Initializing Sensor Networks of Non-uniform Density in the Weak Sensor Model

Martín Farach-Colton¹ Miguel A. Mosteiro²

¹Department of Computer Science Rutgers University

²LADyR (Distributed Algorithms and Networks Lab) Universidad Rev Juan Carlos

WADS 2007

Intel Berkeley Research Lab

Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Intel Berkeley Research Lab

Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Intel Berkeley Research Lab

Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Intel Berkeley Research Lab

Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Intel Berkeley Research Lab

Capabilities

- processing
- sensing
- communication

- range
- memory
- life cycle

Sensor Networks: uniform

Example of a feasible model:

a multiple bivariate normal distribution

Radio Networks: arbitrary

Sensor Networks: uniform

Example of a feasible model: a multiple bivariate normal distribution.

More generally, we assume a Smooth Distribution:

- ① In any disc of radius r/2: the number of nodes is at most some $\Delta \leq n$.
- ② For any const. $\alpha > 0$, in any disc of radius αr , \exists const. $\beta > 0$ such that: the number of nodes is at least $\beta \log n$.

More generally, we assume a Smooth Distribution:

- In any disc of radius r/2: the number of nodes is at most some $\Delta \leq n$.
- ② For any const. $\alpha > 0$, in any disc of radius αr , \exists const. $\beta > 0$ such that: the number of nodes is at least $\beta \log n$.

More generally, we assume a Smooth Distribution:

- In any disc of radius r/2: the number of nodes is at most some $\Delta \leq n$.
- **②** For any const. $\alpha > 0$, in any disc of radius αr , \exists const. $\beta > 0$ such that: the number of nodes is at least $\beta \log n$.

Communication is through radio broadcast.

Still, explicit links are necessary.

- How do we understand limitations?
 - The Weak Sensor Model.
- How are sensors distributed?
- What kind of network do we want?
 - Hop-optimal, O(1) degree (concludes from WSM).[FCFM05]
- Under smooth distributions:
 - Still any connected GG has a hop-optimal subgraph, O(1) degree

Communication is through radio broadcast.

Still, explicit links are necessary.

- How do we understand limitations?
 - The Weak Sensor Model.
- How are sensors distributed?
 Geometric Graph.
- What kind of network do we want?

 Hop-optimal, O(1) degree (concludes from WSM).[FCFM05]
- Under smooth distributions:

Communication is through radio broadcast.

Still, explicit links are necessary.

- How do we understand limitations?
 - The Weak Sensor Model.
- How are sensors distributed? Geometric Graph.
- What kind of network do we want?
 Hop-optimal, O(1) degree (concludes from WSM).[FCFM05
- Under smooth distributions:
 - Still any connected GG has a hop-optimal subgraph, O(1) degree

Communication is through radio broadcast.

Still, explicit links are necessary.

- How do we understand limitations?
 - The Weak Sensor Model.
- How are sensors distributed?
 Geometric Graph.
- What kind of network do we want?
 - Hop-optimal, O(1) degree (concludes from WSM).[FCFM05]
- Under smooth distributions:
 - Still any connected GG has a hop-optimal subgraph, O(1) degree

Communication is through radio broadcast.

Still, explicit links are necessary.

- How do we understand limitations?
 - The Weak Sensor Model.
- How are sensors distributed?
 Geometric Graph.
- What kind of network do we want?
 - Hop-optimal, O(1) degree (concludes from WSM).[FCFM05]
- Under smooth distributions:
 - Still any connected GG has a hop-optimal subgraph, O(1) degree.

Previous Work Upper Bounds

Sensor Network formation:

- Sohrabi et al.,00: Flat topology.
 Number of channels function of density.
- Blough et al., 03: k-neighbors protocol.

 Distance estimation
- Song et al., 04: OrdYaoGG structure power spanner.
 - Distance estimation, directional antenna.
 - All: memory size function of density and no contention resolution in the analysis.
- FCFM, 05: $O(\log^2 n)$, whp, Sensor Network bootstrapping (RGG).

