
*In spite of 

extvavagan t claims, 

no yeh’ability model 

can be trusted to be 

accurate. Now, 

statistical techniques 

let you detemine 

which model gives 

acceptable yes&s. 
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New Ways to 
Get Accurate 
Reliability 
M easures 
SARAH BROCKLEHURST UTK! BEV LITTLEWOOD 
City University, London . 
0 ver the years, 

many software reliability models have 
been published, quite a few from our own 
Centre for Software Reliability Unfortu- 
nately, no single model can be universally 
recommended. In fact, the accuracy of the 
reliability measures generated by the 
models varies dramatically: Some models 
sometimes give good results, some are al- 
most universally awful, and none can be 
trusted to be accurate at all times. Worse, 
it does not seem possible to identify in ad- 
vance those data sets for which a particu- 
lar model is appropriate.’ 

This unsatisfactory situation has ut- 
doubtedly been the major factor in the 
poor adoption of reliability models. Users 
who have experienced poor results are 
once bitten, twice shy, unwilling to try 
new techniques. 

It is with some trepidation that we 
claim our approach has largely eliminated 
these problems-our credo contains some 

07407459/92/0700/0034/$03 00 0 IEEE 

caveats. We believe it is now possible in 
most cases to obtain reasonably accurate reli- 
ability measures for software and to have 
reasonable con$dewe that this is the case in a 
particular situation, so long as the reliabil- 
ity levels required are relatively modest. 
The italicized words here are important 
- there are some limits to what can be 
achieved - but these limits are not so re- 
strictive that they should deter you from 
trying to measure and predict software re- 
liability in an industrial context. 

RELIABILIN AS A PREDICT ION PROBLEM 

In the form in which it has been most 
studied, the software-reliability problem 
involves dynamic assessment and predic- 
tion of reliability in the presence of that re- 
liability growth which results from fault 
removal. This usually involves executing a 
program in an environment (test or real), 
observing failures, and fixing the faults 
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fou say that the model gives good results if tion errors only over a sequence of differ- 
tihat you obsnve tends to be in close agree- 
ment-with what had beenpredhed. 

ent predictions. 
In the event that the prediction errors 

Our approach is based on formal ways are stationary-the nature of the error is 
to compare prediction with obser&on. the same at every stage - there will be a 

Of course, this problem would be eas- 
ier if you could observe the trueAF# and 

Tlnstant functional relationship between 
F,(t) and F,(t). In such cases, you can use 

compare it with the prediction, I;, (t). But the /r-plot to recalibrate the model - es- 
you must somehow use only t;, which is all sentially training it to learn from its mis- 
you have. This is not a simple problem, takes-and obtain more accurate predic- 
and it is compounded because it is nonsta- tions. 
tionary - you want to Recalibrating models 

:~ 

predict accurately a se- to improve prediction ac- 
quence of different distri- curacy exploits the fact 
butions, from each of that sometimes predic- 
which you will observe 

The ability to capture 
the past accuratety does 

tion errors are indeed ap- 
onlv one t;. proximately stationary. ~ 

that caused the failures. The expected fail- 
ure behavior is therefore reliability 
growth, at least in the long term, although 
bad fixes that introduce new faults may 
cause short-term reversals. 

Reliability-growth models use the data 
collected in this procedure, usually in the 
form of successive execution times be- 
tween failures (or sometimes the number 
of failures in successive, measured time in- 
tervals), to estimate current reliability and 
predict future reliability growth. 

What’s important is that all questions 
of practical interest involve prediction. 
Even if you want to know current reliabil- 
ity, you are really asking about the future: 
III this case, about the random variable T, 
the time to the next failure. However you 
express reliability - as a rate of failure 
occurrence, the probability of surviving a 
specified mission without failure, the 
mean time to next &lure, or any other 
convenient way - you are trying to pre- 
dict the future. 

So when you ask if a model is giving 
accurate reliability measures, you are re- 
ally asking if it is predicting accurately. 
This is sometimes overlooked even in 
the technical literature, where authors 
have “validated” a model by showing 
that it can accurately explain past failure 
behavior and thereby claim that it is “ac- 
curate.” The ability to capture the past 
accurately does not necessarily imply an 
ability to predict accurately. As Niels 
Bohr said, “Prediction is difficult, espe- 
cially of the future.” 

