
EnergyEfficient TaskAssignmentwithGuaranteed
Probability Satisfying Timing Constraints

for Embedded Systems
Jianwei Niu, Senior Member, IEEE, Chuang Liu, Yuhang Gao, and Meikang Qiu, Senior Member, IEEE

Abstract—The trade-off between system performance and energy efficiency (service time) is critical for battery-based embedded
systems. Most of the previous work focuses on saving energy in a deterministic way by taking the average or worst scenario
into account. However, such deterministic approaches usually are inappropriate in modeling energy consumption because of
uncertainties in conditional instructions on processors and time-varying external environments (e.g., fluctuant network bandwidth
and different user inputs). By adopting a probabilistic approach, this paper proposes a model and a set of algorithms to address the
Processor and Voltage Assignment with Probability (PVAP) problem of data-dependent aperiodic tasks in real-time embedded
systems, ensuring that all the tasks can be done under the time constraint with a guaranteed probability. We adopt a task DAG
(Directed Acyclic Graph) to model the PVAP problem. We first use a processor scheduling algorithm to map the task DAG onto a set
of voltage-variable processors, and then use our dynamic programming algorithm to assign a proper voltage to each task. Finally,
to escape from local optima, a local search with restarts searches the optimal solution from candidate solutions by updating the
objective function, until the stop criteria are reached or a time bound is elapsed. The experimental results demonstrate that for
probability 1.0, our approach yields slightly better results than the well-known algorithms like ASAP/ALAP (As Soon As Possible/As
Late As Possible) and ILP (Integer Linear Programming) with/without DVS (Dynamic Voltage Scaling). However, for probabilities
0.8 and 0.9, our approach significantly outperforms those algorithms (maximum improvement of 50.3 percent).

Index Terms—Probabilistic scheduling, real-time embedded system, energy efficiency, task assignment

Ç

1 INTRODUCTION

WITH embedded devices’ increasing capabilities and
fast development of mobile/ubiquitious computing,

it is essential to elongate standby time for battery-based
embedded systems. Also, users of embedded systems
desire quick response, energy efficiency and high system
reliability. For example, it is important that real-time tasks
such as robot control and image processing perform well
under real-time constraints. Powerful processors are
desirable for these systems. However, generally, more
powerful processors consume more power. Therefore, the
trade-off between system performance and energy effi-
ciency is of vital importance to battery-based embedded
systems. To improve energy efficiency and satisfy the real-
time constraints, much work has been done on real-time
voltage and frequency scaling techniques [1], [2].

The performance of embedded systems (e.g., smart
phones) is also influenced by uncertain environmental factors
(e.g., network bandwidth and user input), conditional in-
structions on processors and power allocation strategies.

Although many static assignment techniques can find the best
assignment for data-dependent tasks, existing methods are
not able to efficiently deal with such uncertainties. Contrary to
deterministic methods, we regard the execution time and
energy cost of a task as variable due to conditional instructions
and different data inputs. We can obtain the probability
distribution of the execution time of a task by sampling or
profiling [3], [4], [5]. By adopting a probabilistic approach, we
can obtain solutions that not only work for hard real-time
systems, but also provide more choices of lower total costs for
soft real-time applications, satisfying timing constraints with a
guaranteed confidence probability (i.e., all the tasks can be
done under timing constraints with a guaranteed probability,
such as 0.9).

In this paper, we try to tackle the following problem:
assuming that multiple data-dependent acyclic tasks need
to be executed on a set of processors, how can we minimize
the energy consumption while satisfying all the timing
constraints and precedence constraints? We assume that
processors utilize Dynamic Voltage Scaling (DVS) to satisfy
demands of energy efficiency in embedded systems,
respecting the fact that many well-known processors,
such as StrongARM SA1100 [6] and the Intel XScale [7], adopt
this technology. The key to solve the problem is to determine
how to assign a proper processor and voltage to each data
dependent acyclic task in this multi-processor embedded
system, while satisfying all the timing and precedence
constraints.

By adopting a probabilistic approach, we provide a
solution to the problem, and conduct our experiments on
six different benchmarks. The experimental results show

. J. Niu, C. Liu, and Y. Gao are with the State Key Laboratory of Virtual
Reality Technology and Systems, School of Computer Science and
Engineering, Beihang University, Beijing 100191, China. E-mail:
niujianwei@buaa.edu.cn.

. M. Qiu is with the Dept. of Computer Engineering, San Jose State
University, San Jose, CA 95192 USA.

Manuscript received 17 July 2013; revised 15 Sept. 2013; accepted 16 Sept.
2013. Date of publication 30 Sept. 2013; date of current version 16 July 2014.
Recommended for acceptance by V. Misic.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.251

1045-9219 � 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 2014 2043

that our algorithm can effectively minimize energy
consumption while satisfying the timing and precedence
constraints with guaranteed confidence probabilities.

The rest of the paper is organized as follows. In Section 2,
the related research work in this field is reviewed. Then, we
adopt a task DAG (Directed Acyclic Graph) to model the
PVAP problem in Section 3. In Section 4, we propose the
PVAP_DP and PVAP_LSR algorithms to solve the PVAP
problem. The experimental results are presented in
Section 5. Finally, we conclude the paper in Section 6.

2 RELATED WORK

DVS allows embedded devices to dynamically adjust CPUs’
voltages to desired levels to achieve high energy efficiency.
There are many DVS techniques that improve energy efficiency
for embedded and distributed systems [8]. The main metrics
used to categorize these techniques are as follows: periodic/
aperiodic tasks, independent/dependent tasks, single/multiple
processors, and deterministic/probabilistic scheduling.

Much research has been conducted on DVS for indepen-
dent real-time tasks with hard deadlines in recent years.
The authors of [1] proposed a pseudo-polynomial dynamic
programming algorithm to get the optimal solution for a set
of periodic real-time tasks in a uni-processor system with
discrete voltage levels. For multiprocessor real-time sys-
tems, respecting the fact that the actual execution time of a
task is often less than the worst-case execution time, the
scheduling techniques in [9] allow the remaining tasks to
run at lower voltage levels by reusing the time unused by
their precedent tasks. These techniques can improve energy
efficiency for both independent and dependent tasks.