Previous Work

Clear Transmissions:

- KM-98: $\Omega(\log n)$, expected.
- JS-02: $\Omega\left(\frac{\log n \log(1/\epsilon)}{\log \log n + \log \log(1/\epsilon)}\right)$, wp $(1-\epsilon)$, uniform, one-hop.
- FCFM-06: $\Omega(\log n \log(1/\epsilon))$ wp 1ϵ , uniform, one-hop.

 $\Omega(\log \log n \log(1/\epsilon))$ wp $1 - \epsilon$, uniform, RGG.

- Clear transmission:
 - a node produces a clear transmission at time t, if every two-hop neighbor does not transmit in t.
- Clear Transmission problem:
 - every node has to either receive or produce a clear transmission.
- Group Therapy problem: every node must be *heard*.
- Regardless of randomization:
 - $\Omega(\Delta)$ for group therapy.
- Uniform protocols:
 - $\Omega(\Delta + \log \Delta \log(1/\epsilon))$, w.p. 1ϵ , using previous clear transmission bound.
- Fair protocols:
 - $\Omega(\Delta(\log \Delta + \log(1/\epsilon)))$, w.p. 1ϵ , for group therapy.
- Fair protocols with uniform distributions:
 - $\Omega(\log^2 n)$, expected for clear transmission

- Clear transmission:
 - a node produces a clear transmission at time t, if every two-hop neighbor does not transmit in t.
- Clear Transmission problem: every node has to either receive or produce a clear transmission.
- Group Therapy problem: every node must be *heard*.
- Regardless of randomization:
 - $\Omega(\Delta)$ for group therapy.
- Uniform protocols:
 - $\Omega(\Delta + \log \Delta \log(1/\epsilon))$, w.p. 1ϵ , using previous clear transmission bound.
- Fair protocols:
 - $\Omega(\Delta(\log \Delta + \log(1/\epsilon)))$, w.p. 1ϵ , for group therapy.
- Fair protocols with uniform distributions:
 - $\Omega(\log^2 n)$, expected for clear transmission

- Clear transmission:
 - a node produces a clear transmission at time t, if every two-hop neighbor does not transmit in t.
- Clear Transmission problem: every node has to either receive or produce a clear transmission.
- Group Therapy problem: every node must be *heard*.
- Regardless of randomization: $\Omega(\Delta)$ for group therapy.
- Uniform protocols:
 - $\Omega(\Delta + \log \Delta \log(1/\epsilon))$, w.p. 1ϵ , using previous clear transmission bound.
- Fair protocols:
 - $\Omega(\Delta(\log \Delta + \log(1/\epsilon)))$, w.p. 1ϵ , for group therapy.
- Fair protocols with uniform distributions:

- Clear transmission:
 - a node produces a clear transmission at time t, if every two-hop neighbor does not transmit in t.
- Clear Transmission problem: every node has to either receive or produce a clear transmission.
- Group Therapy problem: every node must be *heard*.
- Regardless of randomization: $\Omega(\Delta)$ for group therapy.
- Uniform protocols:
 - $\Omega(\Delta + \log \Delta \log(1/\epsilon))$, w.p. 1ϵ , using previous clear transmission bound.
- Fair protocols:

$$\Omega(\Delta(\log \Delta + \log(1/\epsilon)))$$
, w.p. $1 - \epsilon$, for group therapy.

• Fair protocols with uniform distributions: $\Omega(\log^2 n)$, expected for clear transmission

- Clear transmission:
 - a node produces a clear transmission at time t, if every two-hop neighbor does not transmit in t.
- Clear Transmission problem: every node has to either receive or produce a clear transmission.
- Group Therapy problem: every node must be *heard*.
- Regardless of randomization: $\Omega(\Delta)$ for group therapy.
- Uniform protocols:

 $\Omega(\Delta + \log \Delta \log(1/\epsilon))$, w.p. $1 - \epsilon$, using previous clear transmission bound.

- Fair protocols:
 - $\Omega(\Delta(\log \Delta + \log(1/\epsilon)))$, w.p. 1ϵ , for group therapy.
- Fair protocols with uniform distributions: $\Omega(\log^2 n)$, expected for clear transmission.