LI owe=, you can i’le?rlv there is alwavs an 
make some simple com- 

not necessarily imply an L;nino;~n functio,; G,, 
, 

parisons. Suppose you ability to predict that will transform the 
need an accurate estimate accurately. predicted distribution 
of only the median of T,, into the true distribution. 
the value of T, that is ex- Howcvcr, only some- 
ceeded with probability l/2. You could times is this fun&on approximately the 
count what proportion of the actual t, ex- same in all cases: G, = G for all i. 
ceeded their predicted medians, and if this \Z%en it is, you can estimate G using 
proportion is very different fiwn l/2, you the comparison of earlier predictions 
can conclude that the median predictions against their corresponding observations 
were poor. and, by adjusting future predictions, in- 

But this analysis does not tell you vcn prove their accuracy. In Fact, the I/-plot 
much. Even if a series of predictions based on these earlier predictions is a suit- 
passed this test, it would give you confi- al)le estimator of G.-’ 
dence in the medians only. It does not tell Y&I adjust, or recalibrate, a model in 
you if other measures are accurate. \I%hat 
you really need is a way to dete% any dif- 
ference between prediction, I,, and 
Q-6 F,(t). 

four steps: 

NEW APPROACH 

Consider the simplest prediction prob- 
lem: estimating current reliability. Assume 
you have observed the successive inter- 
failure times tl, t.7,. . ., t,l, and you want to 
predict the next time to failure, T;. To do 
$is, you use a model to obtain an estimate, 
F,(t), of the true (but unknown) distribu- 
tion function Fi($ E P(T, < t). If YOU knew 

the true distribution function, you could 
calculate any current reliability measure. 

U-plot. Our first technique aims to de- 
tect systematic differences between pre- 
dicted and observed failure behavior. The 
u-plot, described in the box on p. 36, is a 
generalization of the median check. 

1. Obtain the u-plot, G,*, ofpredictions 
Inade before stage i. (It is better if G,’ is a 
smoothed version of a joined-up, step- 
f~~iction f4-plot, so our examples use a 
spline-smooth%d version.) 

3. Obtain F,(t) from the raw (un- 
recalibrated) model for prediction at stage i. 

3. Calculate the recalibrated predic- 
tion k(t) = Gj[fiz(t)]. 

The idea behind it is very similar to bias 
in statistics. In statistics, you use data to 
calculate an estimator of a population pa- 
rameter. The estimator is unbiased if its 
average value is equal to the (unknown) 
parameter. 

Of course, our case is more complex 
because we want to estimate a function, You start the program again and wait 

until it fails, which is a realization tt of the not just a number, at each stage, and be- 
random variable Tr You repeat this opera- ~ cause the problem’s inherent non- 
tion for some range of ivalues. Informally, ~ 

I 
stationarity means we can detect predic- 

1. Repeat at each stage i. 
This procedure is truly predictive, be- 

cause it uses only the past to predict the 
future. You must believe neither that the 
recalibrated predictionswill be better than 
the raw ones, nor that the prediction er- 
rors, G,, are approximately stationary. YOU 
can use other techniques to compare and 
analyze prediction accuracy, including the 
prequential likelihood ratio, described 
next, which can show if recalibration has 
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ASSESSING PREDICTIVE ACCURACY: &PLOT 
You use a u-plot LO deter- random sample from a uniform If the {ui} sequence is truly 

mine if predictions, F,(t), are on distribution. Any departure uniform, the u-plot should be 
average close to the true d&i- from the uniformity indicates close to the line of unit slope. 
bution, F&J. For example, if some deviation between the Any serious departure indicates 
you can show that the random predictions, {F, (t)}, and the inaccurate predictions. A com- 
variabl2Ti truly had the distri- truth, Pi(t mon way to test if departures 
bution F;(t) - the prediction To find such departures, are significant is to compare 
and the truth were identical - you plot a sample distribution them to tables for the 
$en the random variable Ui = function of {ui}. This is a step Jblmogorovdistan~, he maxi- 
FQ$ will be uniformly distrib- function, constructed by plac- mum vettical deviation of the 
uted on (0,l). In statistics, this is ing points ut, ~12, . . . , u, (each of plot from the line.’ However, for- 
called the probability integral these is a number between 0 mal tests to prove significant de- 
mansform. ’ and 1) on the interval (0,l). partum are often unnm 

Ifyou observe the re$im- Then, from left to right plot an As with the examples in dris arti- 
tion ti and calculate ui = F,{ ti), increasing step function, with cle, it is often clear from simply 

then Ui will be a realization of a each step of height I/(n + 1) at looking at the plots that the pre- 

uniform random variable. each u on the abscissa. There- dictions are poor. 

