to Deterministic Counting ≡ Average (prev. known), the 
claim is true for all algorithms.

ℓ > 0

• Network Average Consensus Algorithm with  supervisors: 

isoperimetric Scalable Coordinated Anonymous Local Aggregation (iSCALA)

ℓ > 0

• Analysis for adversarial and various stochastic topologies 

• Thorough simulations



Impossibility

Proved showing a carefully designed network that has 
constant isoperimetric number globally, and also locally.

Then showing that, with constant probability, any 
algorithm reaches a termination configuration locally 
before receiving global information. 

These algorithms do not require any information of network char-
acteristics, but overestimate the necessary time to cope with worst-
case topologies. iSCALA carefully re-designs MMC to speed it up
by utilizing the isoperimetric dynamicity of the network.

The algorithm in [4] is also polynomial but requires two-hops full
topology information. Other studies related to the time complexity
of information gathering exist [5, 9, 15, 28, 45, 50, 51], but include in
their model additional assumptions, such as the network having the
same topology frequently enough or node identi�ers. Consensus
has also been widely studied in fault-prone scenarios, with link or
node failures, see [16, 17] respectively.

4 IMPOSSIBILITY OF NETWORK AVERAGE
CONSENSUS

In this section, we show that Network Average Consensus is not
possible with randomized algorithms without supervisor nodes
(` = 0) or if the number of supervisor nodes (` > 0) is unknown to
the nodes. For clarity, we present the proof for ` = 0, and we explain
afterwards how to extend the proof to the case ` > 0. Note that our
impossibility result holds even for static anonymous networks, and
even if there is a known lower bound on the isoperimetric number.

T������ 4.1. For any constant 0 < c < 1, there exists an ADN
with ` = 0 such that there is no randomized algorithm that, with
probability at least c , solves the Network Average Consensus Problem,
even knowing a lower estimate of the isoperimetric number.

P����. For the sake of contradiction, assume such an algorithm
exists, call it A. Consider the following classes of networks.

Let G(n) be a graph of n nodes, formed by two cycles of length
n/2 each, in which each i-th nodes are connected by an additional
edge. Graph G(n) is regular with degree 3 and 3n/2 edges; it is
called a gadget. Let the links of G(n) be labeled as e1, e2, . . . , e3n/2
for reference, where the ordered sequence e1, e2, . . . , en/2 forms
the �rst cycle, en/2+1, en/2+2, . . . , en forms another cycle, and
en+1, en+2, . . . , e3n/2 are the edges in-between the two cycles:
edge en+i connects the i-th nodes of the two cycles, i.e., node
incident to edges en/2+i , en/2+i+1 with a node incident to edges
en+i , en+i+1, where the indexes are modulo n/2. Let H (N ) be a
�-regular constant-degree expander of N nodes, with a constant
isoperimetric number bigger than 2 (cf. [22] and Thm 7.10 in [33]).

Finally, letHG(n)(N ) be a graph obtained fromH (N ) by replacing
each node by a copy of graph G(n); hence the number of nodes in
HG(n)(N ) is N · n. In order to de�ne edges in HG(n)(N ), consider a
coloring of edges in H (N ) by a constant number of colors, ensuring
that there are no incident edges with same color. Then, in the
ultimate graph HG(n)(N ), we create edges as follows: inside each
gadget we use the original edges from G(n), and additionally for
each edge (a,b) in H (N ) of color � , we remove edges e3� from
the �rst cycles of the gadgets a and b and then we cross-connect
their ends, i.e., if ua,�a and ub ,�b denote the end nodes of links
e3� in gadget a and b, respectively, we remove the links (ua,�a )
and (ub ,�b ) from gadgets a and b, respectively, and add the links
(ua,�b ) and (ub ,�a ), all in graph HG(n)(N ).

Let imin = �(1/n) be a lower bound on the isoperimetric number
of both G(n) and HG(n)(N ). It is well de�ned, since the isoperimet-
ric number of gadgetG(n) is clearly �(1/n), c.f., take �rst halves of

the two cycles as set X in the de�nition of i(G), while the isoperi-
metric number of HG(n)(N ) could be estimated as follows.
Claim. The isoperimetric number of HG(n)(N ) is �(1/n).

Without loss of generality, assume that inA each node draws one
random bit per communication round. (If more random bits are used,
the same argument as below can be extended to more outcomes.)