Our Results Upper Bounds

- Under smooth distributions and the WSM: distributed protocol builds O(1)-degree hop-optimal network, each node joins the network w.h.p. within $O(\Delta \log n)$ steps.
- \bullet Includes $O(\Delta \log n)\text{-fair}$ protocol where each node produces a Clear Transmission.
 - If every node produces a Clear Transmission
 - ⇒ Group Therapy problem is solved
 - \Rightarrow this protocol matches the lower bound

Our Results Upper Bounds

- Under smooth distributions and the WSM: distributed protocol builds O(1)-degree hop-optimal network, each node joins the network w.h.p. within $O(\Delta \log n)$ steps.
- Includes $O(\Delta \log n)$ -fair protocol where each node produces a Clear Transmission.
 - If every node produces a Clear Transmission
 - \Rightarrow Group Therapy problem is solved
 - \Rightarrow this protocol matches the lower bound.

Introduction

Model

- 3 Lower Bounds
- 4 Upper Bounds

- $[0,\ell]^2$ Structural properties depend on relation among r, n and ℓ .

- $[0, \ell]^2$
- Structural properties depend on relation among r, n and ℓ .

- $[0, \ell]^2$
- Structural properties depend on relation among r, n and ℓ .

- $[0, \ell]^2$
- Structural properties depend on relation among r, n and ℓ .

Node Constraints

THE WEAK SENSOR MODEL[FCFM05]

- Constant memory size.
- Limited life cycle.
- SHORT TRANSMISSION RANGE.
- Low-info channel contention:
 - Radio TX on a shared
 - CHANNE
 - No collision detection.
 - Non-simultaneous RX and TX

- DISCRETE TX POWER RANGE.
- Local Synchronism.
- ONE CHANNEL OF COMMUNICATION.
- No position information.
- Unreliability.
- Adversarial wake-up schedule.

tx = transmission.rx = reception.

Node Constraints

THE WEAK SENSOR MODEL[FCFM05]

- Constant memory size.
- Limited life cycle.
- SHORT TRANSMISSION RANGE.
- Low-info channel contention:
 - RADIO TX ON A SHARED CHANNEL.
 - No collision detection.
 - Non-simultaneous RX and TX.

- DISCRETE TX POWER BANGE.
- Local Synchronism.
- ONE CHANNEL OF COMMUNICATION.
- No position information.
- Unreliability.
- Adversarial wake-up schedule.

tx = transmission.rx = reception.

Node Constraints

THE WEAK SENSOR MODEL[FCFM05]

- Constant memory size.
- Limited life cycle.
- Short transmission range.
- Low-info channel contention:
 - RADIO TX ON A SHARED CHANNEL.
 - No collision detection.
 - Non-simultaneous RX and TX.

- DISCRETE TX POWER RANGE.
- Local Synchronism.
- ONE CHANNEL OF COMMUNICATION.
- No position information.
- Unreliability.
- Adversarial Wake-up schedule.

tx = transmission.rx = reception.

A reduced model for a stronger lower bound

- Shared channel.
- No collision detection.
- Non simultaneous transmission and reception.
- Local synchronization.
- Adversarial wake up.

Known in the literature as: Radio Network.

Definitions

Fair protocol: sequence p_1, p_2, \ldots

- every active node transmits with probability p_{ℓ} at time-slot t_{ℓ} .
- $p_{\ell} \in \{2^{-j} | 1 \le j \le \log n\}.$

Adversary:

- Wakes up 2^i active nodes at time t_1 in a neighborhood of density Δ , $i \in [1, \log \Delta]$.
- Active nodes: stay active and run the protocol.
- Non-active nodes: do not participate in the protocol.

LP formulation

Let

- $p_{ij} \triangleq$ probability that a node fails to achieve a non-colliding transmission when 2^i active nodes transmit with probability 2^{-j} .
- $t_j \triangleq$ number of time slots where nodes transmit with probability 2^{-j} .

Then, for each $i \in [1, \log \Delta]$, we want

$$2^{i} \prod_{j} p_{ij}^{t_{j}} \le \epsilon$$
$$\sum_{j} t_{j} \ln(p_{ij}) \le \ln(\epsilon) - \ln 2^{i}.$$

We can obtain a lower bound minimizing the total number of time slots under these constraints \rightarrow LP?

