Supervised Average Consensus in
Anonymous Dynamic Networks

Dariusz R. Kowalski  Miguel A. Mosteiro
Augusta Univ. Pace Univ.

SPAA 2021
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Anonymous Dynamic Networks

— no identifiers or labels

« Synchronous communication: At each round ‘ \‘ \
— a node broadcasts a message to its neighbors \ I \ ‘

 Fixed set of n nodes 1

— receives the messages of its neighbors

— executes some local computation
 Topology: ‘/

— at each round the network is connected
— dynamicity:
» standard ADN: links change arbitrarily — too pessimistic
» In practice: good expansion is the norm rather than the exception!!
» for this work: known lower bound on

N

, 0X
Isoperimetric numbers: i(G) = min u
XXcVv, |X|
| X[ < [V]/2

= (V, E) each network-topology graph,
0X C E set of links between X and V' \ X.



Network Average Consensus

Fault-tolerant Consensus:

« GIven a distributed system of n processors,
all agree on a value and stop »
Profusely studied in Distributed Computing.

Network Consensus:

« Given a network of n nodes, each holding an input value x;,
every node obtains same f(x, X, ..., X,,) and stop »

Profusely studied in Systems and Control Theory.
Popular functions: average, sum, maximum, etc .




Average Consensus in ADNs

How to reach consensus
iIn a dynamic crowd

without revealing identity?

Moreover: low-cost nodes —

start-up and late failures may occur —
n may be unknown!
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Contributions

We study:
Network Average Consensus in Anonymous Dynamic Networks

» unknown number of nodes

» known (lower bound on) isoperimetric numbers
We show:

®* Randomized Network Average Consensus not possible without known number
¢ > 0 of distinguished nodes, we call them supervisors

Given that: same applies to Deterministic Counting = Average (prev. known), the
claim is true for all algorithms.

o Network Average Consensus Algorithm with £ > 0 supervisors:

isoperimetric Scalable Coordinated Anonymous Local Aggregation (iISCALA)

- based on Methodical multi-Counting (prev. known) but
- designed to use known isoperimetric dynamicity to improve time complexity
- MMC (and others) inefficient for (practical) good expansion networks

- ISCALA intrinsically adapts to changes



Contributions

We study:
Network Average Consensus in Anonymous Dynamic Networks

» unknown number of nodes
» known (lower bound on) isoperimetric numbers
We show:

®* Randomized Network Average Consensus not possible without known number
¢ > 0 of distinguished nodes, we call them supervisors

Given that: same applies to Deterministic Counting = Average (prev. known), the
claim is true for all algorithms.

o Network Average Consensus Algorithm with £ > 0 supervisors:

isoperimetric Scalable Coordinated Anonymous Local Aggregation (iISCALA)

e Analysis for adversarial and various stochastic topologies

e Thorough simulations



Impossibility

THEOREM 4.1. For any constant 0 < ¢ < 1, there exists an ADN
with € = 0 such that there is no randomized algorithm that, with
probability at least c, solves the Network Average Consensus Problem,
even knowing a lower estimate of the isoperimetric number.

COROLLARY 4.2. For any constant0 < ¢ < 1 and any € > 0, there
exists an ADN with € supervisor nodes such that, if € is unknown
to the network nodes, there is no randomized algorithm that, with
probability at least c, solves the Network Average Consensus Problem,
even knowing a lower estimate of the isoperimetric number.

Proved showing a carefully designed network that has
constant isoperimetric number globally, and also locally.

Then showing that, with constant probability, any
algorithm reaches a termination configuration locally
before receiving global information.



ISCALA structure

epochs: Example with £ = 1 supervisor
_ oneforeachestmate k =7+ 1,2+ 1,4+ 1), ... andn — 7 = 6 supervised nodes
— initially, “potential” value:
Cbsupervised =7 > (Dsupervisor =0
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Example with £ = 1 supervisor
and n — £ = 6 supervised nodes
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ISCALA Epoch Example

epochs:
_ oneforeachestmate k =7+ 1,2+ 1,4+ 1), ...
— initially, “potential” value:

supervisor —_ 0 D

() =7, ®
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ISCALA Epoch Example

epochs: After p(k, 1(G;)) phases...

_ oneforeachestmate k =7+ 1,2+ 1,4+ 1), ...

— supervisors decide according to p

— supervisors notify if Kk > n p =
_ try next k if needed

— initially, “potential” value:
O =7, ®

supervised —

=0

supervisor —_




ISCALA Upper Bounds
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Simulations

« Goal: Evaluation of a hypothetical early-stopping centralized version of iSCALA
against the upper bounds in the analysis.

* |nputs:
random graphs other

Watts-Strogatz (WS) Trees
Barabasi-Albert (BA) Stars
Erd&s-Rényi,Gilbert (ER) Paths

Supervisor nodes located at random. All topologies 7-stable connected.
« Parameters:

n=6912,...48 ER:p =0.5
£ =1,...,n/2invarious steps WS: f=0.1,0.2,04and K = 2,4
T=1,100 BA:m =my =24

l.in lOWer bound
* Average behavior over multiple executions of the simulator.
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Simulations Results Examples
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(a) 1-stable networks. (b) 100-stable networks.
Figure 2: Simulation results for some ¢ € [n/3,n/2].
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(a) 1-stable networks.

(b) 100-stable networks.

Figure 3: Simulation results for n = 30.



Questions?