Consider an execution ofA onG(n) in the �rstT (n, imin) rounds.
Starting from the initial state where nodes have no information
(recall that nodes do not have identi�ers), in each round a node
makes decisions, based on the random bits drawn and the received
states of its neighbors to move to another state. With respect to
the random bits drawn, by time t a node may be in one of 2t
states. We call the states of all network nodes at a given time a
con�guration of states. A con�guration inG(n)whereA stops at all
nodes with the correct average of input values is called a winning
con�guration. By de�nition of A, the probability of ending at a
winning con�guration is at least c , and there are

⇣
2T (n,imin)

⌘n
=

2nT (n,imin) possible con�gurations by timeT (n, imin) inG(n). Hence,
there must exist some winning con�guration � that occurs in A
with probability at least c/2nT (n,imin). Denote by �!t the part of
con�guration � by round t .

Consider a given gadget a in HG(n)(N ). Let a and all gadgets
within T (n, imin) super-links from a be called a witness, where a
super-link is an edge inHG(n)(N ) that does not belong to any gadget
G(n). Gadget a is called the core of the witness, and the rest of the
gadgets are called the bu�er. We choose N large enough to partition
HG(n)(N ) in an integer number of witnesses, so that the execution
of A in each core during the �rst T (n, imin) rounds is independent.
In other words, the con�gurations in each core of the network are
independent, even if the information moves from gadget to gadget
in one round.

We show now that, for N large enough, after executing A on
HG(n)(N ) for T (n, imin) rounds, the core of some witness has the
con�guration �, hence nodes in that core stop with an incorrect
average with probability larger than 1�c , which proves the theorem.

For any given witness w and for 0  t  T (n, imin), let the t-
semi-core ofw be the core and all gadgets at distance T (n, imin) � t
in super-links from the core. In particular, the 0-semi-core is the
whole witness, and the T (n, imin)-semi-core is the core itself.

We prove the following invariant for a witnessw .
Invariant. For any 0  t  T (n, imin), with probability at least
c/2n�t , any gadget in the t-semi-core ofw has the same con�guration
in �!t as the core.

We prove the invariant by induction as follows. When the exe-
cution of A starts, all gadgets in the 0-semi-core are in the same
con�guration. Then, assuming inductively that the invariant holds
for some round 0  t < T (n, imin), we can extend the con�guration
of the t-semi-core at all but the boundary gadgets of this semi-core
to satisfy the invariant for t + 1. This is because all these gadgets
receive messages from other gadgets satisfying the invariant for t
via corresponding super-links, leading to nodes with corresponding
con�gurations. Thus, gadgets mimic the behavior of A on the core
at round t+1 of the protocol, which leads to the partial con�guration
�!t+1 on the core, and thus on all gadgets of the (t + 1)-semi-core.

It follows from the invariant for T (n, imin) that the core ends up
in con�guration �. Since � is a winning con�guration onn nodes, all

nodes in the core stop and output the average of their input values,
which violates the correctness during the considered execution
of A on HG(n)(N ) as long as input values in other nodes yield a
di�erent average.

It remains to prove that the union of the above events, over
all the witnesses, holds with probability larger than 1 � c . For
� witnesses, we show that the complementary event holds with
probability smaller than c , that is,

⇣
1 � c/2n�T (n,imin)

⌘�
< c . This

is indeed implied by exp
⇣
�c�/2n�T (n,imin)

⌘
< c , which holds for

� > ln(1/c)2n�T (n,imin) /c .
That is, for N large enough so that HG(n)(N ) has

ln(1/c)2n�T (n,imin) /c witnesses, with probability larger than
1 � c , there exists at least one witness w in HG(n)(N ) with a
winning con�guration � after running A for T (n, imin) rounds.
Hence, assigning input values so that the average in HG(n)(N ) is
di�erent from the average in the core ofw , the nodes in the core of
w stop and output an incorrect average, and the claim follows. ⇤

The proof of Theorem 4.1 may be extended for ADNs with any
unknown ` > 0. Consider the networks G(n) and HG(n)(N ). For
each node u in G(n), add a supervisor node � and a link (u,�). Let
this new network be calledG 0(n). For each nodeu inHG(n)(N ), add
a supervisor node� and a link (u,�). Let this new network be called
H 0
G0(n)(N ). That is, the n nodes in G(n) now become supervised

in G 0(n), which has also n supervisor nodes; and the Nn nodes
of HG(n)(N ) become supervised in H 0

G0(n)(N ), which has also Nn

supervisor nodes. The isoperimetric number ofG 0(n) andH 0
G0(n)(N )

is the same as inG(n) andHG(n)(N ) respectively, modulo a constant.
All supervised nodes in H 0

G0(n)(N ) have the same view of their
neighborhood, and the same applies to supervisor nodes. Because
` is unknown, nodes cannot obtain the size of the network from `
and, hence, at least one gadget will compute the wrong average as
shown in the proof of Theorem 4.1. Hence, the following holds.