There is a lot of research work on dependent tasks in
distributed and embedded systems using DVS techniques.
The authors of [10] proposed an approach to schedule
periodic dependent tasks on multi-core processors with
discrete voltage levels. This approach first utilizes the
retiming technique to transform the periodic dependent
tasks into independent tasks. To get the optimal solution
for single-core processors, a dynamic programming based
pseudo-polynomial algorithm is used. To improve energy
efficiency for multi-core processors, this approach itera-
tively adjusts task scheduling and voltage selection. By
adopting a strategy similar to that presented in [10], the
authors of [11] addressed scheduling for acyclic dependent
tasks on multi-core processors. This approach first gen-
erates the initial schedule without energy constraints
utilizing any efficient scheduling algorithm, and then it
iteratively adjusts voltage to a higher level for more
important tasks, while not violating energy constraints.
The authors of [2] solved the similar problem proposed in
[10] but for acyclic tasks. They proposed an energy-
conscious scheduling heuristic which utilizes an objective
function to achieve a tradeoff between the quality of
schedules and energy consumption. However, because
each scheduling decision tends to be confined to local
optima, this approach may fail to obtain the optimal
solution. To escape from local optima, the authors of [12]
used a combined global/local search strategy. This strategy
uses a genetic algorithm with simulated heating for global
search and Monte Carlo techniques for local search.

In embedded systems, the execution times of some tasks
are variable due to conditional instructions (and/or
operations) and different inputs [9], [13], [14], [15]. These
embedded systems may operate in time-varying environ-
ments. It is possible to obtain the statistical distribution of
the execution time for each task by sampling or profiling
[3], [4], [5]. For energy minimization under the deadline
constraints, static scheduling algorithms were proposed
based on worst-case or average-case execution time [16] for
each task. These methods are pessimistic and often lead to
over-designed systems with higher cost. In contrast to
deterministic algorithms, probabilistic algorithms [17]
adopt a probabilistic approach to avoid over-designed
embedded systems by considering uncertainties in execu-
tion time while satisfying performance requirements with a
certain probability.

Some work has been done on the probabilistic schedul-
ing for embedded systems. The authors of [18] took
into account the uncertain execution times, and then
introduced probabilistic retiming and probabilistic rotation
scheduling for periodic tasks to shorten the timespan of
an acyclic task graph. The authors of [19] considered how
to utilize the unused time for tasks that complete earlier
than expected. The scheduling algorithm proposed by [19]
dynamically re-maps tasks to proper processors, and
determines the ordering to execute tasks within a pro-
cessor, and then allocates the unused time to the remaining
tasks for improving energy efficiency while meeting
the timing constraints. The authors of [20] proposed
two optimal algorithms, one for uniprocessor and one
for multiprocessor DSP systems, to minimize the ex-
pected total energy consumption while satisfying the
timing constraint with a guaranteed confidence probability
by assuming that the optimal processor assignment is
already known. The authors of [21] proposed dynamic
programming algorithms to solve the issue of Functional
Unit (FU) assignment for heterogeneous embedded sys-
tems without considering the constraint of the number of
FUs (processors).

Among previous work, [2], [21], and [16] all consider
variations in power consumption among different tasks.
However, the work in [2] does not propose an effective
measure to avoid local optima. The work in [21] and [16] also
targets multi-processor embedded systems. However, the
work in [21] provides a general framework without fully
considering the FU constraint. Furthermore, although the work
in [16] takes into account the processor resource constraint, it
only considers average-case scenarios and adopts an ineffec-
tive task assignment heuristic.

To overcome these limitations, we present an LSR
algorithm to find a near-optimal and power-efficient
scheduling for DVS enabled embedded systems. First, an
efficient processor assignment algorithm is applied to
generate a processor assignment. Then, we use a voltage
assignment algorithm to minimize energy consumption by
adopting a probabilistic approach. Finally, to avoid local
optima, a local search with restarts is applied. In short, our
major contribution in this work is that our approach can
provide some near-optimal solutions with lower total costs
for soft real-time applications, satisfying timing constraints
with a guaranteed probability.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142044

3 MODEL AND PROBLEM DESCRIPTION

Due to conditional instructions and time-varying external
environment (e.g., fluctuating network bandwidth, different
user inputs and DVS), tasks of embedded systems (e.g., smart
phones) may have different execution times in different cases.
In other words, a task may have many probabilistic executions
under different conditions. For example, it may take a longer
time to execute an image-processing task in a smart phone
when the size of input image is larger. The following notation
is used to model the probabilistic execution:

Let i be the ID number of a task and rðiÞ be the execution
time of task i. ci;rðiÞ; pi;rðiÞ are the cost and probability of task
i finished in rðiÞ TUs, respectively. In this paper, cost is the
energy consumed by the processors. penm is a processor and
voltage assignment, which means processor pem runs at
voltage voln (m is the ID of the processor and n is the ID of
the voltage level). Here we define Bi as a linked list of (cost,
probability, processor and voltage assignment) triplets
ðci;rðiÞ; pi;rðiÞ; penmÞ. In more detail, Bi is a linked list that
stores only the information of task i. Triplet ðci;rðiÞ; pi;rðiÞ; penmÞ
means: when task i selects processor pem at voltage voln, it will
be finished in rðiÞ TUs with ci;rðiÞ EUs and confidence
probability pi;rðiÞ. B ¼ fB1; . . . ;Bi; . . . ;BNg, where N is the
number of tasks in an embedded system.

We define TpenmðvÞ as the execution time of each node v�V
when running at voltage level voln on processor pem. We
can obtain the Bi list for each task according to the time
CDF FðtÞ which gives the accumulated probability for
TpenmðvÞ � t. First, we can obtain the processor power with
different voltages [22]. Second, the time probability density
function of each task is obtained by building a historical
table and using statistical profiling [22], [23]. Thus, the
energy consumption of a task execution is estimated by
multiplying processor power and execution time, and then
the Bi list can be built up.

In order to investigate the aperiodic real-time task
assignment with precedence constraints, a DAG is used
to model a set of data dependent tasks. Each node in a DAG
is a task, and an edge in the DAG is a data dependency.
Generally, memory is shared in a multi-processor system,
and it will not make much difference to the cost of data
transmission whether two data-dependent tasks are as-
signed to the same processor. Therefore, in this paper we
ignore the difference whether two data-dependent tasks
are executed in the same processor or not.

The following notation is used in the mathematical
formulation of the problem:
DAG G ¼ hV; Ei is used to represent all the tasks and

their data dependencies. V ¼ fv1; . . . ; vi; . . . ; vNg is the set
of task nodes. N is the number of tasks (nodes) and vi
represents the task i. E ¼ fe11; . . . ; eij; . . . ; eNNg is the set of
edges. eij is equal to 1 if a data dependency exists between
vi and vj, and 0 otherwise.

