2.5 Flash ▼

• Algorithm Critique and Comparison: Present two LLM-generated solutions for the same problem (one $O(n^2)$ and one $O(n \log n)$) and require students to determine which is better, explain why, and justify the algorithmic choice.

Conclusion: The New Algorithms Skillset

The job market will favor graduates who possess algorithmic intuition, critical analysis, and high-level design capability.

Instead of: "Can you write a Quick Sort?" (which an LLM can do), the new questions will be:

- 1. "Given this performance requirement and massive dataset, how will you modify Quick Sort to leverage external memory efficiently, and what's the complexity analysis of your modification?"
- 2. "Design a system that tracks the top 10 trending topics in real-time. Which data structure would you use, and justify your choice with a detailed complexity analysis for insertion and retrieval operations."
- 3. "Here is a solution generated by an LLM. It's $O(n^3)$. Explain the algorithmic flaw and propose an $O(n^2)$ Dynamic Programming solution."

The course must fundamentally teach students to be **architects of logic**—the ones who know what algorithm to use and why—leaving the how (the syntax) to their AI assistant.

C □ :