
1

An Analysis of the Requirements Traceability Problem

Orlena C. Z. Gotel & Anthony C. W. Finkelstein

Imperial College of Science, Technology and Medicine
Department of Computing

180 Queen's Gate
London SW7 2BZ

Abstract
In this paper, we investigate and discuss the underlying nature of the requirements
traceability problem. Our work is based on empirical studies carried out with over a
hundred practitioners and an evaluation of current support for requirements
traceability. We introduce the distinction between pre-requirements specification
traceability and post-requirements specification traceability, to demonstrate why an all-
encompassing solution to the problem is unlikely, and to provide a framework through
which to understand its multifaceted nature. We report how the majority of the
problems attributed to poor requirements traceability are mainly due to the lack of (or
inadequate) pre-RS traceability and explain the fundamental need for improvements
here. In the remainder of the paper, we present an analysis of the main barriers
confronting such improvements in practice, identify relevant areas in which advances
have been (or can be) made, and make recommendations for further research.

1. Introduction
Requirements traceability is recognised as a concern in an increasing number of standards
and guidelines for systems and software requirements engineering [Dorfman & Thayer
1990]. This concern is reflected by the variety of systems that have been developed to
address requirements traceability issues and by a growing research interest in the area
[IEE 1991, Thayer & Dorfman 1990]. Although there have been many recent advances,
requirements traceability remains a widely reported problem area by industry. We
attribute the persistence of requirements traceability problems to the lack of any thorough
problem analysis. Each proposed solution has consequent shortcomings.

Definitions of the term "requirements traceability" are discussed in detail later, however,
we provide the following for reader orientation:

Requirements traceability refers to the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction (i.e., from its origins, through its
development and specification, to its subsequent deployment and use, and through periods
of on-going refinement and iteration in any of these phases).

We further introduce two fundamental types of requirements traceability:
• Pre-requirements specification (pre-RS) traceability, which is concerned with

those aspects of a requirement's life prior to its inclusion in the RS (requirement
production).

• Post-requirements specification (post-RS) traceability, which is concerned with
those aspects of a requirement's life that result from its inclusion in the RS
(requirement deployment).

2

In this paper, we review the state-of-the-art in support for requirements traceability,
analyse the nature of the requirements traceability problem, and make recommendations
for addressing this problem. We describe our empirical investigations in Section two and
current support is evaluated in Section three. In Section four, we examine the underlying
causes of the requirements traceability problem in practice. A framework for addressing
these is presented in Section five, in which the distinction is made between pre-RS and
post-RS traceability. Section six describes the problems compounding pre-RS traceability
improvements in practice and Section seven identifies areas in which some of these
problems can be readily addressed. Section eight discusses that aspect of the requirements
traceability problem which is the subject of our on-going research.

2. Research method
A combination of data gathering techniques were used to analyse the requirements
traceability problem and what is needed to address it. These are outlined in Figure one
and described below. To ensure representative coverage, the empirical exercises were
carried out over a year period with more than a hundred practitioners in total. Their
working areas covered all aspects of development, maintenance and management; their
experience ranged from nine months to over thirty years; and their involvement in projects
varied (i.e., in the number, type, and size of project).

Problem definition and analysis

Literature surveys
Tool critiques and use

Informal interviews

Focus groups
Questionnaires

Observation and
participation

the process
Introspection on

Requirements gathering,
analysis and specification

(Figure 1: Data gathering techniques used.)

2.1. Literature and tool reviews
The literature was surveyed to gather many interpretations as to what requirements
traceability is, why it is needed, and what the problems with it are. This was also done to
locate research and development in relevant areas. Over a hundred commercial tools and
research products were reviewed, to critique the support they offer for requirements
traceability, and to identify where subsets of the requirements for pre-RS traceability are
already met. This critique was informed by appropriate documentation and marketing
brochures, and supplemented by practical demonstrations, hands-on experience, and
discussions with practitioners using various tools.

2.2. Focus groups
Five semi-structured focus group sessions were conducted with small groups of
practitioners. These were spread across five development sites of a major U.K. company
and involved thirty seven practitioners in total. Each session lasted one hour, was audio
taped, and later transcribed. The data were used to find out (in their own terms and based

3

on their own experience), what requirements traceability is, what problems it entails and
causes, how these problems are overcome (if at all), and suggestions for improvement.
The results were also used to direct the design of the questionnaires.

2.3. Questionnaires and follow up interviews
A two-stage questionnaire was used to channel the data gathering. The first stage was
short and contained general questions related to practice. This was designed to rapidly
gather broad data from a wide population of practitioners, involved in all aspects of
systems and software development and maintenance, and to target smaller populations
from which more specific data could be gathered. Eighty of these were distributed and
sixty nine percent were returned. The second stage was long and detailed. Each of these
questionnaires was individually tailored to the primary working areas, job roles, and
experiences of practitioners, ensuring a balance between the different facets of
development, management and maintenance. Thirty nine of these were distributed and
eight five percent were returned. Cross analysis of the responses was possible as the
questions were drawn from a reusable pool. These provided a deeper understanding of
the problems and issues involved in requirements traceability and identified requirements
for addressing them.

The questionnaires were followed up with two informal interview sessions. These were
carried out with large groups of the questionnaire respondents and lasted one and a half
hours each. They were used to corroborate the questionnaire answers, to probe beyond
the answers to appraise their validity, to extract supplementary background information,
to encourage spontaneous comments not possible in a questionnaire scenario, and to
check the preliminary analysis of the replies. These helped to firm up the problem analysis
and requirements specification.

2.4. Observation and participation
Data were also gathered following the observation of (and participation in) a variety of
requirements production and development exercises for different projects. For instance,
Rapid Application Development workshops were observed and analysed. Here,
requirements are dynamically generated, under the guidance of a facilitator, amongst a
team of stakeholders. The process and its results are concurrently documented by a
scribe. In observing such workshops, comprehensive notes were taken, and any informal
documents that were either collectively or individually produced during the process were
collected. Our analysis was concerned with comparing these artefacts with the eventual
end products of the workshop.

2.5. Summary
Supplementary data gathering techniques were used to combat their individual limitations
and to combine their strengths [Goguen & Linde 1993]. A requirements specification for
requirements traceability was iteratively produced alongside all these investigations,
driving both their direction and focus. Our own experiences throughout this process were
continuously reflected upon, to identify requirements for supporting both this activity and
its traceability.

4

3. Current support for requirements traceability
In this section, we review existing support for requirements traceability and summarise the
state-of-the-art. The basic techniques employed, and various forms of automated tool
support, are described below.

3.1. Basic techniques
A number of techniques have been used for providing requirements traceability, including:
cross referencing schemes, based on some form of tagging, numbering, or indexing [Evans
1989]; keyphrase dependencies [Jackson 1991]; templates [Interactive Development
Environments 1991]; requirements traceability matrices [Davis 1990]; matrix sequences
[Brown 1991]; hypertext [Kaindl 1993]; integration documents [Lefering 1993];
assumption-based truth maintenance networks [Smithers et al. 1991]; and constraint
networks [Bowen et al. 1990]. These differ in the quantity and diversity of information
they can trace between, in the number of interconnections they can control between
information, and in the extent to which they can maintain requirements traceability
throughout a project.

Additionally, some form of requirements traceability can often result as a by-product of
using certain languages, models and methods for development. This is particularly
exemplified by: the Requirements Statement Language [Davis & Vick 1977]; process
entity-relationship models [Hamilton & Beeby 1991]; the DesignNet model [Liu &
Horowitz 1989]; the Planning and Design Methodology [Mays et al. 1985]; formal
methods [Cooke & Stone 1991]; object-oriented methods [Henderson-Sellers & Edwards
1990]; and Quality Function Deployment [West 1991]. Here, requirements traceability is
dependent on the use of distinct procedures and notations, and the end results will vary
according to how rigidly these are adhered to.

3.2. Automated support
Many commercial tools and research products support requirements traceability. This is
primarily because they embody either manual or automated forms of the above techniques.
As it is not possible to review all of these here, we use the classification scheme below to
provide some representative examples and to describe their basic mechanics. Table one
clarifies differences in both the type and extent of support offered, and points out the main
strengths and weaknesses.

General-purpose tools
General-purpose tools include: hypertext editors; word processors; spreadsheets; database
management systems; prototyping tools; etc. These can be hand-configured to allow
previously manual and paper-based requirements traceability tasks to be carried out on-
line. This generally involves establishing cross references and placing conditions upon
their automatic update.

Special-purpose tools
A number of tools support single and well-defined activities related to requirements
engineering. Of these, some achieve restricted types of requirements traceability. For
example: the KJ-editor assists the organisation of idea formulation, providing traceability
between ideas and requirements [Takeda et al. 1993]; PORC assists interview transcript
analysis, providing traceability between interview transcripts and derived requirements
[Langford 1991]; and the T tool assists test case generation, providing traceability

5

between requirements and test cases [Sodhi 1991]. Although there may be a limited
degree of explicit control and guidance, support is generally implicit in the use of the tool,
which automates any mundane and repetitive tasks needed to provide this requirements
traceability.

Workbenches
When a collection of the above types of tool are organised to support a coherent set of
activities, less restricted types of requirements traceability can be supported. The degree
of support depends on the focal activity of the composite tool. Where requirements
traceability and requirements management is the main concern, as in the Automated
Requirements Traceability System [Flynn & Dorfman 1990], RTrace (referenced in [Sun
Microsystems, Inc. 1990]) and the Requirements and Traceability Management System
[Marconi Systems Technology 1992], all tools and activities are configured to ensure
requirements traceability. We refer to these as requirements traceability workbenches.
Typically centred around a database management system of some form, they comprise
dedicated tools for documenting, parsing, editing, interlinking, organising, and managing
requirements. They often provide facilities to help assess and carry out any changes made
to these requirements.