Regarding processors with DVS techniques, we have the
following assumptions. PE ¼ fpe1; . . . ; pei; . . . ; peMg is a set of
processor units.M is the number of processors in an embedded
system. pei is the ith processor. VOL ¼ fVOL1; . . . ; VOLi; . . . ;
VOLMg; VOLi ¼ fvoli;1; . . . ; voli;j; . . . ; voli;Lg is the voltage level
set for pei; L is the number of available voltage levels for a
specific processor.

Next, we discuss how to calculate the probabilistic
execution of a DAG. The probabilistic execution of a whole
DAG is the combination of probabilistic executions for all
nodes in the task graph. Assuming the probabilistic
execution bðci;rðiÞ; pi;rðiÞ; penmÞ 2 Bi is selected for task vi,
and si is the start time for task vi, the total execution time
TAðGÞ, energy consumption CAðGÞ, confidence probability
PAðGÞ under the processor and voltage assignment A for a
given DAG G can be calculated as follows:

TAðGÞ ¼max si þ rðiÞf g 8vi 2 V (1)

CAðGÞ ¼
XN
i¼1

ci;rðiÞ (2)

PAðGÞ ¼
YN
i¼1

pi;rðiÞ: (3)

Since task vi depends upon its predecessors’ data outputs,
task vi can be executed if and only if its predecessor tasks
are finished. Therefore, the start time si of task vi is equal to
the maximum of all its precedence timing constraints.

After the mathematical formulation of the task and
processor model, we give the definition of the PVAP
(Processor and Voltage Assignment with Probability) problem
as follows: given a finite processor set PE, a voltage level set
VOL, a probabilistic execution set B, a DAG G ¼ hV; Ei, a
timing constraint T and a confidence probability P, the
problem is to determine a proper processor and a voltage
level for each task vi, which provides the minimum energy
consumption under timing constraint T and the precedence
constraint with a guaranteed confidence probability P. To
make our idea easily understood, we provide an example
of energy-efficient task assignment satisfying the given
time constraints with a probabilistic approach in the online
supplemental materials which is available in the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2013.251. In the following section, we
will discuss how to solve the PVAP problem in detail.

4 SOLUTION TO THE PVAP PROBLEM

This section presents a variable-voltage probabilistic
scheduling solution for aperiodic task graphs with data
dependence and CPU resource (number) constraint for the
embedded system. The solution is divided into three
phases. In the first phase, an initial processor assignment
is obtained using an efficient scheduling algorithm (e.g., As
Soon As Possible (ASAP) [24]). In the second phase, based on
this newly generated processor assignment, we propose a
voltage assignment algorithm to minimize energy con-
sumption under timing constraints with a guaranteed
probability. In the third phase, Local Search with Restarts
(LSR) [25], [26], [27] is applied to escape local optima since
the initial processor assignment may not optimally select a
processor for each task. The local search algorithm searches
the optimal solution from candidate solutions (the neigh-
boring solution space) by updating the objective function,
until the stop criteria are reached or the time bound is
elapsed. These three phases will be discussed in the
following subsections respectively.

NIU ET AL.: ENERGY EFFICIENT TASK ASSIGNMENT WITH GUARANTEED PROBABILITY 2045

4.1 Initial Processor Assignment
Since the number of processors in an embedded system is
finite, we need to carefully select a proper processor
for each task in order to efficiently utilize these processor
resources. Local search is applied in our processor and
voltage assignment algorithm. To avoid local-optima
problem, we reiterate the local search with different initial
processor assignments. In this work, the ALAP (As Late
As Possible) based list scheduling [24], ASAP based
list scheduling, and ILP (Integer Linear Programming)
scheduling [16], [28] are used to generate a valid pro-
cessor assignment.

Our implementation of the list scheduling algorithms
(ASAP/ALAP) is described as follows. First, a topological
sequence of the task graph is obtained using the topological
sorting algorithm. This topological sequence is regarded as
the priority list. Second, the execution time for each task is
computed assuming that all processors run at their highest
frequencies and all tasks run at their worst cases (i.e., the
longest execution time on each processor). Then, an
efficient scheduling algorithm (ASAP/ALAP) is used to
schedule each task in the priority list at the earliest/latest
opportunity. We insert fake edges between consecutive
tasks running on the same processor to maintain task order.
Finally, after each task in a task graph is assigned to a
proper processor using ASAP/ALAP, we obtain a new
DAG for further solving the PVAP problem. More detailed
discussion of ASAP and ALAP algorithms is available in
the online supplemental materials available online.

Our implementation of the ILP algorithm is described as
follows. First, the execution time for each task is computed
assuming that all processors run at their highest frequen-
cies and all tasks run at their worst cases. Then, the
mathematical formulation of PVAP problem for ILP is done
by adopting a method similar to that of [16], [28]. Finally,
we use the nonlinear programming solver of the LINGO 9.0
software to obtain a processor assignment.

4.2 Voltage Assignment
In this subsection, we discuss how to use the Dynamic
Programming (DP) to solve the voltage assignment in the
PVAP problem.

Assume Gi is the subgraph of G rooted at node vi,
containing all the nodes that can be reached by node vi. G

0
i

is the subgraph rooted at node vi, containing all the nodes
reached down by node vi except vi. TAðGiÞ, CAðGiÞ are the

total execution time and total energy consumption of Gi

under assignment A, and PAðGiÞ is the corresponding
probability of Gi finished with TAðGiÞ TUs under assign-
ment A. Si is defined as the solution space of the PVAP
problem forGi. Si is a linked list of si;j (energy consumption,
probability) pair ðci;j; pi;jÞ, sorted in the ascending order
of probability. Here we define ðci;j; pi;jÞ as follows: pi;j is the
probability of Gi finishing in j TUs, and ci;j is the minimum
energy consumption of CAðGiÞ computed by all voltage
assignments satisfying TAðGiÞ � j (j is the timing constraint)
with PAðGiÞ � pi;j. Similar to Si, S

0
i is defined as the solution

space of the PVAP problem forG0i. S
0
i is also a linked list of s0i;j

(energy consumption, probability) pair ðci;j; pi;jÞ.
Then, the PVAP problem becomes a question of

obtaining Si for a given graph G. For example, to get S0

in Fig. 1a, it is necessary to first get through its subgraphs
G1 and G2. Therefore, in order to obtain S0, we need to
combine the results of these two subgraphs as follows:

