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Introduction

Node Layout

Radio Networks: arbitrary Sensor Networks: uniform

Example of a feasible model:

a multiple bivariate normal distribution.

M. Farach-Colton, M. A. Mosteiro Non-Uniform Density in the Weak Sensor Model 3/21



Introduction

Node Layout

Radio Networks: arbitrary Sensor Networks: uniform

Example of a feasible model:

a multiple bivariate normal distribution.

M. Farach-Colton, M. A. Mosteiro Non-Uniform Density in the Weak Sensor Model 3/21



Introduction

Node Layout

More generally, we assume a Smooth Distribution:

1 In any disc of radius r/2:

the number of nodes is at most some ∆ ≤ n.

2 For any const. α > 0, in any disc of radius αr, ∃ const. β > 0 such that:

the number of nodes is at least β log n.
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Introduction

Sensor Network Bootstrapping

Communication is through radio broadcast.

Still, explicit links are necessary.

Lack of collision detection and unknown topology ⇒

establishing them from scratch is not trivial!

How do we understand limitations?

The Weak Sensor Model.

How are sensors distributed?

Geometric Graph.

What kind of network do we want?

Hop-optimal, O(1) degree (concludes from WSM).[FCFM05]

Under smooth distributions:

Still any connected GG has a hop-optimal subgraph, O(1) degree.
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Introduction

Previous Work
Upper Bounds

Sensor Network formation:

Sohrabi et al.,00: Flat topology.

Number of channels function of density.

Blough et al., 03: k-neighbors protocol.

Distance estimation.

Song et al., 04: OrdYaoGG structure power spanner.

Distance estimation, directional antenna.

All: memory size function of density and no contention resolution in the
analysis.

FCFM, 05: O(log2 n), whp, Sensor Network bootstrapping (RGG).
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Introduction

Previous Work
Lower Bounds

Clear Transmissions:

KM-98: Ω(log n), expected.

JS-02: Ω
(

log n log(1/ε)
log log n+log log(1/ε)

)

, wp(1 − ε), uniform, one-hop.

FCFM-06: Ω(log n log(1/ε)) wp 1 − ε, uniform, one-hop.

Ω(log log n log(1/ε)) wp 1 − ε, uniform, RGG.
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Introduction

Our Results
Lower Bounds

Clear transmission:

a node produces a clear transmission at time t,

if every two-hop neighbor does not transmit in t.

Clear Transmission problem:

every node has to either receive or produce a clear transmission.

Group Therapy problem:

every node must be heard.

Regardless of randomization:
Ω(∆) for group therapy.

Uniform protocols:
Ω(∆ + log ∆ log(1/ε)), w.p. 1 − ε, using previous clear transmission bound.

Fair protocols:
Ω(∆(log ∆ + log(1/ε))), w.p. 1 − ε, for group therapy.

Fair protocols with uniform distributions:
Ω(log2 n), expected for clear transmission.
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Introduction

Our Results
Upper Bounds

Under smooth distributions and the WSM:

distributed protocol builds O(1)-degree hop-optimal network,
each node joins the network w.h.p. within O(∆ log n) steps.

Includes O(∆ log n)-fair protocol where

each node produces a Clear Transmission.

If every node produces a Clear Transmission

⇒ Group Therapy problem is solved

⇒ this protocol matches the lower bound.
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Introduction

1 Introduction

2 Model

3 Lower Bounds

4 Upper Bounds
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Model

Connectivity

`

The geometric graph model Gn,r,`.

[0, `]2

Structural properties depend on

relation among r, n and `.
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Model

Node Constraints

The Weak Sensor Model[FCFM05]

Constant memory size.

Limited life cycle.

Short transmission range.

Low-info channel
contention:

Radio tx on a shared
channel.
No collision detection.
Non-simultaneous rx and tx.

Discrete tx power range.

Local synchronism.

One channel of
communication.

No position information.

Unreliability.

Adversarial wake-up
schedule.

tx = transmission.

rx = reception.
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Lower Bounds

A reduced model for a stronger lower bound

Shared channel.

No collision detection.

Non simultaneous transmission and reception.

Local synchronization.

Adversarial wake up.

Known in the literature as: Radio Network.
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Lower Bounds

Definitions

Fair protocol: sequence p1, p2, . . ..

every active node transmits with probability p` at time-slot t`.

p` ∈ {2−j|1 ≤ j ≤ log n}.

Adversary:

Wakes up 2i active nodes at time t1 in a neighborhood of density ∆,
i ∈ [1, log ∆].

Active nodes: stay active and run the protocol.