Other upper-CASE workbenches which focus their support on requirements engineering
activities, frequently provide some degree of support. This support can either be explicit
and through specific requirements traceability components in the workbench (e.g., a
Coupling Module in AGE [Keys 1991]), or implicit from having carried out other
activities using the workbench tools (e.g., the Requirements Apprentice [Reubenstein &
Waters 1991]). CASE workbenches which accept requirements documents as a starting
point, from which to drive design and implementation, commonly provide coarse-grained
requirements traceability between requirements and their realisation in subsequent phases.

Environments and beyond
Requirements traceability can potentially be provided throughout a project's life if tools
supporting all aspects of development are integrated (e.g., the Virtual Software Factory,
referenced in [Sun Microsystems, Inc. 1990]). The basis used for internal integration
tends to define how requirements traceability is established: through the use of a common
language (e.g., the Input/Output Requirements Language in Technology for the
Automated Generation of Systems [Sodhi 1991]); through the use of common structures
(e.g., the relations of an Entity-Relation-Attribute Model in Genesis [Ramamoorthy et al.
1988]); through the use of a common method (e.g., the Information Engineering Method
in the Information Engineering Facility [Texas Instruments 1988]); or through the use of
specialised requirements traceability tools or sophisticated repository structures where a
number of interlocking tools are combined to support many languages, methods or
structures (e.g., Teamwork/RqT [CADRE 1992]). Those with the flexibility to
incorporate third-party environments tend to provide requirements traceability support
through the use of powerful repositories and underlying database management systems.
These are used to relate the products of the individual components (e.g., the Digital CASE
Environment [Sodhi 1991]).

6

Requirements
Traceability
(RT)

(A)
General-purpose tools

(B)
Special-purpose tools

(C)
Workbenches

(D)
Environments and
beyond

(1)
Priority given
to RT

Although any general-
purpose tool can
potentially be configured
for RT purposes, RT is
not a concern of the basic
tool.

Individual tools that
support requirements-
related activities (i.e.,
specific analysis
techniques), often provide
some form of RT as a by-
product of use, but RT is
not the tool's focus.

RT priority varies dependent on
the focal set of activities. Where
these are RT and requirements
management (RT workbenches),
RT is the main concern, else RT is
a side concern in those
workbenches focusing on other
requirements activities.

RT is typically a side
concern. The extent of this
concern depends on the
types of tool contained in
the environment (i.e.,
whether or not there are
dedicated tools for RT).

(2)
Support
provided for
RT

No explicit support is
provided. RT must be
hand-crafted and the
resulting support depends
on the effort expended in
so doing. The focus can
easily become tool
configuration rather than
RT.

Support is implicit in the
framework provided for
carrying out the main
activity of the tool.
Mundane tasks necessary
to provide basic RT are
typically automated as a
result of proper tool use.

In RT workbenches, support is
explicit (else as B). These offer:
(i) Guidance - providing RT
through adherence to the
requirements engineering
approach and work steps
supported, typically top-down and
decompositional, and by
predefining information to collect
and link types to establish.
(ii) Assistance - parsing textual
documents to identify and tag
requirements, establishing
(syntactic) links between them,
and through a repository which
manages simple bookkeeping
tasks and enables rudimentary
checking. No analytical ability is
really provided.

RT is provided as a by-
product of co-ordinated
tool use and adherence to
the development
philosophy supported. The
extent of support depends
on the internal integration
strategy and/or repository
structure. There is more
guidance and assistance if
it includes dedicated RT
tools, or if RT is an explicit
concern of its approach.
RT maintenance is
supported if the repository
can manage large amounts
of information and
reconfigure in the light of
change.

(3)
Requirements-
related
information
that can be
made
traceable

The ability to trace any
information which can be
input to the tool, be this
textual, graphical, etc.,
so potentially able to
trace all requirements-
related information.

The tool predefines the
amount and type of
information that can be
input and made traceable.
This is typically restricted
to that information
necessary to carry out the
activity it supports. Only a
limited scope of
requirements-related
information can be traced.

The potential to trace a flexible
diversity of requirements-related
information in those workbenches
supporting requirements activities,
including multimedia information
in some. RT workbenches can
impose arbitrary limits on the
amount and type of information,
and this is often only textual.
These can trace information
concerning how an RS was
produced, but usually only its
derivation from a textual baseline,
rather than of its exploratory
development and refinement, or of
the environmental context in
which it was produced.
Additional information can often
be recorded, as informal notes, but
is of limited use for RT purposes.

These have the potential to
trace all project
information, generated in
all project phases, related to
requirements. The
tendency is to focus on that
information derived from
requirements in the RS in
later project phases, so less
emphasis on development-
related information about
individual requirements
(i.e., requirements
information is often thinly
spread). However, these
can support the RT of
versions, variants, and of
user-definable trace items.

(4)
Tasks and job
roles that RT
can assist

These can be tailored so
that RT can support any
task and job role, though
it is problematic to meet
different needs
simultaneously.

RT is provided to
specifically assist the
activity the tool supports
and the predefined role of
the tool user. Their task-
specific frameworks
constrain the domain of
working and are difficult to
configure for other
purposes.

The RT provided can support a
breadth of activities within the
concern of the tool's domain (i.e.,
assist requirements checking,
reporting, etc.), so provide
dedicated support for specific jobs.
They are often configurable to
support tasks in additional project
phases. The RT provided by RT
workbenches tends to support
managerial activities rather than
the activities of those involved in
producing the RS.

RT can assist a wide
coverage of lifecycle-wide
tasks and roles (e.g., related
to maintenance and
management, such as
impact analysis and
progress reporting). Not all
are equally well supported
and there tends to be more
support for activities
related to requirements use
rather than their production
and refinement.

(5)
Longevity of
RT support

General-purpose tools
are typically configured
to address immediate
needs. RT can degrade
with large amounts of
information and time, as
they are not usually
integrated with lifecycle-
wide tools, and are poor
at handling changes and
evolution, unless
explicitly prepared for.

As these provide RT at a
snapshot in time to support
a specific activity, they
neglect the requirements for
on-going management.
Longevity of support
depends on both horizontal
and vertical integration
with other tools.

RT is provided throughout the
duration of the activities
supported. As they are
predominantly forwards-
engineering tools, RT can
deteriorate with progression to
later phases, as it can be difficult
to reflect the work here and
account for any iteration.
Longevity of support depends on
vertical integration with other
tools.

It is possible to provide RT
throughout a project's life,
though this tends to start
from a relatively static
baseline. The tightness and
granularity of RT depends
on the underlying
repository and the degree of
internal integration. RT
can deteriorate over time,
due to iteration problems
and poor feedback.

7

Requirements
Traceability
(RT)

(A)
General-purpose tools

(B)
Special-purpose tools

(C)
Workbenches

(D)
Environments and
beyond

(6)
Support for
the
traceability of
group
activities

These promote
individualistic working,
as they often provide no
common or consistent
framework for RT. They
can encourage immediate
and ad hoc solutions.
They are typically used,
by a single user, to
record activities after
they have happened.

Most special purpose tools
support individualistic
working, though some
directly support group
activities, like the
brainstorming of
requirements, thus making
both the process and its
results traceable.

RT workbenches tend to be used
as after-the-event documentation
tools by single users, as they can
be difficult to adapt to the working
practices of requirements
engineers. Concurrent work is
often difficult to co-ordinate and
integrate within the tool, so the
potential richness of information
can be lost. Participative work is
actively supported in some
workbenches not focusing on RT,
though the subsequent traceability
of these activities varies widely.

Multiple users are
commonly supported
through shareable
repositories and techniques
to assist the co-ordination
and integration of separate
activities (e.g., workspaces,
views, etc.). This ability
often depends on an agreed
RS and strict project
partitioning, so RT can
deteriorate when these are
not stable and when overall
control is lacking.

(7)
Main
strengths

(i) Flexibility to provide
customised and
comprehensive RT to
suit individual project
and organisational needs.
(ii) Often sufficient for
the RT required in small
and short term projects.

(i) Can provide tight RT
sufficient for the immediate
needs of particular
requirements-related
activities.
(ii) Those supporting a
group activity often provide
traceability of this activity.

(i) RT workbenches provide good
RT from and back to information
which is initially input to the tool,
through a breadth of related
activities (i.e., fine-grained
horizontal RT within requirements
phases).
(ii) Offer benefits, like facilities
for RT checks and clear visibility.

(i) Ability to provide on-
going RT (i.e., depth of
coverage or vertical RT).
(ii) Open environments
provide more flexibility in
the choice of requirements
engineering approach and
the RT of this.

(8)
Main
weaknesses

(i) Requires much work
to initially configure, can
involve mundane and
repetitive activities for
use, and often provides
little more than an
electronic version of
paper-based RT.
(ii) Poor control and
integration, so no
guarantee as to the
usefulness, usability and
longevity of the RT
provided.

(i) Only provides restricted
forms of RT between
limited types and amounts
of requirements-related
information, so has limited
life and use.
(ii) Typically poor
integration and information
management potential,
preventing fuller and longer
RT support.

(i) RT workbenches attempt to be
holistic, though none support all
activities. Typically, a top-down
approach is enforced,
classification schemes are
predefined, and a (relatively static)
baseline is pre-empted, without
support for its production and
iterative enhancement. As RT
depends on correct use, the main
concern can become RT rather
than RS production.
(ii) RT workbenches poorly
integrate, so it is difficult to
support the RT of early work
defining the problem space and to
provide on-going RT with later
maintenance changes.
(iii) The tool dictates, else much
manual intervention can be
required.