1. Let K ¼ fS1; S2g; // S1 and S2 are the solution
spaces of G1 and G2, respectively;

2. S00 ¼ CombineSubSolutionðKÞ;
3. S0 ¼ S00 �B0;
4. remove redundant and infeasible solutions in S0

In the above steps, Algorithm CombineSubSolution
(described in the online supplemental materials available
online) combines the optimal assignments of multiple
subgraphs to estimate S0i. In step 3, we introduce the
operator ‘‘�’’, which deals with the transition from S0i to Si.
The operation ‘‘�’’ between S0i and Bi is defined as follows:
Given S0i and Bi, after applying ‘‘�’’ between S0i and Bi, for
each s0i;j1

¼ ðci;j1
; pi;j1
Þ 2 S0i and each ðci;j2

; pi;j2 ; pe
n
mÞ 2 Bi, we

can obtain si;j ¼ ðci;j; pi;jÞ, whose pi;j ¼ pi;j1
� pi;j2

, ci;j ¼ ci;j1þ
ci;j2

, and j ¼ j1 þ j2.
In step 4, both redundant and infeasible solutions in

S0 are deleted. A redundant (energy, probability) pair
is defined as follows: Given two (energy, probability) pairs
si;j1

and si;j2 , if pi;j1
� pi;j2

, ci;j1
� ci;j2 , and j1 � j2, then si;j1

is called a redundant solution. The solutions which fail to satisfy
time and probability constraints are called infeasible pairs.

By adopting the above-mentioned method, we can compute
the Si values in the bottom-up ordering of Fig. 1a. When we get
to the root node 0, all the information that we need to compute
S0 is available. Hence, in the bottom-up order, we can compute
Si in a single pass by reusing the solutions of subgraphs. We
start with the smallest of subgraphs. Then, the algorithm moves
on to solve a larger subproblem until the entire graph is
traversed. The solutions of the PVAP problem for subgraphs
are stored because these solutions are reused when solving a
bigger subgraph.

The optimal solution Si depends upon the optimal
solution of Si1 ; . . . ; Siw , where vi1 ; . . . ; viw are the child nodes
of vi. Si; Si1 ; . . .Siw , are the solution spaces of the PVAP
problem for Gi; Gi1 ; . . . ; Giw , respectively. Therefore, the
PVAP problem for the whole tree can be broken down into
multiple PVAP problems for its subtrees. By removing
redundant and infeasible solutions in Si, we obtain a series
of candidate solutions that satisfy the timing and proba-
bility constraints of each subgraph. Each si;j pair ðci;j; pi;jÞ in
Si is a possible solution that gives the minimum energy

Fig. 1. Common node problem. (a) A task tree whose PVAP problem
exhibits the nature of optimal substructure and over-lapping subpro-
blems. (b) A DAG with common node problem.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142046

consumption of subgraph Gi satisfying T ðGiÞ � j (j is the
timing constraint) with P ðGiÞ � pi;j. Hence we can obtain
the optimal solution of the whole tree that satisfies the
timing and probability constraint with the minimum
energy consumption. Therefore, for a tree, the PVAP
problem exhibits the nature of optimal substructure and
over-lapping subproblems [29].

However, for a general DAG with an arbitrary number of
edges and nodes, there may exist the common node problem,
which will result in voltage selection conflicts. A common
node is a node that appears in two or more subgraphs. For
example, in Fig. 1b, v4 belongs to both subgraphsG1 andG2. It
is possible that S1 selects vol0 for v4 to achieve energy
efficiency while S2 prefers vol1. Therefore, even though both
solutions (i.e., S1 and S2) forG1 andG2 are optimal, S0 fails to
get an optimal assignment because of voltage selection
conflicts. In order to solve this problem, we enumerate all
the possible combinations for all common nodes. For example,
we first select vol0 for task v4 to solve the PVAP problem of
Fig. 1b. Then, we select vol1 for task v4 to solve the PVAP. From
all the possible combinations, the PVAP_DP algorithm is able
to select the best voltage assignment.

Next we use the PVAP_DP algorithm to solve the voltage
assignment problem for a general DAG, as shown in Algorithm 1.
First, to solve the smaller subproblems, we need to get the reverse
topological ordering in line 1 of Algorithm 1.

Algorithm 1: PVAP_DP Algorithm

Input: A processor assignment DAG G, a probabilistic
execution set B, the timing constraint T , guaran-
teed probability P , a voltage level set VOL

Output: An optimal voltage assignment S to provide
energy minimization while satisfyingT respecting
guaranteed probability P

1 Seq fv1; . . . ; vNg //v1; . . . ; vN is the reverse topological
ordering of the DAG G;

2 S ;;
3 Cmp fcommon nodesg;
4 Q possible voltage assignments for nodes in Cmp;
5 for each q 2 Q do
6 S1 B1;
7 for vi 2 Seq i 2 ½2; N � do
8 K fSi1 ; Si2 . . .Siwg; //vi1 ; vi2 ; . . . ; viw are all child

nodes of node vi

9 S0i
� w ¼ 0
CombineSubSolutionðKÞ w � 1;

�

10 Si S0i �Bi;
11 remove redundant and infeasible solutions in Si;

12 end
13 S S [SN ;
14 end
15 remove redundant and infeasible solutions in S;
16 return S;

Second, to solve the common node problem, we
enumerate the possible voltage assignments for the multi-
parent nodes in line 4. Then, we solve a collection of
subproblems in the bottom-up direction. Since the first
node (here we assume it is v1) from the reverse topological
order has no children, the feasible solutions S1 are the
probabilistic execution list B1.

To obtain Si, we first need to get S0i by combining
solutions of Gi1 ; Gi2 . . .Giw , as shown in line 9 of Algorithm 1.
And then, for each s0i;j 2 S0i and each b 2 Bi, the operation� is
applied between b and s0i;j to obtain Si. The redundant and
infeasible solutions need to be deleted as shown in line 11 of
Algorithm 1. When the inner loop from line 7 to line 12 is
finished, we can obtain the optimal voltage assignment SN for
all nodes under the current processor selection and the given
voltage assignment of the common nodes. The optimal
voltage assignments SN generated in each inner loop are
merged in line 13. When the outer loop from line 5 to line 14 is
completed, we can obtain the optimal voltage assignment for
all nodes under the current processor selection. After the
outer loop is terminated, we remove redundant and infeasible
solutions from set S in line 15.