LP formulation

$$\sum_{j} t_{j} \ln(p_{ij}) \leq \ln(\epsilon) - \ln 2^{i}$$
dual

primal

Minimize $\mathbf{1}^T \mathbf{t}$,

subject to:

$$\mathbf{Pt} \geq \pmb{\epsilon}$$

 $\mathrm{Pt} \geq \epsilon$ t > 0

Maximize $\boldsymbol{\epsilon}^T \mathbf{u}$. subject to:

> $\mathbf{P}^T\mathbf{u} \leq \mathbf{1}$ $u \ge 0$

Where:

$$\mathbf{t} \triangleq [t_j]$$

$$\epsilon \triangleq [-\ln(\epsilon) + \ln 2^i]$$

$$\mathbf{P} \triangleq [-\ln(p_{ij})]$$

Primal LP has a finite solution \Rightarrow dual LP has a finite solution ⇒ any feasible objective function value for the dual is a lower bound on the value of the primal! (Weak LP Duality Theorem)

LP formulation

$$\sum_{j} t_{j} \ln(p_{ij}) \le \ln(\epsilon) - \ln 2^{i}$$

primal

dual

 $\begin{array}{lll} \text{Minimize } \mathbf{1}^T\mathbf{t}, & \text{Maximize } \boldsymbol{\epsilon}^T\mathbf{u}, \\ \text{subject to:} & \text{subject to:} & \mathbf{t} \triangleq [t_j] \\ \mathbf{P}\mathbf{t} \geq \boldsymbol{\epsilon} & \mathbf{P}^T\mathbf{u} \leq \mathbf{1} & \boldsymbol{\epsilon} \triangleq [-\ln(\boldsymbol{\epsilon}) + \ln 2^i] \\ \mathbf{t} \geq \mathbf{0} & \mathbf{u} > \mathbf{0} & \mathbf{P} \triangleq [-\ln(p_{ij})] \end{array}$

Slack variables $u_i = 2^i \left(1 - \frac{1}{\sqrt{e}}\right)^2$ verify these contraints, then...

LP formulation

$$\sum_{j} t_{j} \ln(p_{ij}) \le \ln(\epsilon) - \ln 2^{i}$$

primal

Minimize $\mathbf{1}^T \mathbf{t}$, subject to:

$$\mathbf{Pt} \geq \epsilon$$
 $\mathbf{t} \geq \mathbf{0}$

dual

Maximize $\boldsymbol{\epsilon}^T \mathbf{u}$, subject to:

$$\mathbf{P}^T \mathbf{u} \leq \mathbf{1}$$
 $\mathbf{u} \geq \mathbf{0}$

Where:

$$\mathbf{t} \triangleq [t_j]$$

$$\boldsymbol{\epsilon} \triangleq [-\ln(\epsilon) + \ln 2^i]$$

$$\mathbf{P} \triangleq [-\ln(p_{ij})]$$

Theorem

$$\mathbf{1}^T \mathbf{t} \in \Omega(\Delta(\log \Delta + \log(1/\epsilon)))$$

Fair protocols under uniform distributions

Adversary:

- Wakes up $\Theta(n/\log n)$ disjoint *clique-pairs* at time t_1 .
- Active nodes: stay active and run the protocol.
- Non-active nodes: do not participate in the protocol.

Fair protocols under uniform distributions

Adversary:

- Wakes up $\Theta(n/\log n)$ disjoint *clique-pairs* at time t_1 .
- Active nodes: stay active and run the protocol.
- Non-active nodes: do not participate in the protocol.

Fair protocols under uniform distributions

Adversary:

- Wakes up $\Theta(n/\log n)$ disjoint *clique-pairs* at time t_1 .
- Active nodes: stay active and run the protocol.
- Non-active nodes: do not participate in the protocol.

Fair protocols under uniform distributions

Adversary:

- Wakes up $\Theta(n/\log n)$ disjoint *clique-pairs* at time t_1 .
- Active nodes: stay active and run the protocol.
- Non-active nodes: do not participate in the protocol.