(i) RT is typically coarse-
grained and dependent on
step-wise development.
(ii) The tightness of RT
varies, so iteration and later
requirements changes can
prevent on-going RT
(caused by poor backwards
RT which cannot account
for any manual intervention
or work-arounds that
occurred).
(iii) Increasing flexibility
(with those tools open to
external integration) is
typically counterbalanced
by poorer RT.

(Table 1: Tool support for requirements traceability.)

3.3. Summary
It has been noted by others (see [Polack 1990]), that the majority of the tools on the
market do not cover requirements traceability, and that even fewer provide support for the
particular traceability requirements now enforced by DOD STD-2167A [U.S. Department
of Defense 1988a]. Those which do address requirements traceability differ mainly in
cosmetics and in the amount of time, effort, and manual intervention they require. The
type and extent of support provided depends on the underlying assumptions they embed
about requirements traceability and the particular problems and concerns they focus on.
The dedicated requirements traceability tools basically employ the same techniques,
though they suffer from poor integration and inflexibility. These limitations are reflected
by a preference for using general-purpose tools in practice [Lubars et al. 1993].

8

4. Why there is still a requirements traceability problem
Despite growing numbers of specialised tools which support requirements traceability,
their use is not widespread, and requirements traceability problems are still cited by
practitioners who do use them. Following prolonged investigations with practitioners, we
attribute the persistence of requirements traceability problems to a number of fundamental
conflicts. These conflicts revolve around little shared agreement concerning: what
requirements traceability itself is; what the requirements traceability problem is; what the
underlying cause of the requirements traceability problem is; and which additional
problems any improvements in requirements traceability should address.

4.1. Lack of common definition
Since the introduction of the term "requirements traceability" by the US Government's
Department of Defense, each subsequent attempt at definition, either in the literature or by
practitioners, has taken a slightly different form. Definitions are either:

§ Purpose-driven (i.e., defined in terms of what it should do):

(i) Requirements traceability is "the means whereby software
producers can 'prove' to their client that: the requirements have
been understood; the product will fully comply with the
requirements; and the product does not exhibit any unnecessary
feature or functionality" [Wright 1991].

(ii) "Requirements traceability is the ability to adhere to the business
position, project scope and key requirements that have been
signed off" [Practitioner participating in a focus group].

§ Solution-driven (i.e., defined in terms of how it should do it):

(i) "Traceability refers to the ability of tracing from one entity to another
based on given semantic relations" [Ramamoorthy et al. 1986].

(ii) "Traceability refers to the ability to cross-reference items in the
requirements specification with items in the design specification"
[Roman 1985].

§ Information-driven (i.e., defined in terms of the information to be made traceable):

(i) "Requirements traceability is the ability to link between functions, data,
requirements and any text in the statement of requirements that refers to
them" [Practitioner participating in a focus group].

(ii) The paragraph for requirements traceability must contain "a mapping of the
engineering requirements in this (Software Requirements) Specification to the
requirements applicable to this Computer Software Configuration Item in the
System/Segment Specification, Prime Item Development Specification, or
Configuration Item Development Specification..." (DI-MCCR-80025A [U.S.
Department of Defense 1988b]).

9

§ Direction-driven (i.e., defined to emphasise either forwards or backwards direction,
or both):

(i) Traceability is "the ability to follow a specific item at input of a phase of the
software lifecycle to a specific item at the output of that phase..." [European
Space Agency 1987].

(ii) Traceability enables "each requirement to be traced to its origin in other
documents and to the software component(s) satisfying the requirement"
[Johnson et al. 1991].

Each definition differs in emphasis and delimits the scope of immediate concern. No single
definition encompasses all mentioned aspects. This has implications for the development
and use of tools to support requirements traceability, especially in large project teams:
how can it be coherently and consistently provided if each individual has his or her own
understanding of what is meant by requirements traceability?

4.2. Conflicting underlying problems
From our investigations, it was evident that each practitioner had their own understanding
as to the main cause of the requirements traceability problem. This finding is reflected in
the literature, where the fundamental problem has been attributed to: lack of commitment
by all parties [Wright 1991]; coarse granularity of traceable entities [Ramamoorthy et al.
1986]; immature integration technology [Brown et al. 1992]; knowledge management
[Easterbrook 1991]; information complexity [Hoffman 1990]; hidden information
[Robinson 1991]; and project longevity [Mays et al. 1985].

Similarly, the problems that practitioners believed improved requirements traceability
should address were just as diverse. This finding is also reflected in the literature: to track
rationale, constraints and relationships used to develop product elements, and to analyse
consistency, completeness and process management [Hoffnagle & Beregi 1985]; to verify
requirements allocation and flowdown, to assess change impact, and to assist testing
[Dorfman & Flynn 1984]; to support the evolvability of requirements specifications
[Johnson et al. 1991]; to offer some degree of assurance that specifications were written
with user requirements in mind and to assist user acceptance testing [Ramamoorthy et al.
1984]; to enable safety analysis, audits, and change control [Hamilton & Beeby 1991]; to
provide the ability to understand systems from multiple points of view and to assist the
pulling together of fragmented information [Easterbrook 1991]; and to permit flexible
process modelling [Fischer 1991].

These findings demonstrate that: (a) the phrase "requirements traceability problem" is used
to umbrella many underlying problems; and that (b) improvements are expected to yield
the solution to additional (and often incompatible) problems. Complicating this further
was the observation that each practitioner's perspective of the problems was context-
dependent and hence subject to change. This also has implications for providing
requirements traceability support: how can this support account for all these problems
simultaneously?

10

4.3. Summary
To date, improvements in requirements traceability have tended to be problem solving
rather than problem defining exercises. Techniques have been thrown at the problem
without any thorough investigation of what the actual problem is that they should be
dealing with. As illustrated above, this problem is not perceived to be uniform. This is
because underlying every situation in which requirements traceability is required, different
user, project, task and information requirements come into play, which cumulatively
influence the problems experienced. Substantial improvements will be needed in many
areas to address the requirements traceability problem.

5. A framework for addressing the requirements traceability problem
It is essential to establish a shared definition of what requirements traceability is, to
provide a framework in which we can locate the fundamental cause of the requirements
traceability problems that are experienced. Such a definition needs to be general enough
to encompass different views of requirements traceability, but specific enough to highlight
its significant aspects.

5.1. Defining requirements traceability
The definition which is most commonly cited in the literature is:

"A software requirements specification is traceable if (i) the origin of each of its
requirements is clear and if (ii) it facilitates the referencing of each requirement in
future development or enhancement documentation" [IEEE 1984].

The standard that this definition comes from (ANSI/IEEE Std 830-1984), further
recommends: (a) backward traceability to previous development stages, which "depends
upon each requirement explicitly referencing its source in previous documents"; and (b)
forward traceability to all documents spawned from the software requirements
specification, which "depends upon each requirement in the software requirements
specification having a unique name or reference number". This definition requires
requirements traceability to be established (bidirectionally) between project documents and
through the use of a particular scheme. To broaden the scope of this definition, we refer
to a definition derived from the word "trace" in the Oxford English Dictionary:

The ability to "delineate" and "mark out" "perceptible signs of what has existed or
happened" in the lifetime of a requirement to enable one to "pursue one's way along"
this record [Sykes 1978].

Using both these definitions, we define requirements traceability in the following way:

"Requirements traceability refers to the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction (i.e., from its origins,
through its development and specification, to its subsequent deployment and use, and
through periods of on-going refinement and iteration in any of these phases)."

5.2. Pre-RS and post-RS traceability
We further suggest that requirements traceability itself can be divided into two basic types.
These revolve around the written specification of requirements (the RS), and are what we
call pre-requirements specification (pre-RS) traceability and post-requirements

11

specification (post-RS) traceability. The former is concerned, not only with the ability to
record and access the origin of a requirement, but also any additional information which
can help describe what has existed or happened prior to its inclusion in the RS. The latter
is concerned with any such information related to a requirement's use.

"Pre-requirements specification (pre-RS) traceability is concerned with those
aspects of a requirement's life prior to its inclusion in the RS (requirement
production)."

"Post-requirements specification (post-RS) traceability is concerned with those
aspects of a requirement's life that result from its inclusion in the RS (requirement
deployment)."

Although forwards and backwards requirements traceability are clearly essential, we
emphasise the above separation as our investigations indicate that requirements traceability
problems are centred around the current lack of distinction between these two basic types.
Comprehensive support can only be provided through an explicit recognition of their
differences. Figure two shows the typical setting of requirements traceability to illustrate
this distinction. Note the way in which requirements knowledge is distributed and merged
in successive representations. Note also the added complication of iteration and change
propagation.

(S0) (S1) (Sn)

Requirements
Specification

Pre-RS traceability Post-RS traceability

(Figure 2: The two basic types of requirements traceability.)

5.3. Support for pre-RS and post-RS traceability
The primary differences between these two types of requirements traceability involves the
information they deal with and the problems they can assist [Feather 1991, Mathews &
Ryan 1989, Rzepka & Ohno 1985]. The two main phases of a requirement's life impose
different requirements on potential support for its traceability. Post-RS traceability
depends on the ability to trace requirements from, and back to, a baseline document (the
RS), through a succession of documents and products in which they are distributed.

12

When changes are made to this baseline, they need to be re-propagated through this chain
of distribution. Pre-RS traceability depends on the ability to trace requirements from, and
back to, their originating statement(s), through the process of requirements production
and refinement, in which statements from diverse (often conflicting and overlapping)
sources are eventually integrated into a single requirement in the RS. Any changes in the
process need to be re-worked into the RS. When changes are made to the RS, they need
to be carried out with reference to this production and refinement process.