C�������� 4.2. For any constant 0 < c < 1 and any ` > 0, there
exists an ADN with ` supervisor nodes such that, if ` is unknown
to the network nodes, there is no randomized algorithm that, with
probability at least c , solves the Network Average Consensus Problem,
even knowing a lower estimate of the isoperimetric number.

5 ALGORITHM ISCALA
In this section we present a deterministic distributed Network Av-
erage Consensus algorithm that we call ������������� S�������
C���������� A�������� L���� A���������� (iSCALA). The
algorithm can be applied to Anonymous Dynamic Networks, where
isoperimetric dynamicity is available and there is at least one dis-
tinguished node, that we call supervisor. The consensus value is
the average of input values initially held at nodes. As argued in
Section 1, the problems of Counting and computing Average are
asymptotically equivalent (in terms of the number of rounds) in the
ADNs model. Mainly: one can compute the size of the network (i.e.,
solving Counting) with an average algorithm, and theM���������
������C������� (MMC) [36] algorithm can be used to compute
the sum and the size at the same time (hence, the average) without
extra cost. Thus, iSCALA is adapted from MMC to speed it up by

utilizing speci�c isoperimetric dynamicity of networks. For clarity,
we present iSCALA for Counting. The sum of input values may be
obtained concurrently with the size (hence, the average) by count-
ing the number of 1’s in each bit of the input values (refer to [36]
for further details). MMC and previous algorithms for Counting
and other Algebraic computations overestimate running time to
cope with worst-case topologies, but in doing so become ine�cient
for topologies with good expansion or social network properties.
Instead, iSCALA is designed to perform according to the actual
dynamicity of topologies, hence intrinsically it adapts to changes.

iSCALA can be described broadly as follows. Similarly to MMC,
nodes execute synchronously subsequent epochs, each associated
with some prediction k on the number of nodes in the network. In
the beginning, k grows exponentially from one epoch to the next
one as k = 2, 4, 8, . . . , 2 dlogn e , and from that point a binary search
in the range [2 blogn c, 2 dlogn e ] is done until k = n. The algorithm
has a set of alarms in a way that all nodes can recognize how to
change k throughout the execution while k , n and a new epoch is
needed. The process ends when k = n, which all nodes recognize.
Further details follow. Refer to Algorithm 1 and Figure 1.

Each node starts an epoch with a value, called potential. The
supervisor nodes start with potential 0, whereas the supervised
nodes start with potential `, where ` is the number of supervisor
nodes (cf. Line 4 and Figure 1a). If supervisor nodes could collect all
the potential evenly, they would end up with n � ` potential each
and they could simply broadcast the value n to all supervised nodes.
However, n is obtained by detecting when k = n (still using the
collected potential), the reason being various technical di�culties
that arise, as follows.

• How to collect the potentials? The algorithm uses the classic
technique [10, 29, 30, 35, 49] of repeatedly sharing poten-
tials among neighboring nodes (a.k.a. mass distribution, cf.
Line 11), but these running potentials converge to the aver-
age rather than having the supervisor nodes collecting all.
To address this issue, each epoch is split into phases. During
each phase all nodes share their potential, but at the end of
each phase the supervisor nodes move their current poten-
tial into a separate accumulator (cf. Line 16 and Figures 1b
and 1c). Thus, after enough number of phases, the super-
visor nodes have withdrawn almost all the potential in the
network (cf. Figure 1f).

• Convergence to the average in each phase requires a number
of rounds of potential sharing, but that number depends on
network size, which is unknown.
To overcome this challenge, in iSCALA the number of rounds
is a function of the topology graph isoperimetric number (cf.
Line 8), rather than a function of the size estimate k only,
as in MMC. Hence, given lower bounds on isoperimetric
dynamicity, Algorithm iSCALA speeds up the computation
for topologies with good expansion properties. Proving that
these parameters are enough for dynamically (and arbitrar-
ily or stochastically) changing networks is one of the main
challenges of this work.