4.3 Local Search with Restarts
In this paper, Local Search with Restarts (LSR) is adopted to
search the optimal solution among all the candidate
solutions. LSR is presented in Algorithm 2.

Before explaining Algorithm 2, first we need to intro-
duce how to generate the candidate solution space. In
Algorithm 2, we adopt a perturb algorithm to perturb the
initial scheduling and generate the candidate solutions.
First, the topological ordering Seq is obtained using the
topological sorting for a DAG. Then, a perturbed ordering
Seq0 is obtained by perturbing the Seq list. Third, we use
ASAP to schedule each task in Seq0 to get a task scheduling
g0 (a graph) under the worst case. If the newly generated
graph g0 is valid, g0 is returned. Otherwise, the loop
continues until a valid task scheduling is found. More
detailed discussion of the perturb algorithm is available in
the online supplemental material.

In Algorithm 2, first, an initial processor scheduling
(a DAG) is generated using an efficient scheduling
algorithm (e.g., ALAP) in line 6. Second, based on the
newly generated DAG, we adopt Algorithm PVAP_DP
with local search to minimize energy consumption, as
shown in lines 7 to 16 of Algorithm 2. In this step, from the
initial scheduling, in the inner loop in line 7, a local search
algorithm searches for better processor and voltage
assignment in the space of candidate solutions, until the
stop criteria are reached, or a time bound is elapsed. The
space of candidate solutions is built by perturbing the initial
scheduling. However, for the lack of the global information, it
is hard for this local search to escape from local optima.

TABLE 1
Benchmark Descriptions

NIU ET AL.: ENERGY EFFICIENT TASK ASSIGNMENT WITH GUARANTEED PROBABILITY 2047

Algorithm 2: PVAP_LSR Algorithm

Input: A DAG G, a probabilistic execution set B, the
timing constraint T , guaranteed probability P ,
a processor set PE, a voltage level set VOL

Output: A voltage and processor assignment A� to
provide energy minimization satisfying T , P

1 r 0; //r is the restart count of local search.
2 � 5;//� is an empirical constant. We set it to 5 to

balance the computational complexity and algorithm
performance.

3 C� 1; //C� stores the minimum energy consumption
of G.

4 A� �; //A� stores the best voltage and processor
assignment ever found.

5 while r G � do
6 Get the static schedule g (a DAG) from input DAG G

using any efficient scheduling algorithm (e.g., ALAP)
and let g0 g;

7 while stop criteria are not reached k time bound is not
elapsed do

8 Using algorithm PVAP DP ðg0; B; T; P; VOLÞ to get the
near-optimal assignment of voltage levels for the
schedule graph g0;

9 C the minimum energy consumption computed by
PVAP_DP satisfying T under P ;

10 A the processor and voltage assignment generated by
PVAP_DP;

11 if C � C� then
12 C� C;
13 A� A;
14 end
15 Using algorithm Perturb(g) to get another valid

schedule g0 (a DAG);
16 end
17 r++;
18 end
19 return A�;

Third, to avoid local optima, LSR is applied in the outer
loop from line 5 to line 18 of Algorithm 2. In line 6, different
processor schedulings are used to generate the initial
processor assignments such that we can restart local search
with different initial schedulings. The outer loop in line 5 is
terminated when the number of restarts is reached. The
number of restarts is an empirical constant depending on
different application scenarios, and we set it to 5 according
to our experience in this paper.

5 EXPERIMENTS

This section evaluates the performance of our proposed
PVAP_LSR algorithm. Firstly, we present the benchmarks
used in this paper. Secondly, we compare our PVAP_LSR
algorithm against the ILP method. Thirdly, the perfor-
mance of our PVAP_LSR algorithm is evaluated in
comparison with the ASAP and ALAP based scheduling
algorithms. The ALAP and ASAP scheduling algorithms
are widely adopted in various processor and voltage
assignment algorithms. The ASAP/ALAP based schedul-
ing algorithm used in our experiments is a combination of
ASAP/ALAP and PVAP_DP. The PVAP_LSR algorithm is
a combination of LSR and PVAP_DP. In this way, we can
evaluate the LSR performance. Moreover, we also compare
the PVAP_LSR algorithm with other well known search
algorithms like Tabu Search and Simulated Annealing
algorithm. The detailed results of comparing with Tabu
Search and Simulated Annealing is available in the online
supplemental material.

5.1 Benchmarks
We experiment on six benchmarks as shown in Table 1.
TGFF1-TGFF4 are obtained using a randomized task-graph
generator [30]. Among them, TGFF-1 is a slim graph while
TGFF-2 is a fat graph. Basically, TGFF-1 has a very long
critical path and there are not many independent nodes;
TGFF-2 has a relatively shorter critical path and there are
many independent nodes. The consumer and auto-industry

TABLE 2
Voltage Level and Power for ARM Processor and Intel Processor

TABLE 3
Energy Comparison among ILP with DVS, ILP without DVS and PVAP_LSR for TGFF-3

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142048

benchmarks are obtained from Embedded Systems Synthe-
sis Benchmarks (E3S) [31]. E3S is largely based on the data
from the EDN Embedded Microprocessor Benchmark
Consortium (EEMBC) [32]. The consumer benchmark is
from consumer electronic applications, such as JPEG
compression and decompression. The auto-industry bench-
mark is from auto-industry applications, such as Fast
Fourier Transform and matrix arithmetic.

First, we estimate the CPU power at different frequen-
cies by profiling. In this paper, two kinds of processors are
used: Intel processor and ARM processor. All of them are
voltage-scalable processors which are allowed to adjust voltage
dynamically. Three voltage levels, their corresponding fre-
quencies and powers are shown in Table 2. Columns ‘‘PE’’,
‘‘Vol’’, ‘‘Freq’’ and ‘‘Pow’’ represent the processor, voltage
level, frequency and power, respectively. Second, to simplify
the experiments, we assume that the distribution of execution
time of each node is Gaussian (in practice, the distribution can
be obtained as done in [23], [22]). Finally, we use a cumulative
distribution function to get theBi list. We obtain all the energy
consumptions of each benchmark under different timing
constraints. In the following tables and figures, the unit of
energy consumption is Energy Unit (EU); the unit of timing
constraint or execution time of tasks is Time Unit (TU); column
‘‘TC/PEs’’ stands for ‘‘timing constraint/the number of
processors’’ and Column ‘‘Eng.’’ represents the energy
consumption. The average improvement of PVAP_LSR over
others is shown in the last row of each table. In our ex-

periment, the choice of number of processors to be de-
ployed is kept flexible; it can be either 2 or 3. The former
implies that all the tasks are executed on 2 processors, one
being an Intel and the other one being an ARM processor.
The latter means that all the tasks are executed on 3 pro-
cessors, two of them being Intel and the third one being an
ARM processor.