Most of the existing support for requirements traceability is directed at providing post-RS
traceability. Problems experienced here are an artefact of informal development methods,
and can be eliminated by formal development settings which automatically transform an
RS into an executable and replay transformations following change [Finkelstein 1991b].
This existing support for post-RS traceability is not directly applicable to providing pre-
RS traceability. Pre-RS traceability is needed in recognition that change cannot be
adequately handled from the RS alone. Change needs to be both instigated and
propagated from its source, to indicate what in the RS and what elsewhere needs
changing, so pre-RS traceability needs to make the subtle interrelationships that exist
between requirements explicit1. The support for post-RS traceability generally treats the
RS as a black-box, with little to show that the requirements therein are only the end
product of a complex process. They further make it difficult to represent this process,
because they tend to predefine rigid information categories for recording potentially
traceable information, and immediately commit content to syntactic structure. The
consequent rigidity of this would make it difficult to account for the dynamic and changing
nature of the sources and environment from which requirements are drawn, thus providing
little support for the on-going and emergent nature of the work practices involved in
producing and refining an RS. Unlike post-RS traceability, it has been argued that the
problems of pre-RS traceability will always remain, irrespective of formal treatment
[Finkelstein 1991b]. This is beacuse this aspect of a requirement's life is inherently
paradigm-independent.

5.4. The need for improved pre-RS traceability
Awareness of the above issue has only recently become apparent [Finkelstein 1991a]. Our
empirical findings intensify this concern, as they strongly indicate that the majority of the
problems still attributed to poor requirements traceability are in fact due to the lack of (or
inadequate) pre-RS traceability, and that techniques are most crucially needed to record
and trace information related to the production of an RS. Amongst the other reasons
driving practitioner concern for this ability, the most prevalent were to improve quality,
and to reduce cost in development and maintenance.

Quality improvements can be attained through its potential to assist: auditing [Chikofsky
& Rubenstein 1988]; the handling of changing requirements [Bersoff & Davis 1991];
repeatability [Jarke & Pohl 1992]; and the ability to make logical sense of the
requirements, hence avoiding confusion and the production of unacceptable systems
[Short 1988]. This is because pre-RS traceability enables previously closed issues, even
decisions concerning how to conduct the requirements exercise itself, to be made explicit,
possible to re-open, and possible to re-work.

1Seemingly unrelated requirements in the RS may be strongly interdependent. For example, if an organisational standard that was used to
produce some requirements in the RS is changed, the identification of directly and indirectly affected requirements is problematic without
pre-RS traceability.

13

Pre-RS traceability also offers the potential for greater economic leverage, as a significant
proportion of development and maintenance cost, time, and effort is presently spent in
compensating for invisibility [Devanbu et al. 1991]. To make use of an RS, and to
maintain it, it is often necessary to reconstruct and rediscover an understanding of how it
was produced. This can be a notoriously complex and error-prone endeavour in practice.

5.5. Summary
The two types of requirements traceability, pre-RS and post-RS, are both important.
However, they impose distinct requirements on support. Post-RS traceability is well
supported and the remaining problems here are not insurmountable. In contrast, the issues
that pre-RS traceability are to deal with are neither well understood, nor comprehensively
supported. The means by which post-RS traceability problems can be eliminated will not
remove the problems here. Advances in pre-RS traceability are urgently required, as these
will be the most instrumental in reducing requirements traceability problems in the long-
term, and because these will offer more potential for additional and far-reaching
improvements.

6. Problems confronting pre-RS traceability improvements
Having identified insufficient pre-RS traceability as the main contributor to continuing
requirements traceability problems, and shown how it is likely to be the only contributor in
formal development settings, our problem definition and requirements gathering exercises
were re-focused to determine: (a) what improvements in pre-RS traceability would
involve; and (b) how these improvements could be realised. These investigations clearly
indicated that the main barrier confronting any improvements in pre-RS traceability is the
establish and end-use conflict. By this, we mean that the two main parties involved (i.e.,
those who would be in a position to make pre-RS traceability possible and those who
would subsequently require it to assist their work), have conflicting problems and needs.
A requirements engineer (say), responsible for ensuring pre-RS traceability, is unlikely to
require the same things from it as a designer, manager, or someone involved in
maintenance2. Addressing any one of these concerns often makes it problematic to
address the other concerns. Below we list the main problems expressed by those who
could potentially make pre-RS traceability possible and the underlying end-user problems
that compound their task.

6.1. Problems faced by the providers of pre-RS traceability
§ It is perceived as an optional extra by those in a position to resource it, post-RS

traceability being given higher priority, so insufficient time, personnel and resources
are allocated.

§ Pre-RS traceability can rarely be achieved by uncooperating individuals. Such
individual efforts are typically ad hoc, localised, and unco-ordinated, especially where

2The questionnaires pointed out many such conflicts. For instance, those involved with design, implementation, maintenance and
managerial aspects of a project, attached a high priority to the ability to trace back to why things are requirements and to requirements
process information. Those involved in writing the requirements document, or in work conducted prior to this, attached no such
importance to this ability. Amongst their reasons were that: they are aware of such information and do not believe it is of relevance to
others; they have too little time or support for providing yet more documentation, so it would distract from their main tasks; and that it is
unlikely that all involved would be equally committed in providing for this ability, so they saw little point in their own individual efforts.
This implies that those in a position to provide pre-RS traceability have a low motivation to do so, even though other parties involved in
development demonstrably required it. Not surprisingly, subsequent questionnaire responses revealed that much of their time was actually
spent in explaining exactly this sort of information to others involved in later phases, and that those involved later on spent much of their
time actively locating (often unsuccessfully) those individuals who could provide such information.

14

there is an imbalance between the extra work involved and the personal benefits
gained. It needs to be a combined and full-time responsibility by all involved to
succeed. An explicit allocation, awareness, and management of the different roles that
practitioners need to assume to achieve three interdependent tasks (i.e., obtaining and
documenting required information, organising it, and maintaining it), is typically
absent.

§ A shared understanding of the diverse requirements for pre-RS traceability, imposed
by different stakeholders throughout a project's life, is lacking. There is an obvious
tendency to focus on immediate and visible needs, as accounting for the unique and
unpredictable nature of end-use is problematic.

§ Concern for pre-RS traceability diminishes, and concern for post-RS traceability
increases, after the first snapshot at an RS has been formally signed off. RS
production and refinement is a social and on-going activity for which concern must
continue throughout a project's life. This is problematic as the exact nature of this
activity cannot be fully predefined and because there tends to be poor feedback of later
work and requirements changes.

§ The information required to be made traceable cannot always be readily obtained and
documented (e.g., tacit knowledge). Information which is documented (such as
rationale), varies in quality dependent on many factors (like time constraints). Also, a
deliverable-driven culture can actively discourage the gathering of certain information.

§ The documentation of required information does not imply it will be traceable. A
premature commitment to syntactic, rather than to semantic structure, is what typically
prohibits this.

§ Information that is structured, so that it can be traced in many ways, is no guarantee
that it will be up to date and continuously representative. There are problems in
accounting for, and in handling, all possible changes. This is mainly due to an
immature change culture and the cyclic dependency upon requirements traceability
itself.

§ Poor feedback regarding best practice, and little dedicated support (be this clerical,
procedural, or computer support), perpetuates the same problems.

Traceability

depends on

Working practice Awareness of
information
required to be
traceable

Ability to
obtain and
document
required
information

Ability to organise
and maintain required
information for flexible
traceability requirements
of end-users (supporting
change, restructuring, etc.)

Sufficient
resources,
time and
support

Ongoing

and
cooperation

co-ordination

(Figure 3: Deconstructing the requirements traceability problem for provision.)

15

6.2. Problems imposed by the end-users of pre-RS traceability
§ A stereotypical end-user cannot be predefined. Requirements for end-use will differ

and be inconsistent, even for an individual.

§ The potential quantity and heterogeneity of project information required precludes
total predefinition. Personal contact is always heavily relied upon, because much of
what is required is often undocumented, inaccessible, out of date, or documented in a
form not suited to the use for which it is required.

§ The way in which end-users require access to (possibly combinations of) information,
and how it is most suitably presented for their purposes, cannot be predefined.

§ Each end-use situation exhibits unique requirements, precluding predefinition.
Problems will always exist if end-users do not have the ability to filter and access the
different types of information pertaining to the production of the RS that they require
under different circumstances.

In what way

Who wants it

&

depends on

Traceability

Of what
(information)

Project characteristicsWhy/when they want it
(user) (task)

(access to and presentation of information)

(Figure 4: Deconstructing the requirements traceability problem for end-use.)

6.3. Summary
The real challenge in providing support for pre-RS traceability lies in the ability to address
the problems confronted by the two main parties, as illustrated in Figures three and four.
For the provider of pre-RS traceability, it must be established almost as a by-product of
their other work, or be given much higher priority and explicit support. For the end-user,
pre-RS traceability must be sensitive to their contextual needs.

To provide an exhaustive account of each requirement in an RS, technological solutions
can readily assist with the collection, documentation, and organisation of huge amounts of
information. However, the fundamental problems will still reside with the people
involved. The end-users need to be able to predefine all their anticipated requirements for
pre-RS traceability and make these clear to the providers. The providers need to be able
to identify relevant information and document it in a (re)usable form to suit all possible
needs. This problem is intensified by the fact that individuals can assume both of these
positions. Although we have identified requirements to assist with this dilemma in the
course of our investigations, they suggest that technological solutions will not be the
complete answer.