Non-active nodes: do not participate in the protocol.
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Lower Bounds

LP formulation

Let

pij , probability that a node fails to achieve a non-colliding transmission
when 2i active nodes transmit with probability 2−j.

tj , number of time slots where nodes transmit with probability 2−j.

Then, for each i ∈ [1, log∆], we want

2i
∏

j

p
tj

ij ≤ ε

∑

j

tj ln(pij) ≤ ln(ε) − ln 2i.

We can obtain a lower bound minimizing the total number of time slots under
these constraints → LP?
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Lower Bounds

LP formulation

∑

j

tj ln(pij) ≤ ln(ε) − ln 2i

primal

Minimize 1T t,

subject to:

Pt ≥ ε

t ≥ 0

dual

Maximize ε
Tu,

subject to:

PT u ≤ 1

u ≥ 0

Where:

t , [tj ]

ε , [− ln(ε) + ln 2i]

P , [− ln(pij)]

Primal LP has a finite solution ⇒ dual LP has a finite solution
⇒ any feasible objective function value for the dual

is a lower bound on the value of the primal!
(Weak LP Duality Theorem)
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dual

Maximize ε
Tu,

subject to:

PT u ≤ 1

u ≥ 0

Where:

t , [tj ]

ε , [− ln(ε) + ln 2i]

P , [− ln(pij)]

Slack variables ui = 2i
(

1 − 1
√

e

)2

verify these contraints, then...
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Lower Bounds

LP formulation

∑

j

tj ln(pij) ≤ ln(ε) − ln 2i
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Minimize 1T t,
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Pt ≥ ε

t ≥ 0

dual

Maximize ε
Tu,

subject to:

PT u ≤ 1

u ≥ 0

Where:

t , [tj ]

ε , [− ln(ε) + ln 2i]

P , [− ln(pij)]

Theorem

1T t ∈ Ω(∆(log ∆ + log(1/ε)))
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Lower Bounds

Clear Transmissions
Fair protocols under uniform distributions

Adversary:

Wakes up Θ(n/ logn) disjoint clique-pairs at time t1.

Active nodes: stay active and run the protocol.

Non-active nodes: do not participate in the protocol.

Θ(log n) Θ(1)
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Fair protocols under uniform distributions

Adversary:

Wakes up Θ(n/ logn) disjoint clique-pairs at time t1.

Active nodes: stay active and run the protocol.

Non-active nodes: do not participate in the protocol.

lots of
collisions

∑

i pi ∈ Θ(1)

Θ(log n) Θ(1)
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Lower Bounds

Clear Transmissions
Fair protocols under uniform distributions

Adversary:

Wakes up Θ(n/ logn) disjoint clique-pairs at time t1.

Active nodes: stay active and run the protocol.

Non-active nodes: do not participate in the protocol.

Θ(log n) Θ(1)

Minimizing the probability of failing to achieve a Clear Transmission in a low
density clique...
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Lower Bounds

Clear Transmissions
Fair protocols under uniform distributions

Adversary:

Wakes up Θ(n/ logn) disjoint clique-pairs at time t1.

Active nodes: stay active and run the protocol.

Non-active nodes: do not participate in the protocol.

Θ(log n) Θ(1)

Theorem

Ω(log2 n) expected time to solve the Clear Transmission problem.
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Upper Bounds

Disk-cover Algorithm
[FCFM-05]

Given an RGG, find a CHSG as follows:

Add all nodes.

Lay down disks of radius ar/2, 0 < a < 1 centered on uncovered nodes.

Add all edges that connect these bridges.

Expand the disks to a radius of br/2, a < b < 1.

Add edges to form a constant-degree disk-spanner.
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Upper Bounds

Hop-optimality

What is the optimal path between u and v?

u v

Theorem (FCFM-05)

d(u, v) ∈ O(D(u, v)/r + log n) is asymptotically optimal.

We need a logarithmic diameter...
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Upper Bounds

Spanner Construction

1 Predecessor-identification phase: every node broadcasts its ID for
γ1∆log n steps with probability 1/∆, γ1 > 0 some constant.

2 Self-enumeration phase: upon receiving the rank i of its predecessor, a
node defines its rank as i + 1 and broadcasts it with constant probability
p < 1 for γ2 log n steps, γ2 > 0 some constant.

3 Link-definition phase: Each node broadcasts its ID and rank for
γ1∆log n steps with probability 1/∆.

Lemma

If every node repeatedly transmits with probability 1/∆ every node achieves a

Clear Transmission within O(∆ log n) time steps w.h.p.

Theorem

Any node running the spanner algorithm joins the spanner within O(∆ log n)
time steps w.h.p.
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Thank you
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