5.2 Comparison with ILP
In this subsection, we compare our algorithms with ILP.
The experimental results for the TGFF-3 and auto-industry
are shown in Tables 3 and 4, respectively. In Tables 3 and 4,
columns ‘‘ILP1’’, ‘‘ILP2’’, and ‘‘PVAP_LSR’’ represent the
results obtained by ILP without DVS from [16], [28], ILP
with DVS, and our PVAP_LSR algorithm, respectively. For
ILP with DVS, it may take hours, even days to obtain the
final results. In our experiments, we set the maximum
execution time as four hours for ILP with DVS. Under this
time constraint, ILP with DVS cannot generate the optimal
solution in most cases. Columns ‘‘QI1’’ and ‘‘QI2’’ represent
the improvement of our algorithms over the ILP without DVS
and ILP with DVS, respectively. In this paper, the entries with
‘‘�’’ in all the tables indicate that the corresponding assign-
ment fails to generate a valid schedule.

The experimental results show that our PVAP_LSR
algorithm can improve energy efficiency while having a
guaranteed confidence probability. As shown in Table 3,
for TGFF-3, the PVAP_LSR achieves an average (maximum)

TABLE 4
Energy Comparison among ILP with DVS, ILP without DVS and PVAP_LSR for Auto-Industry

Fig. 2. Energy comparison among ILP1, ILP2 based schedules and PVAP_LSR for TGFF-1. (a) Two processors. (b) Three processors.

NIU ET AL.: ENERGY EFFICIENT TASK ASSIGNMENT WITH GUARANTEED PROBABILITY 2049

power reduction of 16.4 percent (18.3 percent), 12.5 percent
(14.0 percent), and 8.6 percent (11.5 percent) with 0.8, 0.9, and
1.0 confidence probabilities against the ILP2 algorithm, re-
spectively. Our PVAP_LSR algorithm also obtains an average
(maximum) power reduction of 37.2 percent (40.5 percent),
34.2 percent (37.5 percent), and 31.3 percent (34.9 percent)
with 0.8, 0.9, and 1.0 confidence probabilities against the ILP1
algorithm, respectively.

As shown in Table 4, for auto-industry, the PVAP_LSR
achieves an average (maximum) power reduction of
17.3 percent (25.5 percent), 10.2 percent (16.8 percent),
and �0.1 percent (5.8 percent) with 0.8, 0.9, and 1.0 con-
fidence probabilities against the ILP2 algorithm, respec-
tively. Our PVAP_LSR algorithm also obtains an average
(maximum) power reduction of 37.2 percent (50.3 percent),
34.2 percent (44.0 percent), and 31.3 percent (36.2 percent)
with 0.8, 0.9, and 1.0 confidence probabilities against the
ILP1 algorithm, respectively.

For the TGFF-1 benchmark, Fig. 2 reveals the improve-
ment of our algorithm over ILP1 and ILP2. As shown in
Fig. 2, compared with ILP1 and ILP2, the PVAP_LSR
algorithm achieves better energy efficiency under all time
constraints.

There are two reasons for this high energy effiency. First,
the PVAP_LSR algorithm adopts a probabilistic way. There-
fore, it has more choices and optimization room. Second, the
ILP algorithm has a time limit of four hours. Therefore, the
ILP algorithm may not find the near-optimal solution
within the time limit.

5.3 Comparison with ALAP, ASAP
Based Algorithms

In this subsection, we compare our approach against other
two algorithms: ASAP (for processor assignment, ASAP
based list scheduling is used; for voltage assignment, the
PVAP_DP algorithm is used) and ALAP (for processor
assignment, ALAP based list scheduling is used; for
voltage assignment, the PVAP_DP algorithm is used).

The experimental results based on TGFF-2 and consumer
benchmarks are shown in Tables 5 and 6, respectively. In these
two tables, columns ‘‘A1’’, ‘‘A2’’, and ‘‘PVAP_LSR’’ represent
the results obtained by the ASAP, ALAP, and our PVAP_LSR
algorithm, respectively. Columns ‘‘ QA1’’ and ‘‘ QA2’’ repre-
sent the improvement of our algorithms over the the ASAP
and ALAP algorithm.

In Table 5, for the TGFF-2 benchmark, we can see
that PVAP_LSR obtains the best variable-voltage schedule in
terms of power consumption in all the cases. PVAP_LSR
achieves an average (maximum) power reduction of
15.1 percent (25.1 percent), 13.3 percent (23.0 percent), and
10.4 percent (20.7 percent) with 0.8, 0.9, and 1.0 confidence
probabilities against the ALAP based schedule, respectively.
The PVAP_LSR algorithm also obtains an average (maximum)
power reduction of 14.9 percent (21.5 percent), 13.0 percent
(19.3 percent), and 10.2 percent (16.9 percent) with 0.8, 0.9,
and 1.0 confidence probabilities against ASAP based schedule,
respectively.

In Table 6, for the consumer benchmark, we can see that
PVAP_LSR is able to generate the best variable-voltage

TABLE 5
Energy Comparison among ASAP, ALAP Based Schedules and PVAP_LSR for TGFF-2

TABLE 6
Energy Comparison among ASAP, ALAP Based Schedules and PVAP_LSR for Consumer

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142050

schedule in terms of power consumption in all the cases.
PVAP_LSR achieves an average (maximum) power reduc-
tion of 22.4 percent (33.2 percent), 16.6 percent (26.8 percent),
and 10.1 percent (22.1 percent) with 0.8, 0.9, and 1.0 confidence
probabilities against ALAP based schedule, respectively.
PVAP_LSR also obtains an average (maximum) power reduc-
tion of 20.4 percent (30.3 percent), 14.4 percent (23.5 percent),
and 7.8 percent (18.8 percent) with 0.8, 0.9, and 1.0 con-
fidence probabilities against the ASAP based schedule,
respectively.

In Fig. 3, we present the improvement of PVAP_LSR
over the ASAP and ALAP schedulings for the TGFF-4
benchmark. As shown in Fig. 3, compared with ASAP and
ALAP, the PVAP_LSR algorithm achieves better energy
efficiency under all the timing constraints.