16

7. Solutions to some of the pre-RS traceability problems
Our investigations led to the production of a comprehensive requirements specification3.
This document stresses what is required to provide and make use of pre-RS traceability,
and includes the needs related to stakeholders, performance, operation, tasks (such as
change handling and reuse), amongst other aspects. The complexity and diversity of these
requirements indicate that it would be premature to offer a solution to the entire pre-RS
traceability problem (i.e., one which meets all the requirements we specified), as it is a
compound problem in need of improvements in many areas. Having examined a spectrum
of products and on-going research, we focus on those subsets of the requirements for
which total or partial solutions already exist, and highlight some of these here4.
Recommendations for immediate uptake and future research are also made.

7.1. Increasing awareness of useful project information
Although studies have been carried out, to reveal what project information is required by
those involved in different phases of development and to inform what needs to be
collected [Kuwana & Herbsleb 1993], our investigations indicate that it is not possible to
generalise such findings. The appropriate amount and type will remain subject to
controversy, and range from deliverables only, through all explicitly generated
information, to an unbounded quantity of implicit information suitable for defining the
context.

Existing work generally tackles this issue by delimiting the amount, and categorising the
type, of information required for assisting focused activities. For example, the Decision
Representation Language of the SIBYL system [Lee 1990], and the argumentation
scheme of gIBIS [Conklin & Begeman 1988], provide frameworks for representing the
structure of decision making and design deliberation. However, such schemes can
artificially restrict user input, emphasise the structure as opposed to the content of the
information, and are each best suited to particular domains, systems and tasks. Although
they may increase the awareness of information needed to support some activities, they do
not help promote awareness of all the informational requirements of pre-RS traceability.

Current research into the development of a requirements traceability model is of interest
here [Ramesh & Edwards 1993]. The intention of such a model is to increase the
awareness of the needs of various stakeholders in the development process, primarily to
guide the types of link that should be maintained between different types of project
information. However, even with an increased awareness of information required, and of
the relation types needed between this information to enable requirements traceability,
these categories will not always be shared. Its use, especially by a large number of
practitioners or by separate working groups, will be prone to individual subjectivity.
Some of these problems could be assisted by establishing dedicated job roles, such as an
independent project documentalist to augment and unify individual contributions, and to
encourage a more objective view.

3Space prohibits the inclusion of this lengthy document here.
4This is in recognition that many of the detailed requirements can only be realistically addressed on a project-specific basis, according to
immediate and context-specific needs.

17

7.2. Obtaining and recording diverse project information
There has been much progress in the ability to obtain and record diverse types and detail
of project information. For example: the history of the requirements evolution process
(REMAP [Ramesh & Dhar 1992]); the design rationale of teams working in real-time
(rIBIS [Rein & Ellis 1991]); requirements trade-offs (KAPTUR [Bailin et al. 1990]);
explanations and justifications (XPLAIN [Neches et al. 1985]); a record of collaborative
activities (Conversation Builder [Kaplan 1990]); the conversations underlying group work
(coordinator software [Marca 1989]); tangible products produced and used, settings in
which developed and maintained, and processes carried out (ISHYS [Garg & Scacchi
1989]); distinctive sources in a heterogeneous domain (PROLEXS [Walker et al. 1991]);
and a rich diversity of multimedia information used in requirements engineering [Palmer &
Fields 1992]. Additional advances could be gained from current work directed towards
the use of ethnography or ethnomethodology to inform requirements gathering [Jirotka
1991]. Such work would be equally useful for studying and describing information related
to the working practices of those involved in requirements production.

Many of the requirements for gathering pre-RS information could be met by amalgamating
a variety of the above into an exploratory workbench or requirements pre-processor.
How such a tool should be designed and developed needs to be informed by detailed
studies of the requirements production process, an understanding of the use and
manipulation of requirements throughout a project's life, and through an exploration of
appropriate internal and external integration standards. However, with the increased
ability to gather extensive project information, the workloads of those involved are likely
to increase, and problems in integrating this information are likely to be experienced.
More of this information needs to be automatically provided as a by-product of those
activities that are considered mainstream. This requires support for more of their activities
to be carried out on-line, so increased computer metaphors for individual and group work
involved in requirements production.

7.3. Organising and maintaining project information
To support progressive development, maintenance, change, reuse, etc., project
information requires flexibility of both content and structure. There is relevant work in
many areas for addressing these issues. For example: modularisation techniques and
module guides [Parnas et al. 1985]; structuring the activities of software engineering for
reuse [Freeman 1987]; the use of viewpoints as an organising and structuring principle
[Finkelstein et al. 1992]; mechanisms to combine viewpoints into single structures
(SYNVIEW [Lowe 1985]); logical frameworks for modelling and analysing requirements
specifications to support their gradual elaboration [Dubois 1990]; the use of hypertext to
provide explicit visibility of structure and to maintain relations (the Document Integration
Facility [Garg & Scacchi 1989]); change models and infrastructures for change (PRISM
[Madhavji 1992]); the use of abstractions to support rigorous reasoning about change
[Ward 1992]; versioning and configuration management [Bersoff & Davis 1991]; and
impact analysis and propagation techniques (Mercury [Kaiser et al. 1987]). Any necessary
extensions in these areas will primarily be to deal with more informal and unstable
information. Research in sociology, and in particular on boundary objects, could be used
to indicate how information can be structured so that it can be shared between individuals
for different purposes [Star 1989].

18

Automation is not the complete answer for organising and maintaining information,
although an advance here would be the provision of guidelines for reconceptualising
requirements and requirements-related information as modular viable systems5.
Additionally, much could be gained from research into the object-oriented representation
of multimedia objects, self-monitoring objects, and selective and complete rollback
strategies for persistent information stores. Other benefits could result from the
introduction of explicit job roles, supported by suitable tools and techniques. These roles
could cover the responsibilities of: project librarian, to collect, clean-up, and distribute
information; information base manager, to co-ordinate, control, and ensure information is
of quality and up to date; and traceability facilitator, to establish and ensure the traceability
of all information.

7.4. Flexible access and presentation of project information
Current potential for requirements traceability is predominantly hardwired [Flynn &
Dorfman 1990]. This predefines what information can be traced and how this can be
presented. Providing the right amount of desired information, at the level of detail
necessary for the problem at hand, is not a problem unique to requirements traceability
(see [Bocker & Herczeg 1990]). Many developments in information retrieval (particularly
using fuzzy logic), artificial intelligence, and human computer interaction, are directly
applicable and can address many requirements here ([CACM 1992] provides an example).
Recent work, separating the internal representation of requirements information from its
(flexible) presentation, is also pertinent [Johnson et al. 1992].

Programmable multimedia workstations for end-users are highly recommended. Amongst
many benefits, these could enable: the retrieval of multimedia information, through
graphical and textual traces; diverse means of visualisation, which could assist impact
analysis (i.e., by presenting requirements dynamically, using animation, links which light
up, etc.); concurrent (global and local) traces; and alternative engaging methods of
interrogation to define requirements traceability requirements. Artificial intelligence or
expert system technology could be exploited to provide flexible and user-definable
requirements traceability on-the-fly (i.e., to enable traces which dynamically mature to
queries and end-use situations).

7.5. Summary
As indicated above, much of what already exists can go a long way towards tackling some
of the basic requirements for pre-RS traceability provision, informing what information to
obtain, how to do so, how to record it, and how to keep such information up to date and
accessible. In addition, we have suggested the desirability of dedicated job roles, the
integration of many existing approaches to develop an extensible requirements pre-
processor, and recommended a way to reconceptualise requirements for traceability
purposes. Work related to the requirements for end-use of pre-RS traceability mainly falls
into the areas of information retrieval, artificial intelligence, and human computer
interaction. Here, we have further suggested the desirability of programmable
workstations and recommended research to address the dynamic and context-sensitive
requirements of end-users.

5This would involve structuring requirements and requirements-related information so that it is: (1) modular (highly cohesive, loosely
coupled, with well-defined semantic interfaces), for reuse, and for the increased ability to change content and structure; (2) generic (in
most abstract form), for adaptability to enable its use in different types of trace, and robustness to maintain continuity of identity; and (3)
parameterised, for configurability of access and instantiation, and to put information together in alternative and dynamic ways.

19

8. A research agenda
The focus of current research, and the recommendations described in section seven, are
directed towards providing: (a) comprehensive repositories of project information related
to pre-RS work; and (b) elaborate mechanisms to selectively access and present this
information. Throwing increasing amounts and types of information at the pre-RS
traceability problem, even details of informal activities and techniques to retrieve this, will
not completely eliminate it.

Information generated as a by-product of enforced adherence to methods, process models,
or guidelines, will vary in reliability, as it is unrealistic to assume that these will always be
used as prescribed [Parnas & Clements 1986]. Manually provided information will suffer
from subjectivity and incompleteness, not only because it is difficult to be reflexive6, but
notions of relevance differ, classification schemes are rarely shared, and equal commitment
to detail is unlikely [Ehn 1988]. The requirements that any individual or group has for
pre-RS traceability are situation-specific and not amenable to complete predefinition.
There will always be instances when the particular information an individual wants to trace
back to will either: not be there; be tailored to a different audience; or not be entirely
suited to the purposes at hand.

8.1. The need to locate and access pre-RS information sources
It was evident from our investigations that practitioners regularly encounter this described
situation in practice. They all resort to the same fall-back strategy when they do. This
fall-back strategy involves identifying and talking to those individuals who can fill in the
missing details (i.e., those responsible for the information or work in question). A
statistically significant finding was the agreement amongst practitioners that the most
useful pieces of pre-RS information were: (a) the ultimate source of a requirement (i.e.,
the individual(s) whose requirement it is); and (b) who was involved in the various
activities which led to its inclusion in the RS (i.e., the source(s) of any pre-RS work).