• The above process is guaranteed to converge to the desired
n�` at each supervisor node only if k = n, but how to detect
that k , n and a new epoch is needed?
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iSCALA Upper Bounds

nodes, one can obtain the average of the input values. Thus, in
this work, we present a Network Average Consensus algorithm
based on Counting.

It has been shown that Counting cannot be solved deterministi-
cally without the presence of at least one distinguished node [41],
and that indeed the number of such nodes needs to be known [36].
Hence, we consider ADNs with ` > 0 supervisor nodes, where `
is known. That is, in such setting the problem of Counting is to
compute the number of supervised nodes.

Algorithmic research for Counting in ADNs has been very suc-
cessful. In few years, the speed-ups on deterministic Counting algo-
rithms went from unbounded [19, 20], to doubly-exponential [19]
and exponential time [14, 18], until recently when Kowalski and
Mosteiro introduced the �rst polynomial time protocol [37]. In a
follow-up paper [36], a Counting protocol for many distinguished
nodes, calledM��������� ������C������� (MMC), was proposed.

The adversarial topology changes assumed in the ADN model,
that is, a topology that changes arbitrarily after each round of
communication, may be too pessimistic for practical networks.
For instance, if topology changes are due to mobility, limits on
node speed may bound also topology changes over time. Moreover,
topologies with good expansion or social network properties, such
as small-world and scale-free networks are the norm rather than
the exception in practice. In this work, we consider ADNs where the
temporal sequence of topology-graph isoperimetric numbers (as
de�ned in Section 6) is given. We call such information the isoperi-
metric dynamicity of the network. Note that the actual topologies
at di�erent times may di�er a lot, as long as their isoperimetric
numbers satisfy the given isoperimetric dynamicity or a lower
bound on it. This makes our algorithm applicable to stochastically
dynamic networks.

Contributions.
We �rst prove an impossibility result. Speci�cally, we show that

Network Average Consensus is not possible with randomized al-
gorithms without supervisor nodes (` = 0) or if the number of
supervisors (` > 0) is unknown to the nodes. It was shown in [41]
that no deterministic Counting algorithm exists for an ADN without
distinguished nodes. Given that Counting can be solved with a Net-
work Average Consensus algorithm, the same impossibility applies
to Network Average Consensus. Together, these results imply that
any Network Average Consensus algorithm for ADNs, randomized
or deterministic, requires the presence of distinguished nodes.

We propose a deterministic distributedNetworkAverage Consen-
sus algorithm that we call ������������� S������� C����������
A�������� L���� A���������� (iSCALA). iSCALA solves Net-
work Average Consensus by solving Counting in ADNs with at
least one supervisor node. Based onM��������� ������C�������
(MMC) [36], iSCALA is designed to use information about the
isoperimetric dynamicity of the network to improve time complex-
ity. MMC and previous Counting algorithms overestimate the time
needed to cope with worst-case topologies, but in doing so become
ine�cient for topologies with good expansion properties. Instead,
iSCALA is designed to perform according to the actual topology,
whose properties in practice are usually known. Hence, iSCALA
intrinsically adapts to changes.

Although iSCALA is deterministic, the inner workings may be
modeled as a Markov chain. We bound its convergence time as a

function of the conductance of the Markov-chain transition ma-
trix. Establishing its relation with the topology-graph isoperimet-
ric number we show the convergence time for adversarial topolo-
gies in three cases: only a lower bound on the isoperimetric num-
ber throughout the execution is given, isoperimetric numbers
change with a �xed period, and a scenario where the isoperimet-
ric number at any time is given. Our main theorem for adversarial
topologies (cf. Theorem 6.5) shows the correctness and running
time of iSCALA when the isoperimetric number at each time is
given, and Corollary 6.6 shows the asymptotic running time as a
function of a lower bound on the isoperimetric number, namely
O
⇣
n3+� /(`i2min) log

3 n
⌘
for any � > 0. Thus, iSCALA improves over

the O
⇣
n4+� /` log3 n

⌘
of MMC (cf. Corollary 15 in [36]) for topolo-

gies with isoperimetric number in �(1/pn), even if only a lower
bound on the isoperimetric number is given.

