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The problem

* Dynamically Adaptive Systems (DASs)

— Challenge: the need to handle changes to
the requirements and corresponding
behaviour of a DAS in response to varying
environmental conditions.

— The requirement for dynamic adaptation
introduces complexity of a kind not seen in
conventional systems where adaptation can
happen off-line.

How and why (we think) our
visualization helps

» Explicit separation of concerns
— Identify the global goals and softgoals

— |dentify a discrete set of domains
« ~ stable states of the problem environment

— Identify the requirements for the system w.r.t. each
domain

— |dentify the requirements for adaptation
» Make these concerns explicit using i*
— A set of models that correspond to each concern

What and who it is for

* What:
— A class of DASs that can be partitioned into a discrete
set of domains
« Problem environments subject to unknown events are
(currently) out of scope
* Who:
— Analysts of DASs
— System architects
« Many emerging applications of DASs are subject to
technology constraints
« Often bottom-up, technology-driven
« ... although we want to generalise our approach to anticipate
architects having a real choice of s/w infrastructure

How we derived our vizs
« Berry, Cheng & Zhang’s paper! identified
4 levels of analysis:
— Level 1: monitoring
» Conventional analysis per domain
— Level 2: Decision making
+ Adaptation scenarios
— Level 3: Adaptation
* Requirements for adaptation

1. D.M. Berry, B.H.C. Cheng, J. Zhang, “The Four Levels of Requirements Engineering for and in Dynamic Adaptive
Systems”, Proc. 11th ional Workshop on i Foundation for Software Quality
(REFSQ05), 2005, Porto, Portugal.




Our visualizations are ...

Identify the goals & softgoals
; Identify the domains, and ... ... construct one
level 1 model for
l ’ ) each
— Construct a level 2 model
- that specifies how
. adaptation to requirements
- of each domain is
accomplished
’ Specify the adaptation

infrastructure

How they work

« Each level one model must:
— Specify how each goal can be satisfied
— Specify how each softgoal can be satisfied
« Expose the trade-offs among the softgoals
« Each level two model must:
— Satisfy the adaptation goal
« adapt from <<domain a> to <<domain b>>
« Each level three model must:
— Satisfy the goal
« enable adaptation and set of 4 derived tasks

Practical application (1)

+ GridStix is an experimental flood warning
system on the River Ribble

Practical application (2)

*+ GridStix
— Remote location, no local power infrastructure, but a
cellphone network

— Cheap components
* Smart sensors
« Wavelan and Bluetooth
« Digicams

— Sensor network
« Smart nodes configured as a computational grid
« On-site execution of flood prediction models

— Adaptation infrastructure -
« The GridKit adaptive middleware framework EI

Show and tell (1):

» Strategic dependencies in the GridStix
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Show and tell (2):
* Level 1: S1: normal operation
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Show and tell (3):

Level 1: S2: flow increase
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Show and tell (4):

* Level 1: S3: depth increase
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Show and tell (5):

Level 2: S1 to S2 adaptation model
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Show and tell (6):

* Level 3: adaptation infrastructure model

Gkt | Adaptation Infrastructure Model
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Show and tell (7):

From Requirements to Design
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Pros, cons, open issues

* Pros:
— Pulls out the separate issues of domain
behaviour from adaptive behaviour

— Good match with large subset of DAS
applications that have technology constraints
+ Cons:
— Addresses a subset of DASs
* Open Issues:
— How scalable is it?




Next steps

» Develop a process model for applying the
approach
* Formalize the i* models

* Map onto existing work on model-driven
engineering for adaptive infrastructures