Regardless of major technological advances, this fall-back will always be desirable, and in
many cases it will be essential. Even when suitable information is available, practitioners
stressed that the ability to augment this with face-to-face communication is paramount7.
To date, requirements traceability problems have been solely attacked with techniques that
aim to supplant human contact with information. Pursuit of this objective disregards a
fundamental working practice which we have found to underlie the continued citation of
requirements traceability problems.

An implication of this finding is that both eager and lazy generation of project information
is required for pre-RS traceability purposes. By eager, we mean the documentation of
requirements-related information whilst actively engaged in aspects of RS production.
Such information is often well suited to the immediate and short term needs of those
involved and useful as a later reference point. With time, this static snapshot may be less
suited to additional needs and is difficult to interrogate if it is the only information
recorded. Information generated on need, by those originally responsible (i.e., lazily), can
be provided with the benefit of hindsight and can be targeted to suit specific needs.

6Our own introspection exercise, conducted throughout our investigations, demonstrated the difficulty in generating and documenting
information that was of relevance to (and understandable by) others.
7This finding corroborates a growing awareness that some of the most vexing problems confronting requirements engineering are in fact
social, political, and/or cultural in nature, and are not amenable to pure technical solutions [Goguen 1993].

20

Without reference to information recorded at the time, to regain some context, such
information would be increasingly difficult to reproduce over time. Practitioners therefore
require access to accurate information which informs them as to the human source(s) of
any pre-RS information that is recorded.

8.2. Location and accessibility: the crux of the pre-RS traceability problem
What at first may appear as a straightforward requirement, the location and accessibility of
pre-RS information sources, was found to be rather more problematic in practice. The
inability to locate and access such sources was the most commonly cited problem across
all the practitioners in our investigations. Furthermore, this inability was reported to be a
direct and major contributor to the following problems also experienced:

§ An out of date RS, as an RS evolves poorly (or not at all), when those originally
responsible for it are not involved in its evolution.

§ Slow realisation of change, as the most time-consuming aspect is often the
identification of all those to involve in the change process.

§ Deterioration as a result of change, as it is common to incorrectly identify all those
that need to be informed of any change.

§ Inability to re-evaluate and refine existing work in a controlled manner, caused
through the inability to re-access the context in which it was originally carried out.

§ Unproductive conflict resolution, decision making and negotiation, because tools
which are used to support these activities do not address the problem of locating those
who should participate in the first place.

§ Poor collaboration and co-ordination, as the invisibility of changing work structures
and changing responsibilities, makes it difficult to: transfer information amongst
appropriate parties; to integrate work; and to assign work to those with relevant
knowledge and experience.

§ Difficulty in dealing with those individuals who leave a project and with integrating
new individuals into a project.

§ Little reuse of requirements, and disaster when they are reused, as reuse is mainly
practiced successfully when those responsible for their original production are either
directly involved or readily accessible.

In some cases, this problem was found to be due to organisational or project politics,
which actively prohibited any knowledge of, or access to, the original sources of
requirements. It was also not uncommon for access to requirements engineers to be
forbidden in later phases. These are political problems that can really only be addressed by
re-examining the organisational policies of those projects they are experienced in.
Another reason behind this problem was found to be the inability to keep track of the
original sources and subsequent traces of participation in an exacting manner. A list of
direct contributors to information hidden away in document fields (the common
approach), was not felt sufficient. This problem calls out for more appropriate assistance.

21

In assisting this problem, it is important to note that certain project characteristics were
found to actively promote it. In projects consisting of many individuals split into a number
of teams, the location and accessing of the sources of pre-RS information was found to be
either impossible, time consuming, or unreliable. The characteristics of these projects
which led to this problem were: lack of shared or project-wide commitment, no visibility
of ownership, and lack of accountability, so much information loss and appeal to the
phrase "not invented here"; localised views, making it difficult to pin down the overall
state of work or knowledge; little cross-involvement; poor communication and minimal
distribution of information amongst teams; and changing notions of ownership and
responsibility, due to continually changing work structures. Interestingly, these
characteristics were amongst those identified elsewhere in our investigations as high
contributors to project failure.

In contrast, projects consisting of few individuals did not find the ability to locate and
access the sources of pre-RS information so much of a problem. Where there were no
problems, this was attributed to: clear visibility of responsibilities and knowledge areas;
clarity of working structures and work relations; individuals who acted as common
threads of involvement; and a strong sense of team commitment and joint ownership.
These characteristics were also identified as high contributors to project success. In
facilitating the rapid location of and access to appropriate individuals, there are obvious
benefits to be gained by ensuring that those project characteristics which assist the ability
to keep track of all contributors and their contributions are more widely experienced in all
projects.

8.3. Related work
There are many traditional project management tools which provide facilities to model
organisational charts and work breakdown structures. Some CASE tools now incorporate
facilities to model such structures and to provide work-flow analysis (e.g., the ProKit
WORKBENCH [Sodhi 1991]). However, these are not ideally suited to the above
problem. They typically model formal and static organisational structures, and predefined
work plans decomposed from an agreed RS. Such models presuppose rational and
deterministic organisations and working practices. Their role is descriptive, prescriptive
and/or predictive. They therefore primarily assist project management activities (i.e., to
ensure that development goals can be achieved and costed, to schedule activities and
resources, and to monitor their progress according to plan), so they tend to be centrally
managed and relatively passive. The drift between what is modelled, what actually took
place, and what is the case in later project life, can often be dramatic.

RS production and maintenance is an inherently social accomplishment, in which
organisational structures and working relations are dynamically and perpetually created
and recreated. The notions of ownership and responsibility are subject to continuous
change and are therefore transient. The on-going ability to locate appropriate individuals
deteriorates as both the volume and complexity of communication paths grow. To make
this social process traceable, there is a need to be able to reflect these dynamics and
manage this complexity.

Some models do attempt to account for the emergent properties of organisational
structure and the dynamics of working practices (e.g., DesignNet [Liu & Horowitz

22

1989]). Although this model views a project as a hierarchy of tasks, and predefines a plan
for carrying out these tasks, it does embed a dynamic view of activity and provide the
ability to restructure these plans. There has also been much recent interest in modelling
the organisational environment in which systems are to operate, mainly to obtain and
clarify organisational requirements. These embed different views of an organisation and
focus on specific organisational structures. For example, the intentional structure of an
organisation [Yu 1993], or its responsibility structure [Strens & Dobson 1993]. Dynamic
models like these would be useful for clarifying aspects of the organisational structure of
development projects, though they singularly lack an appreciation of the wider
organisational context. Recent research into process modelling is of interest here, as this
aims to offer a means for understanding the full environment in which a system is
developed (see [Lyytinen 1987, Mi & Scacchi 1990, Jarke et al. 1993]).

In a comprehensive analysis of the cause of software errors, recommendations were made
for modularising responsibility and promoting informal communication [Lutz 1993]. Our
investigations independently consolidate these recommendations, as they make it apparent
that requirements traceability problems will continue to be evident where responsibility
cannot be accurately located throughout the duration of a project, and where the
appropriate individuals cannot be made accessible for informal communication. The
ability to do this is compounded by the social nature of pre-RS work. Our current
research is directed at providing the means to continuously reflect such information,
investigating how to more actively assist the work of those being modelled, and
mechanisms for instigating access and informal communication through its use.

8.4. Summary
Advances directed towards recording ever more requirements-related information must be
augmented with the ability to rapidly and accurately locate and access those individuals in
a position to supplement it. This is of crucial importance for information generated in the
early and informal phases of a project (pre-RS), as that which is potentially relevant to
assist later phases cannot be accurately or exhaustively predefined. To eliminate one of
the most significant underlying causes of the requirements traceability problems that are
experienced in practice, the challenge is to provide a continuously up to date picture which
can actively promotes this activity. It is exactly the issues of this section that are the
subject of our on-going research agenda.

9. Conclusions
We have illustrated the multifaceted nature of the so-called "requirements traceability
problem" that many practitioners refer to, and have shown how it can only be tackled
through improvements in many areas. In particular, we have highlighted the essential
differences between pre-RS and post-RS traceability, and demonstrated why advances in
the former are more critical for addressing these problems and how they hold the potential
for more far-reaching and long-term opportunity. We have further discussed both the
problems confronting, and the requirements for attaining, such advances. We have
indicated where some of these requirements are already met and made suggestions for
additional progress.

The intrinsic need for the on-going ability to rapidly locate and access those involved,
particularly in pre-RS work, has been strongly motivated and empirically confirmed. In
order to achieve any order of magnitude improvement with requirements traceability

23

problems, there is a need to re-focus efforts on addressing the issues of pre-RS
traceability. Fundamental to this re-orientation, the social infrastructure in which
requirements are produced, specified, maintained, and used, needs to be more significantly
recognised and explicitly supported.

Acknowledgements
Much of the work reported in this paper was carried out by the principle author whilst at
the Centre for Requirements and Foundations, Oxford University, and was supported by a
BT University Research Initiative. Both authors wish to acknowledge the comments and
assistance of their colleagues and students. In particular, we would like to thank Marina
Jirotka, Matthew Bickerton, Joseph Goguen, Daniel Berry, Jeff Kramer and Manny
Lehman.

References
Bailin, S. C., Moore, J. M., Bentz, R. and Bewtra, M. (1990). KAPTUR: Knowledge

Acquisition for Preservation of Tradeoffs and Underlying Rationales, Proceedings of
the Fifth Conference on Knowledge-Based Software Assistant, Liverpool NY,
September.