6 CONCLUSION

Existing studies do not pay much attention to the uncertainties
in such factors as execution time and energy consumption for
real-time embedded systems. In this paper, targeting soft real-
time embedded systems with limited resources, we propose a
set of processor and voltage assignment algorithms to solve the
problem of variable-voltage scheduling of aperiodic tasks with
precedence constraints, by adopting a probabilistic approach.
The experimental results show that compared with currently
popular methods, our proposed approach can improve the
energy efficiency of embedded systems and provide users with
more choices to achieve energy efficiency, while the timing
constraints were satisfied with a guaranteed confidence prob-
ability. This is especially useful for soft real-time applications.

Our future work is two-fold: 1) we will combine local
and global search to find the best processor and voltage
assignment for an acyclic task graph, by adopting a
probabilistic approach. For example, we can combine an
incremental local optimization heuristic with limited
discrepancy search; and 2) we will also further consider
the priorities of tasks in our task scheduling algorithms.

ACKNOWLEDGMENT

This work was supported in part by the 973 Program
(2013CB035503), National Natural Science Foundation of
China (61170296, 61190125), the R&D Program
(2013BAH35F01), and NSF CNS-1359557.

REFERENCES

[1] X. Zhong and C. Xu, ‘‘System-Wide Energy Minimization for
Real-Time Tasks: Lower Bound and Approximation,’’ in Proc.
IEEE/ACM ICCAD, 2006, pp. 516-521.

[2] Y. Lee and Y. Zomaya, ‘‘Minimizing Energy Consumption for
Precedence-Constrained Applications Using Dynamic Voltage Scal-
ing,’’ in Proc. 9th IEEE/ACM Int’l Symp. CCGRID, 2009, pp. 92-99.

[3] T. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L. Wu, and J. Liu,
‘‘Probabilistic Performance Guarantee for Real-Rime Tasks with
Varying Computation Times,’’ in Proc. Real-Time Technol. Appl.
Symp., 1995, pp. 164-173.

[4] X. Zhong and C.-Z. Xu, ‘‘Energy-Aware Modeling and Scheduling
for Dynamic Voltage Scaling with Statistical Real-Time Guarantee,’’
IEEE Trans. Comput., vol. 56, no. 3, pp. 358-372, Mar. 2007.

[5] F. Wang, Y. Chen, C. Nicopoulos, X. Wu, Y. Xie, and N. Vijaykrishnan,
‘‘Variation-Aware Task and Communication Mapping for MPSoC
Architecture,’’ IEEE Trans. Comp.-Aided Design Integr. Circuits Syst.,
vol. 30, no. 2, pp. 295-307, Feb. 2011.

[6] A. Acquaviva, L. Benini, and B. Riccó, ‘‘Energy Characterization
of Embedded Real-Time Operating Systems,’’ SIGARCH Comput.
Architecture News., vol. 29, no. 5, pp. 13-18, Dec. 2001.

[7] A. Weissel and F. Bellosa, ‘‘Process Cruise Control: Event-Driven
Clock Scaling for Dynamic Power Management,’’ in Proc. Int’l
Conf. CASES, 2002, pp. 238-246.

[8] E. Seo, J. Jeong, S. Park, and J. Lee, ‘‘Energy Efficient Scheduling
of Real-Time Tasks on Multicore Processors,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 19, no. 11, pp. 1540-1552, Nov. 2008.

[9] D. Zhu, R. Melhem, and B. Childers, ‘‘Scheduling with Dynamic
Voltage/Speed Adjustment Using Slack Reclamation in Multi-
processor Real-Time Systems,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 14, no. 7, pp. 686-700, July 2003.

[10] H. Liu, Z. Shao, M. Wang, J. Du, C. Xue, and Z. Jia, ‘‘Combining
Coarse-Grained Software Pipelining with DVS for Scheduling
Real-Time Periodic Dependent Tasks on Multi-Core Embedded
Systems,’’ J. Signal Process. Syst., vol. 57, no. 2, pp. 249-262, Nov. 2009.

[11] I. Ahmad, R. Arora, D. White, V. Metsis, and R. Ingram, ‘‘Energy-
Constrained Scheduling of DAGs on Multi-Core Processors,’’
Contemporary Comput., vol. 40, pp. 592-603, Aug. 2009.

[12] N. Bambha, S. Bhattacharyya, J. Teich, and E. Zitzler, ‘‘Hybrid
Global/Local Search Strategies for Dynamic Voltage Scaling in
Embedded Multiprocessors,’’ in Proc. 9th Int’l Symp. CODES,
2001, pp. 243-248.

[13] C. Xian, Y. Lu, and Z. Li, ‘‘Energy-Aware Scheduling for Real-
Time Multiprocessor Systems with Uncertain Task Execution
Time,’’ in Proc. 44th Annu. DAC, 2007, pp. 664-669.

[14] S. Liu, Q. Wu, and Q. Qiu, ‘‘An Adaptive Scheduling and
Voltage/Frequency Selection Algorithm for Real-Time Energy
Harvesting Systems,’’ in Proc. 46th Annu. DAC, 2009, pp. 782-787.

[15] M. Lombardi and M. Milano, ‘‘Stochastic Allocation and
Scheduling for Conditional Task Graphs in MPSoCs,’’ in Proc.
12th Int’l Conf. Principles Pract. Constraint Programm., 2006,
pp. 299-313.

[16] J. Cong and K. Gururaj, ‘‘Energy Efficient Multiprocessor Task
Scheduling under Input-Dependent Variation,’’ in Proc. Conf.
DATE, 2009, pp. 411-416.

[17] S. Hua, G. Qu, and S. Bhattacharyya, ‘‘Exploring the Probabilistic
Design Space of Multimedia Systems,’’ in Proc. 14th IEEE Int’l
Workshop RSP, 2003, pp. 233-240.

Fig. 3. Energy comparison among ALAP, ASAP based schedules and PVAP_LSR for TGFF-4. (a) Two processors. (b) Three processors.

NIU ET AL.: ENERGY EFFICIENT TASK ASSIGNMENT WITH GUARANTEED PROBABILITY 2051

[18] S. Tongsima, E. Sha, C. Chantrapornchai, D. Surma, and N. Passos,
‘‘Probabilistic Loop Scheduling for Applications with Uncertain
Execution Time,’’ IEEE Trans. Comput., vol. 49, no. 1, pp. 65-80,
Jan. 2000.