Minimizing the probability of failing to achieve a Clear Transmission in a low density clique...

Fair protocols under uniform distributions

Adversary:

- Wakes up $\Theta(n/\log n)$ disjoint *clique-pairs* at time t_1 .
- Active nodes: stay active and run the protocol.
- Non-active nodes: do not participate in the protocol.

Theorem

 $\Omega(\log^2 n)$ expected time to solve the Clear Transmission problem.

- Add all nodes.
- Lay down disks of radius ar/2, 0 < a < 1 centered on uncovered nodes.
- Add all edges that connect these bridges.
- Expand the disks to a radius of br/2, a < b < 1.
- Add edges to form a constant-degree disk-spanner.

- Add all nodes.
- Lay down disks of radius ar/2, 0 < a < 1 centered on uncovered nodes.
- Add all edges that connect these bridges.
- Expand the disks to a radius of br/2, a < b < 1.
- Add edges to form a constant-degree disk-spanner.

$\underset{[\text{FCFM-05}]}{\text{Disk-cover Algorithm}}$

- Add all nodes.
- Lay down disks of radius ar/2, 0 < a < 1 centered on uncovered nodes.
- Add all edges that connect these bridges.
- Expand the disks to a radius of br/2, a < b < 1.
- Add edges to form a constant-degree disk-spanner.

- Add all nodes.
- Lay down disks of radius ar/2, 0 < a < 1 centered on uncovered nodes.
- Add all edges that connect these *bridges*.
- Expand the disks to a radius of br/2, a < b < 1.
- Add edges to form a constant-degree disk-spanner.

- Add all nodes.
- Lay down disks of radius ar/2, 0 < a < 1 centered on uncovered nodes.
- Add all edges that connect these bridges.
- Expand the disks to a radius of br/2, a < b < 1.
- Add edges to form a constant-degree disk-spanner.

- Add all nodes.
- Lay down disks of radius ar/2, 0 < a < 1 centered on uncovered nodes.
- Add all edges that connect these bridges.
- Expand the disks to a radius of br/2, a < b < 1.
- Add edges to form a constant-degree disk-spanner.

Hop-optimality

What is the optimal path between u and v?

Theorem (FCFM-05)

 $d(u,v) \in O(D(u,v)/r + \log n)$ is asymptotically optimal.

We need a logarithmic diameter...

Spanner Construction

- **Predecessor-identification phase**: every node broadcasts its ID for $\gamma_1 \Delta \log n$ steps with probability $1/\Delta$, $\gamma_1 > 0$ some constant.
- **2 Self-enumeration phase:** upon receiving the rank i of its predecessor, a node defines its rank as i+1 and broadcasts it with constant probability p < 1 for $\gamma_2 \log n$ steps, $\gamma_2 > 0$ some constant.
- **Quantition phase**: Each node broadcasts its ID and rank for $\gamma_1 \Delta \log n$ steps with probability $1/\Delta$.

Lemma

If every node repeatedly transmits with probability $1/\Delta$ every node achieves a Clear Transmission within $O(\Delta \log n)$ time steps w.h.p.

Theorem

Any node running the spanner algorithm joins the spanner within $O(\Delta \log n)$ time steps w.h.p.

Spanner Construction

- **Predecessor-identification phase**: every node broadcasts its ID for $\gamma_1 \Delta \log n$ steps with probability $1/\Delta$, $\gamma_1 > 0$ some constant.
- **2 Self-enumeration phase**: upon receiving the rank i of its predecessor, a node defines its rank as i+1 and broadcasts it with constant probability p < 1 for $\gamma_2 \log n$ steps, $\gamma_2 > 0$ some constant.
- **Quantition phase**: Each node broadcasts its ID and rank for $\gamma_1 \Delta \log n$ steps with probability $1/\Delta$.

Lemma

If every node repeatedly transmits with probability $1/\Delta$ every node achieves a Clear Transmission within $O(\Delta \log n)$ time steps w.h.p.

Theorem

Any node running the spanner algorithm joins the spanner within $O(\Delta \log n)$ time steps w.h.p.

20/21

Thank you