Bersoff, E. H. and Davis, A. M. (1991). Impacts of Life Cycle Models on Software
Configuration Management, Communications of the ACM, Volume 34, Number 8,
August, pp. 104-118.

Bocker, H. D. and Herczeg, J. (1990). What Tracers are Made of, ECOOP/OOPSLA '90
Proceedings, October 21-25, pp. 89-99.

Bowen, J., O'Grady, P. and Smith, L. (1990). A Constraint Programming Language for
Life-Cycle Engineering, Artificial Intelligence in Engineering, Volume 5, Number 4,
pp. 206-220.

Brown, A. W., Earl, A. N. and McDermid, J. A. (1992). Software Engineering
Environments: Automated Support for Software Engineering, McGraw-Hill.

Brown, P. G. (1991). QFD: Echoing the Voice of the Customer, AT&T Technical
Journal, March/April, pp. 21-31.

CACM. (1992). Information Filtering, Communications of the ACM, Volume 35,
Number 12, December.

CADRE. (1992). Teamwork/RqT, Marketing Brochure, CADRE Technologies, Inc.
Chikofsky, E. J. and Rubenstein, B. L. (1988). CASE: Reliability Engineering for

Information Systems, IEEE Software, March, pp. 11-16.
Conklin, J. and Begeman, M. L. (1988). gIBIS: A Hypertext Tool for Exploratory Policy

Discussion, ACM Transactions on Office Information Systems, Volume 6, Number 4,
October, pp. 303-331.

Cooke, J. and Stone, R. (1991). A Formal Development Framework and its Use to
Manage Software Production, Tools and Techniques for Maintaining Traceability
During Design, IEE Colloquium, Computing and Control Division, Professional
Group C1 (Software Engineering), Digest Number: 1991/180, December 2, pp. 10/1.

Davis, A. M. (1990). Software Requirements: Analysis and Specification, Prentice-Hall,
Inc.

Davis, C. G. and Vick, C. R. (1977). The Software Development System, IEEE
Transactions on Software Engineering, Volume SE-3, Number 1, January, pp. 69-84.

24

Devanbu, P., Brachman, R. J., Selfridge, P. G. and Ballard, B. W. (1991). LaSSIE: A
Knowledge-Based Software Information System, Communications of the ACM,
Volume 34, Number 5, May, pp. 34-49.

Dorfman, M. and Flynn, R. F. (1984). Arts - An Automated Requirements Traceability
System, The Journal of Systems and Software, Volume 4, pp. 63-74.

Dorfman, M. and Thayer, R. H. (1990). Standards, Guidelines, and Examples on System
and Software Requirements Engineering, IEEE Computer Society Press Tutorial.

Dubois, E. (1990). Logical Support for Reasoning About the Specification and the
Elaboration of Requirements, Artificial Intelligence in Databases and Information
Systems, Meersman, R. A., Shi, Z. and Kung, C. H. (Eds.), Elsevier Science Publishers
B. V., pp. 79-98.

Easterbrook, S. (1991). Elicitation of Requirements from Multiple Perspectives, Ph.D
Thesis, Department of Computing, Imperial College of Science, Technology &
Medicine, London University, June.

Ehn, P. (1988). Work-Oriented Design of Computer Artifacts, Arbetslivscentrum,
Stockholm.
European Space Agency. (1987). ESA Software Engineering Standards, ESA PSS-05-0,

Issue 1, January, ESA Publications Division.
Evans, M. W. (1989). The Software Factory, John Wiley and Sons.
Feather, M. S. (1991). Requirements Engineering: Getting Right from Wrong, in Van

Lamsweerde, A. and Fugetta, A. (Eds.), ESEC '91: 3rd European Software
Engineering Conference, Milan, Italy, October 21-24, Springer-Verlag, pp. 485-488.

Finkelstein, A. (1991a). A (Neat) Alphabet of Requirements Engineering Issues, in Van
Lamsweerde, A. and Fugetta, A. (Eds.), ESEC '91: 3rd European Software
Engineering Conference, Milan, Italy, October 21-24, Springer-Verlag, pp. 489-491.

Finkelstein, A. (1991b). Tracing Back from Requirements, Tools and Techniques for
Maintaining Traceability During Design, IEE Colloquium, Computing and Control
Division, Professional Group C1 (Software Engineering), Digest Number: 1991/180,
December 2, pp. 7/1-7/2.

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L. and Goedicke, M. (1992).
ViewPoints: A Framework for Integrating Multiple Perspectives in System
Development, International Journal of Software Engineering and Knowledge
Engineering, Volume 2, Number 1, pp. 31-57.

Fischer, W. E. (1991). CASE Seen From Both Sides of the Fence, in Van Lamsweerde,
A. and Fugetta, A. (Eds.), ESEC '91: 3rd European Software Engineering
Conference, Milan, Italy, October 21-24, Springer-Verlag, pp. 509-511.

Flynn, R. F. and Dorfman, M. (1990). The Automated Requirements Traceability System
(ARTS): An Experience of Eight Years, System and Software Requirements
Engineering, Thayer, R. H. and Dorfman, M. (Eds.), IEEE Computer Society Press,
pp. 423-438.

Freeman, P. (1987). A Conceptual Analysis of the DRACO Approach to Constructing
Software Systems, Transactions on Software Engineering, IEEE, Volume SE-13, Number
7, July, pp. 830-843.

Garg, P. K. and Scacchi, W. (1989). ISHYS: Designing and Intelligent Software
Hypertext System, IEEE Expert, Fall '89, pp. 52-63.

Goguen, J. A. (1993). Social Issues in Requirements Engineering, Proceedings of the
IEEE International Symposium on Requirements Engineering, San Diego, California,
January 4-6, pp. 194-195.

25

Goguen, J. A. and Linde, C. (1993). Techniques for Requirements Elicitation,
Proceedings of the IEEE International Symposium on Requirements Engineering, San
Diego, California, January 4-6, pp. 152-164.

Hamilton, V. L. and Beeby, M. L. (1991). Issues of Traceability in Integrating Tools,
Tools and Techniques for Maintaining Traceability During Design, IEE Colloquium,
Computing and Control Division, Professional Group C1 (Software Engineering),
Digest Number: 1991/180, December 2, pp. 4/1-4/3.

Henderson-Sellers, B. and Edwards, J. M. (1990). The Object-Oriented Systems Life
Cycle, Communications of the ACM, Volume 33, Number 9, September, pp. 142-159.

Hoffman, D. (1990). On Criteria for Module Interfaces, IEEE Transactions on Software
Engineering, Volume 16, Number 5, May, pp. 537-542.

Hoffnagle, G. F. and Beregi, W. E. (1985). Automating the Software Development
Process, IBM Systems Journal, Volume 24, Number 2, pp. 102-120.

IEE. (1991). Tools and Techniques for Maintaining Traceability During Design, IEE
Colloquium, Computing and Control Division, Professional Group C1 (Software
Engineering), Digest Number: 1991/180, December 2.

IEEE. (1984). IEEE Guide to Software Requirements Specifications, ANSI/IEEE
Standard 830-1984.

Interactive Development Environments. (1991). Software Through Pictures: Products
and Services Overview, IDE, Inc.

Jackson, J. (1991). A Keyphrase Based Traceability Scheme, Tools and Techniques for
Maintaining Traceability During Design, IEE Colloquium, Computing and Control
Division, Professional Group C1 (Software Engineering), Digest Number: 1991/180,
December 2, pp. 2/1-2/4.

Jarke, M., Bubenko, J., Rolland, C., Sutcliffe, A. and Vassiliou, Y. (1993). Theories
Underlying Requirements Engineering: An Overview of NATURE at Genesis,
Proceedings of the IEEE International Symposium on Requirements Engineering, San
Diego, California, January 4-6, pp. 19-31.

Jarke, M. and Pohl, K. (1992). Information Systems Quality and Quality Information
Systems, in Kendall, K. E., Lyytinen, K. and DeGross, J. I. (Eds.), The Impact of
Computer Supported Technologies on Information Systems Development, Elsevier
Science Publishers B. V., pp. 345-375.

Jirotka, M. (1991). Ethnomethodology and Requirements Engineering, Technical
Report, Centre for Requirements and Foundations, Oxford University Computing
Laboratory.

Johnson, W. L., Feather, M. S. and Harris, D. R. (1991). Integrating Domain
Knowledge, Requirements, and Specifications, Journal of Systems Integration,
Volume 1, pp. 283-320.

Johnson, W. L., Feather, M. S. and Harris, D. R. (1992). Representation and
Presentation of Requirements Knowledge, IEEE Transactions on Software
Engineering, Volume 18, Number 10, October, pp. 853-869.

Kaindl, H. (1993). The Missing Link in Requirements Engineering, ACM SIGSOFT
Software Engineering Notes, Volume 18, Number 2, pp. 30-39.

Kaiser, G. E., Kaplan, S. M. and Micallef, J. (1987). Multiuser, Distributed Language-
Based Environments, IEEE Software, November, pp. 58-67.

26

Kaplan, S. M. (1990). Conversation Builder: An Open Architecture for Collaborative
Work, in Diaper, D., Gilmore, D., Cockton, G. and Shackel, B. (Eds.), HCI Interact
'90, Proceedings of the IFIP TC 13 3rd International Conference on HCI,
Cambridge, UK, August 27-31, Elsevier Science Publishers B. V., North-Holland, pp.
917-922.

Keys, E. (1991). A Workbench Providing Traceability in Real-Time System
Development, Tools and Techniques for Maintaining Traceability During Design,
IEE Colloquium, Computing and Control Division, Professional Group C1 (Software
Engineering), Digest Number: 1991/180, December 2, pp. 3/1-3/2.