[19] J. Kang and S. Ranka, ‘‘Energy-Efficient Dynamic Scheduling on
Parallel Machines,’’ in Proc. HIPC, vol. 5374, ser. Lecture Notes in
Computer Science, 2008, pp. 208-219.

[20] M. Qiu, Z. Jia, C. Xue, Z. Shao, and E.H.-M. Sha, ‘‘Voltage
Assignment with Guaranteed Probability Satisfying Timing
Constraint for Real-Time Multiproceesor DSP,’’ J. VLSI Signal
Process. Syst., vol. 46, no. 1, pp. 55-73, Jan. 2007.

[21] M. Qiu and E. Sha, ‘‘Cost Minimization While Satisfying Hard/
Soft Timing Constraints for Heterogeneous Embedded Systems,’’
ACM Trans. Design Autom. Electron. Syst., vol. 14, no. 2, pp. 1-30,
Apr. 2009.

[22] Y. Lu, T. Nolte, J. Kraft, and C. Norstrom, ‘‘A Statistical
Approach to Response-Time Analysis of Complex Embedded
Real-Time Systems,’’ in Proc. IEEE 16th Int’l Conf. Embedded
RTCSA, 2010, pp. 153-160.

[23] A. Abdallah, W. Wolf, and G. Hellestrand, ‘‘Statistical Charac-
terization of Execution Time through Simulation,’’ in Proc. Int’l
Workshop Intell. Solutions Embedded Syst., 2008, pp. 1-13.

[24] D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded
System Design: Modeling, Synthesis and Verification. New York,
NY, USA: Springer-Verlag, 2009.

[25] H. Li and A. Lim, ‘‘Local Search with Annealing-Like Restarts to
Solve the VRPTW,’’ Eur. J. Oper. Res., vol. 150, no. 1, pp. 115-127,
Oct. 2003.

[26] L. Michel, A. See, and P. Hentenryck, ‘‘Parallel and Distributed
Local Search in COMET,’’ Comput. Oper. Res., vol. 36, no. 8,
pp. 2357-2375, Aug. 2009.

[27] O. Mengshoel, D. Wilkins, and D. Roth, ‘‘Initialization and
Restart in Stochastic Local Search: Computing a Most Probable
Explanation in Bayesian Networks,’’ IEEE Trans. Knowl. Data
Eng., vol. 23, no. 2, pp. 235-247, Feb. 2011.

[28] Y. Zhang, X. Hu, and D. Chen, ‘‘Task Scheduling and Voltage
Selection for Energy Minimization,’’ in Proc. 39th Annu. Design
Autom. Conf., 2002, pp. 183-188.

[29] E. Bellman, Dynamic Programming. New York, NY, USA: Dover,
2003.

[30] K. Vallerio, Task Graphs for Free (TGFF v3.0), Apr. 2008. [Online].
Available: http://ziyang.eecs.northwestern.edu/dickrp/tgff/
manual.pdf

[31] R.P. Dick, Embedded System Synthesis Benchmarks Suites (e3s),
Nov. 2011.

[32] J. Poovey, T. Conte, M. Levy, and S. Gal-On, ‘‘A Benchmark
Characterization of the EEMBC Benchmark Suite,’’ IEEE Micro.,
vol. 29, no. 5, pp. 18-29, Sept. 2009.

Jianwei Niu received the PhD degree in com-
puter science from Beijing University of Aero-
nautics and Astronautics (BUAA, now Beihang
University), China, in 2002. He was a visiting
scholar at School of Computer Science, Carnegie
Mellon University, USA, from Jan. 2010 to Feb.
2011. He is a professor in the School of Computer
Science and Engineering, BUAA. He has published
more than 100 referred papers, and filed more than
30 patents in mobile and pervasive computing. He
served as the Program Chair of IEEE SEC 2008,

Executive Co-chair of TPC of CPSCom 2013, TPC members of InfoCom,
Percom, ICC,WCNC,Globecom, LCN, and etc. He has served as associate
editor of International Journal of Ad Hoc and Ubiquitous Computing,
associate editor of Journal of Internet Technology, editor of Journal of
Network and Computer Applications (Elsevier). He received the New
Century Excellent Researcher Award from Ministry of Education of China
2009, the first prize of technical invention of the Ministry of Education of
China 2012, Innovation Award from Nokia Research Center, and won the
best paper award in IEEE ICC 2013, WCNC 2013, ICACT 2013, CWSN
2012 and GreenCom 2010. His current research interests include mobile
and pervasive computing, mobile video analysis. He is a senior member of
the IEEE.

Chuang Liu received the BE degree from
School of Information Science and Engineering,
Lanzhou University, China. He is now pursuing
the ME degree from Beihang University, China.
His research interests include embedded sys-
tems and operating systems.

Yuhang Gao received the BE degree from China
University of Mining and Technology, and the
ME degree from Beihang University, China. His
research interests include embedded systems,
computer security, and operating systems.

Meikang Qiu received the BE and ME degrees
from Shanghai Jiao Tong University, China, and
the MS and PhD degrees of computer science
from University of Texas at Dallas, in 2003 and
2007, respectively. Currently, he is an Associate
Professor of Computer Engineering at San Jose
State University. He has worked at Chinese
Helicopter R&D Institute, IBM, etc. He is an ACM
Senior member. His research interests include
cyber security, embedded systems, cloud com-
puting, smart grid, microprocessor, data analyt-

ics, etc. A lot of novel results have been produced and most of them
have already been reported to research community through high-
quality journal (such as IEEE Transactions on Computer, ACM
Transactions on Design Automation, IEEE Transactions on VLSI,
and JPDC) and conference papers (ACM/IEEE DATE, ISSS+CODES
and DAC). He has published 3 books, 170þ peer-reviewed journal and
conference papers (including 70 journal articles, 100 conference
papers), and 3 patents. His research is supported by NSF. He has
won Naval Summer Faculty Award in 2012 and Air Force Summer
Faculty Award in 2009. His paper about cloud computing has been
ranked 1st in Top 25 Hottest Articles published in JPDC (Journal of
Parallel and Distributed Computing, Elsevier) the whole year of 2012.
He is the receipt of ACM Transactions on Design Automation of
Electrical Systems (TODAES) 2011 Best Paper Award selected from a
3-year window. In recent four years, he has won another 4 Conference
Best Paper Awards (IEEE/ACM ICESS’12, IEEE GreenCom’10, IEEE
EUC’10, IEEE CSE’09). He is a Senior Member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142052

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