For many stochastic topologies, which are standard models for
practical applications, the expected isoperimetric number is (close
to) constant [23]. We provide high probability guarantees in Sec-
tion 7), wherewe establish the running time of iSCALA as a function
of a lower bound on the isoperimetric number that holds with high
probability in any stochastic network. We also compute such lower
bound for various stochastic models, such as Watts-Strogatz [54],
Barabàsi-Albert [6], Erdős-Rényi/Gilbert [24, 31], and Random Geo-
metric Graphs [48]. Plugging those lower bounds in our theorem,
we show a substantial improvement of performance of iSCALA for
stochastic ADNs for all these models (especially for popular models
with constant or close to constant parameters). We summarize our
theoretical results in Table 1.
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Table 1: iSCALA upper bounds. All for any � > 0. imin as de-
�ned in Section 6 and ĩmin, pmin, rmin, Kmin, �min, andm0,min 
mmin as de�ned in Section 7.

To complement the theoretical analysis, we also present thor-
ough simulations under various scenarios. For di�erent topologies,
isoperimetric dynamicities, network sizes, etc., we compare experi-
mentally computed time lower bounds of a (hypothetical) central-
ized version of iSCALA, where internal processes are stopped once
all nodes have reached their intermediate milestones, with the theo-
retically computed performance of (distributed) algorithms iSCALA
and MMC. Our simulations show that iSCALA’s theoretical time
complexity is indeed close to such experimental lower bounds for
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nodes, one can obtain the average of the input values. Thus, in
this work, we present a Network Average Consensus algorithm
based on Counting.

It has been shown that Counting cannot be solved deterministi-
cally without the presence of at least one distinguished node [41],
and that indeed the number of such nodes needs to be known [36].
Hence, we consider ADNs with ` > 0 supervisor nodes, where `
is known. That is, in such setting the problem of Counting is to
compute the number of supervised nodes.

Algorithmic research for Counting in ADNs has been very suc-
cessful. In few years, the speed-ups on deterministic Counting algo-
rithms went from unbounded [19, 20], to doubly-exponential [19]
and exponential time [14, 18], until recently when Kowalski and
Mosteiro introduced the �rst polynomial time protocol [37]. In a
follow-up paper [36], a Counting protocol for many distinguished
nodes, calledM��������� ������C������� (MMC), was proposed.
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that is, a topology that changes arbitrarily after each round of
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For instance, if topology changes are due to mobility, limits on
node speed may bound also topology changes over time. Moreover,
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gorithms without supervisor nodes (` = 0) or if the number of
supervisors (` > 0) is unknown to the nodes. It was shown in [41]
that no deterministic Counting algorithm exists for an ADN without
distinguished nodes. Given that Counting can be solved with a Net-
work Average Consensus algorithm, the same impossibility applies
to Network Average Consensus. Together, these results imply that
any Network Average Consensus algorithm for ADNs, randomized
or deterministic, requires the presence of distinguished nodes.

We propose a deterministic distributedNetworkAverage Consen-
sus algorithm that we call ������������� S������� C����������
A�������� L���� A���������� (iSCALA). iSCALA solves Net-
work Average Consensus by solving Counting in ADNs with at
least one supervisor node. Based onM��������� ������C�������
(MMC) [36], iSCALA is designed to use information about the
isoperimetric dynamicity of the network to improve time complex-
ity. MMC and previous Counting algorithms overestimate the time
needed to cope with worst-case topologies, but in doing so become
ine�cient for topologies with good expansion properties. Instead,
iSCALA is designed to perform according to the actual topology,
whose properties in practice are usually known. Hence, iSCALA
intrinsically adapts to changes.

Although iSCALA is deterministic, the inner workings may be
modeled as a Markov chain. We bound its convergence time as a

function of the conductance of the Markov-chain transition ma-
trix. Establishing its relation with the topology-graph isoperimet-
ric number we show the convergence time for adversarial topolo-
gies in three cases: only a lower bound on the isoperimetric num-
ber throughout the execution is given, isoperimetric numbers
change with a �xed period, and a scenario where the isoperimet-
ric number at any time is given. Our main theorem for adversarial
topologies (cf. Theorem 6.5) shows the correctness and running
time of iSCALA when the isoperimetric number at each time is
given, and Corollary 6.6 shows the asymptotic running time as a
function of a lower bound on the isoperimetric number, namely
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for any � > 0. Thus, iSCALA improves over

the O
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⌘
of MMC (cf. Corollary 15 in [36]) for topolo-

gies with isoperimetric number in �(1/pn), even if only a lower
bound on the isoperimetric number is given.