Kuwana, E. and Herbsleb, J. D. (1993). Representing Knowledge in Requirements
Engineering: An Empirical Study of What Software Engineers Need to Know,
Proceedings of the IEEE International Symposium on Requirements Engineering, San
Diego, California, January 4-6, pp. 273-276.

Langford, D. (1991). PORC 0.41:Outline Description of Enhancements and Changes,
BT Internal Report, Ipswich, 28 June.

Lee, J. (1990). SIBYL: A Tool for Managing Group Design, Proceedings of CSCW '90,
pp. 79-92.

Lefering, M. (1993). An Incremental Integration Tool Between Requirements
Engineering and Programming in the Large, Proceedings of the IEEE International
Symposium on Requirements Engineering, San Diego, California, January 4-6, pp. 82-
89.

Liu, L. C. and Horowitz, E. (1989). A Formal Model for Software Project Management,
IEEE Transactions on Software Engineering, Volume 15, Number 10, November, pp.
1280-1293.

Lowe, D. G. (1985). Co-operative Structuring of Information: The Representation of
Reasoning and Debate, International Journal of Man-Machine Studies, Volume 23,
pp. 97-111.

Lubars, M., Potts, C. and Richter, C. (1993). A Review of the State of the Practice in
Requirements Modeling, Proceedings of the IEEE International Symposium on
Requirements Engineering, San Diego, California, January 4-6, pp. 2-14.

Lutz, R. R. (1993). Analyzing Software Requirements Errors in Safety-Critical,
Embedded Systems, Proceedings of the IEEE International Symposium on
Requirements Engineering, San Diego, California, January 4-6, pp. 126-133.

Lyytinen, K. (1987). A Taxonomic Perspective of Information Systems Development:
Theoretical Constructs and Recommendations, Boland, R. J. and Hirschheim, R. A.
(Eds.) (1987). Critical Issues in Information Systems Research, John Wiley and
Sons, pp. 3-41.

Madhavji, N. H. (1992). Environment Evolution: The Prism Model of Changes, IEEE
Transactions on Software Engineering, Volume 18, Number 5, May, pp. 380-392.

Marca, D. A. (1989). Specifying Coordinators: Guidelines For Groupware Developers,
Proceedings of the Fifth International Workshop on Software Specification and
Design, ACM SIGSOFT Software Engineering Notes, Volume 14, Number 3, May,
pp. 235-237.

Marconi Systems Technology. (1992). Requirements Traceability and Management
Manual V1.2.4, GEC Marconi Ltd., February.

Mathews, B. and Ryan, K. (1989). Requirements Specification Using Conceptual
Graphs, Third International Workshop on Computer-Aided Software Engineering,
London, July 17-21, pp. 186-193.

27

Mays, R. G., Orzech, L. S., Ciarfella, W. A. and Phillips, R. W. (1985). PDM: A
Requirements Methodology for Software System Enhancements, IBM Systems
Journal, Volume 24, Number 2, pp. 134-149.

Mi, P. and Scacchi, W. (1990). A Knowledge-Based Environment for Modeling and
Simulating Software Engineering Processes, IEEE Transactions on Knowledge and
Data Engineering, Volume 2, Number 3, September, pp. 283-294.

Neches, R., Swartout, W. R. and Moore, J. D. (1985). Enhanced Maintenance and
Explanation of Expert Systems Through Explicit Models of Their Development, IEEE
Transactions on Software Engineering, Volume SE-11, Number 11, November, pp.
1337-1351.

Palmer, J. D. and Fields, N. A. (1992). An Integrated Environment for Requirements
Engineering, IEEE Software, May, pp. 80-85.

Parnas, D. L. and Clements, P. C. (1986). A Rational Design Process: How and Why to
Fake It, IEEE Transactions on Software Engineering, Volume SE-12, Number 2,
February, pp. 251-257.

Parnas, D. L., Clements, P. C. and Weiss, D. M. (1985). The Modular Structure of
Complex Systems, IEEE Transactions on Software Engineering, Volume SE-11,
Number 3, March, pp. 259-266.

Polack, A. J. (1990). Practical Applications of CASE Tools on DoD Projects, ACM
SIGSOFT Software Engineering Notes, Volume 15, Number 1, January, pp. 73-78.

Ramamoorthy, C. V., Garg, V. and Prakash, A. (1986). Programming in the Large,
IEEE Transactions on Software Engineering, Volume SE-12, Number 7, July, pp.
769-783.

Ramamoorthy, C. V., Garg, V. and Prakash, A. (1988). Support for Reusability in
Genesis, IEEE Transactions on Software Engineering, SE-14, Number 7, July, pp.
1145-1153.

Ramamoorthy, C. V., Prakash, A., Tsai, W. T. and Usuda, Y. (1984). Software
Engineering: Problems and Perspectives, IEEE Computer, October, pp. 191-209.

Ramesh, B. and Dhar, V. (1992). Supporting Systems Development by Capturing
Deliberations During Requirements Engineering, IEEE Transactions on Software
Engineering, Volume 18, Number 6, June, pp. 498-510.

Ramesh, B. and Edwards, M. (1993). Issues in the Development of a Requirements
Traceability Model, Proceedings of the IEEE International Symposium on
Requirements Engineering, San Diego, California, January 4-6, pp. 256-259.

Rein, G. L. and Ellis, C. A. (1991). rIBIS: A Real-Time Group Hypertext System,
International Journal of Man-Machine Studies, Volume 34, pp. 349-367.

Reubenstein, H. B. and Waters, R. C. (1991). The Requirements Apprentice: Automated
Assistance for Requirements Acquisition, IEEE Transactions on Software
Engineering, Volume SE-17, Number 3, March, pp. 226-240.

Robinson, D. (1991). CASE Support for Large Systems, in Van Lamsweerde, A. and
Fugetta, A. (Eds.), ESEC '91: 3rd European Software Engineering Conference,
Milan, Italy, October 21-24, Springer-Verlag, pp. 504-508.

Roman, G. C. (1985). A Taxonomy of Current Issues in Requirements Engineering,
COMPUTER, April, pp. 14-23.

Rzepka, W. and Ohno, Y. (1985). Requirements Engineering Environments: Software
Tools for Modeling User Needs, IEEE Computer, April, pp. 9-12.

Short, R. M. C. (1988). Learning the First Step in Requirements Specification,
Quaestiones Informaticae, Volume 6, Number 3, November, pp. 123-128.

28

Smithers, T., Tang, M. X. and Tomes, N. (1991). The Maintenance of Design History in
AI-Based Design, Tools and Techniques for Maintaining Traceability During Design,
IEE Colloquium, Computing and Control Division, Professional Group C1 (Software
Engineering), Digest Number: 1991/180, December 2, pp. 8/1-8/3.

Sodhi, J. (1991). Software Engineering: Methods, Management, and CASE Tools,
McGraw-Hill.

Star, S. L. (1989). The Structure of Ill-Structured Solutions: Boundary Objects and
Heterogeneous Distributed Problem Solving, in Gasser, L. and Huhns, M. (Eds.),
Distributed Artificial Intelligence, Volume 2, Pitman, pp. 37-54.

Strens, R. and Dobson, J. (1992). On the Modelling of Responsibilities, Computing
Laboratory, University of Newcastle Upon Tyne, Newcastle, U.K.

Sun Microsystems, Inc. (1990). Catalyst: A Catalog of International Third-Party
Hardware and Software from Sun Microsystems, Inc., Summer 1990 Edition

Sykes, J. B. (Ed.) (1978). The Pocket Oxford Dictionary, Sixth Edition, Oxford
University Press.

Takeda, N., Shiomi, A., Kawai, K. and Ohiwa, H. (1993). Requirements Analysis by the
KJ Editor, Proceedings of the IEEE International Symposium on Requirements
Engineering, San Diego, California, January 4-6, pp. 98-101.

Texas Instruments. (1988). A Guide to Information Engineering Using the IEF:
Computer-Aided Planning, Analysis, and Design, Second Edition.

Thayer, R. H. and Dorfman, M. (1990). System and Software Requirements
Engineering, IEEE Computer Society Press Tutorial.

U.S. Department of Defense. (1988a). Military Standard: Defense System Software
Development. DOD-STD-2167A. Washington, D. C., February 29.

U.S. Department of Defense. (1988b). Software Requirements Specification. DI-
MCCR-80025A. Washington, D. C., February 29.

Walker, R. F., Oskamp, A., Schrickx, J. A., Van Opdorp, G. J. and Van Den Berg, P. H.
(1991). PROLEXS: Creating Law and Order in a Heterogeneous Domain,
International Journal of Man-Machine Studies, Volume 35, pp. 35-67.

Ward, A. (1992). The Next Generation of Computer Assistance for Software
Engineering, ACM SIGSOFT Software Engineering Notes, Volume 17, Number 3, pp.
39-42.

West, M. (1991). The Use of Quality Function Deployment in Software Development,
Tools and Techniques for Maintaining Traceability During Design, IEE Colloquium,
Computing and Control Division, Professional Group C1 (Software Engineering),
Digest Number: 1991/180, December 2, pp. 5/1-5/7.

Wright, S. (1991). Requirements Traceability - What? Why? and How?, Tools and
Techniques for Maintaining Traceability During Design, IEE Colloquium,
Computing and Control Division, Professional Group C1 (Software Engineering),
Digest Number: 1991/180, December 2, pp. 1/1-1/2.

Yu, E. S. K. (1993). Modelling Organizations for Information Systems Requirements
Engineering, Proceedings of the IEEE International Symposium on Requirements
Engineering, San Diego, California, January 4-6, pp. 34-41.

