Visualizing the Analysis of
Dynamically Adaptive Systems
Using i* and DSLs

Pete Sawyer, Nelly Bencomo, Danny Hughes,
Paul Grace, Heather J. Goldsby, Betty H. C. Cheng

REV'07,

Agenda

* The problem

» How and why (we think) our visualization helps
* What and who it is for

* How we derived our visualizations

» Our visualizations are ...

* How they work

* Practical application

* Show and tell

* Pros, cons, open issues

* Next steps

The problem

* Dynamically Adaptive Systems (DASs)

— Challenge: the need to handle changes to
the requirements and corresponding
behaviour of a DAS in response to varying
environmental conditions.

— The requirement for dynamic adaptation
introduces complexity of a kind not seen in
conventional systems where adaptation can
happen off-line.

How and why (we think) our
visualization helps

» Explicit separation of concerns
— Identify the global goals and softgoals

— |dentify a discrete set of domains
« ~ stable states of the problem environment

— Identify the requirements for the system w.r.t. each
domain

— |dentify the requirements for adaptation
» Make these concerns explicit using i*
— A set of models that correspond to each concern

What and who it is for

* What:
— A class of DASs that can be partitioned into a discrete
set of domains
« Problem environments subject to unknown events are
(currently) out of scope
* Who:
— Analysts of DASs
— System architects
« Many emerging applications of DASs are subject to
technology constraints
« Often bottom-up, technology-driven
« ... although we want to generalise our approach to anticipate
architects having a real choice of s/w infrastructure

How we derived our vizs
« Berry, Cheng & Zhang’s paper! identified
4 levels of analysis:
— Level 1: monitoring
» Conventional analysis per domain
— Level 2: Decision making
+ Adaptation scenarios
— Level 3: Adaptation
* Requirements for adaptation

1. D.M. Berry, B.H.C. Cheng, J. Zhang, “The Four Levels of Requirements Engineering for and in Dynamic Adaptive
Systems”, Proc. 11th ional Workshop on i Foundation for Software Quality
(REFSQ05), 2005, Porto, Portugal.

Our visualizations are ...

Identify the goals & softgoals
; Identify the domains, and construct one
level 1 model for
l ’) each
— Construct a level 2 model
- that specifies how
. adaptation to requirements
- of each domain is
accomplished
’ Specify the adaptation

infrastructure

How they work

« Each level one model must:
— Specify how each goal can be satisfied
— Specify how each softgoal can be satisfied
« Expose the trade-offs among the softgoals
« Each level two model must:
— Satisfy the adaptation goal
« adapt from <<domain a> to <<domain b>>
« Each level three model must:
— Satisfy the goal
« enable adaptation and set of 4 derived tasks

Practical application (1)

+ GridStix is an experimental flood warning
system on the River Ribble

Practical application (2)

*+ GridStix
— Remote location, no local power infrastructure, but a
cellphone network

— Cheap components
* Smart sensors
« Wavelan and Bluetooth
« Digicams

— Sensor network
« Smart nodes configured as a computational grid
« On-site execution of flood prediction models

— Adaptation infrastructure -
« The GridKit adaptive middleware framework EI

Show and tell (1):

» Strategic dependencies in the GridStix

doma"‘] - - Stakeholder goal model
Predict
Q| flocding | Q
VR G Prediction 47— —
Flood ¥ (- accuracy)/ / \
[waming | R Environment |
|\ system | o | agency

— g ”‘t'Energv ‘ e e

- efficiency
{ }

(
- tolerance-, _
}

Show and tell (2):
* Level 1: S1: normal operation

Fredet ‘ (Gridstix)

flooding
Provide point (" Ener
9y
predicton _ efficiency ™,
Measure\ L /- ™
) _depth / /Calculate ' Prediction
flow rate / /)
/Transmit Wi & accuracy)~
data VY4 S AN
data & T
/ < -
~Single-node digicam o
image flow calculation " — o~
g 4 Fault s
i~ tolerance~,)
S, Model ¥ Use SP =

topology /) phyp -

Show and tell (3):

Level 1: S2: flow increase

Predict

flooding (Gridstix|
Provide point ety
prediction - remeieny
Measure
depth Calculate (
/ p flow rate ~ Prediction
Transmit $ - accuracy
data ~
$
/ @ °
Multi-node digicam e
image flow calculation B
I Faut)|
\~ tolerance~, /)
S, Model v/ Use SP 2 .

topology , W

Show and tell (4):

* Level 1: S3: depth increase

Predict (Gridstix
flooding
Provide point Enen
9y
prediction efficiency ",
Measure 1
depth Calculate " Prediction
flow rate
Transmit & [accuracy
data e 5 —
<~ ©
Muiti-node digicam !
image flow calculation)
Fault
tolerance
S, Model Use FH
topology ﬁlp,, .

Show and tell (5):

Level 2: S1 to S2 adaptation model

[Adapt
Infr
. Adapt from ‘

Stos,

Detect when flow ’
Distribute

velocity at or p
above threshold e rags
processing

S,to S, Adaptation Model

Show and tell (6):

* Level 3: adaptation infrastructure model

Gkt | Adaptation Infrastructure Model

Enable ‘
Adaptation
Provide —\ Provide
monitoring adaptation
mechanism mechanism
GridKit context Component
engine Provide Provide substitution
decision-making adaptation
mechanism strategy
GridKit policy Architectural
rules reconfiguration

Show and tell (7):

From Requirements to Design

<ReconfigurationRule>

<Framework>Overlay<(Framework>
Events>

<Events>
<Event <Everc-
<Type>FLOODPREDICTED</Type> <Type>FLOODPREDICTED</Type>
<Value>true<iValue> <Value>true<iValue>
<IEver
<MEvero> <IEvert>
<Events> <Events
<Reconfiguratiors <Reconfiguratior>-
<FileType>Java<IFileType>

<FileType>JavaciFileType> b

<IReconfiguratiors- <IReconfiguratiors-
<IReconfigurationRule> <IReconfigurationRule>

<ReconfigurationRule> ~
Framework>Overlay</Framework>

<Evero "
T HIGH_FLOW<IType> g o Fasipradiced
<Value>false<Nalue>

o

<Reconfiguratiors
<FileType>Javac/FileType>
<Name>Reconfigurations Blustooth<Name> v

<MReconfiguratior> —_— s

<IReconfigurationRule>

Pros, cons, open issues

* Pros:
— Pulls out the separate issues of domain
behaviour from adaptive behaviour

— Good match with large subset of DAS
applications that have technology constraints
+ Cons:
— Addresses a subset of DASs
* Open Issues:
— How scalable is it?

Next steps

» Develop a process model for applying the
approach
* Formalize the i* models

* Map onto existing work on model-driven
engineering for adaptive infrastructures