For many stochastic topologies, which are standard models for
practical applications, the expected isoperimetric number is (close
to) constant [23]. We provide high probability guarantees in Sec-
tion 7), wherewe establish the running time of iSCALA as a function
of a lower bound on the isoperimetric number that holds with high
probability in any stochastic network. We also compute such lower
bound for various stochastic models, such as Watts-Strogatz [54],
Barabàsi-Albert [6], Erdős-Rényi/Gilbert [24, 31], and Random Geo-
metric Graphs [48]. Plugging those lower bounds in our theorem,
we show a substantial improvement of performance of iSCALA for
stochastic ADNs for all these models (especially for popular models
with constant or close to constant parameters). We summarize our
theoretical results in Table 1.
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To complement the theoretical analysis, we also present thor-
ough simulations under various scenarios. For di�erent topologies,
isoperimetric dynamicities, network sizes, etc., we compare experi-
mentally computed time lower bounds of a (hypothetical) central-
ized version of iSCALA, where internal processes are stopped once
all nodes have reached their intermediate milestones, with the theo-
retically computed performance of (distributed) algorithms iSCALA
and MMC. Our simulations show that iSCALA’s theoretical time
complexity is indeed close to such experimental lower bounds for
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Simulations

• Goal: Evaluation of a hypothetical early-stopping centralized version of iSCALA 
against the upper bounds in the analysis. 


• Inputs: 


Supervisor nodes located at random. All topologies -stable connected.

• Parameters: 


                              ER: 
       in various steps    WS:  and 

                                                                BA: 
       lower bound 


• Average behavior over multiple executions of the simulator. 

T

n = 6,9,12,…,48 p = 0.5
ℓ = 1,…, n /2 β = 0.1,0.2,0.4 K = 2,4
T = 1,100 m = m0 = 2,4
imin

random graphs other
Watts-Strogatz (WS) Trees
Barabàsi-Albert (BA) Stars

 Erdős-Rényi,Gilbert (ER) Paths



Simulations Results Examples
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Figure 2: Simulation results for some ` 2 [n/3,n/2].
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Figure 3: Simulation results for n = 30.

that iSCALA theoretical bound gets close to the experimental run-
ning time as n grows. (It is better on paths and trees in Figure 2
because i 2 �(1) in those topologies.)

With respect to impact of less frequent topology changes, we
observe that performance does not change signi�cantly with T . In
fact, topology changes help gossip-based algorithms in practice
rather than being a challenge as in algorithm design and analysis.

As expected for gossip-based algorithms, we can see in Figure 2
that iSCALA performs better on topologies such as stars and ran-
dom graphs with respect to paths and trees, given that the latter
have less expansion. Interestingly, this di�erence in performance
is more notorious as the number of supervisor nodes grow, as ob-
served in Figure 2, and also in Figure 3, where we also see that the
computation is faster if we have more supervisor nodes.

9 CONCLUSIONS AND OPEN PROBLEMS
In this work, we presented and analyzed iSCALA, a deterministic
distributed algorithm for Network Average Consensus in ADNs
where the isoperimetric dynamicity is bounded. Many of previous
Network Average Consensus algorithms need the network size to
terminate, while iSCALA does not require IDs nor even the number
of nodes to compute and stop. Although we analyzed only the case

of summing up identical values (i.e., binary case), it could be applied
as a black-box to solve Consensus for any values as well as many
other arithmetic problems, c.f., [37].

Our analysis spans a variety of scenarios and isoperimetric dy-
namicities, including worst-case (adversarial) and stochastic topolo-
gies. For topologies with practical expansion properties, we showed
improved performance with respect to previous algorithms that
overestimated running time to deal with worst-case scenarios. Our
simulations con�rmed that the theoretical performance of iSCALA
is close to its practical performance, even if the algorithm is speeded
up by centralized con�rmations of completed partial tasks.

Further improvement of time performance and non-trivial lower
bounds are the most important open directions. Another interest-
ing question is when consensus could be solved without a leader,
as electing a leader may not always guarantee clear termination,
c.f., [38].
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