Doing this for a sequence of suiting monotonically increas- More important, informal 

predictions gives a sequence ing function has a range (0,l). inspections of u-plots can re- 

{ui}, which should look like a This is the u-plot veal a lot about prediction er- 

rors. For example, when predic- 
tions are consistently too opti- 
mistic, the model underesti- 
mates the chance of the next 
failure occurringbefore t (for 
all t). In such a u-plot, the us 
will bunch to the left of the 
(0,l) interval, giving a plot that 
is above the line of unit slope. 
Similarly, a u-plot that is entirely 
below the line indicate5 predic- 
tions da are too pessimistic 
More complex a-plots can some- 
times be interpreted in terms of 
the nature of the inaccurate pre 
dictions they represent 
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produced better results than the raw We admit that both techniques are ~ the predicted medians only, if these are 
model. / nontrivial, and you may find them very inaccurate, then other measures of reli- 

Even when a model gives predictions 
for a data set that have a good u-plot, there 
is no guarantee that the model is accurate 
in eve? way. In statistics, even if you have 
an unbiased estimator, you might still de- 
cide to use a biased one. For example, the 
unbiased estimator may have a large vari- 
ance, so although its expected value is 
equal to the unknown parameter, its value 
in a particular case may be far from the 
expected value. This is the difference be 
twcen what happens on average and what 
h appens in a particular instance. Similar at- 
guments apply to a good zz-plot, which de- 
scribes average behavior but can also mask 
large inaccuracies in particular predictions. 

Prequential likekhood rttti~. This deficiency 
led us to adopt a second technique, the 
prequential likelihood ratio, described in 
the box on p. 38. 

The PLR lets you compare two 
models abilities to predict a particular 
data source so that you can select the one 
that has been most accurate over a se- 
quence of predictions. Unlike the u-plot, 
which is specific to a particular type of in- 
accuracy, the PLR is general-the model 
it selects as best is objectively best in a 
general way.3 For example, it can detect 
when the predictions are too noisy and so 
are individually inaccurate, even when the 
/z-plot looks good and the predictions 
seem unbiased. 

unfamiliar at first. This is not surprising, 
because traditional statistical methods 
have neglected prediction in favor of esd- 
mation. Techniques like PLR analysis 
have become available only recently. 
However, it is really very straightfor- 
ward to use these techniques, which in- 
volve nothing more than simple graphical 
analysis. 

THREE DATA SETS 

Here we illustrate how to apply these 
techniques, using three sets of real failure 
data. 

553 data set. 0ur first example uses the 
SS3 data set of 2 78 interfailure times, col- 
lected by John Musa.4 This data set is un- 
usual because all eight models we use for 
comparison seem to give extremely poor 
results as determined by the z/-plot, but 
recalibration dramatically improves all 
eight. The box on p. 40 lists the models we 
used. 

Figure la shows the raw data plotted as 
cumulative number of failures against total 
elapsed execution time. Figure lb shows 
the successive predictions of the median 
next time to failure. The graph shows ex- 
traordinary disagreement among the 
models. The LV and KL models give re- 
sults that are far more pessimistic than the 
other six. Although the graph applies to 

ability will also be inaccurate. 
In fact, the u-plots in Figure lc show 

that all predictions are extremely inaccu- 
rate; plots differ horn the line of unit slope 
with very high statistical significance. The 
six models that approximately agree in 
Figure 1 b are in fact much too optimistic 
- their u-plots are almost always above 
the line of unit slope. LV and KL, on the 
other hand. are too oessimistic - their 

I 

zz-plots are generally below the line of unit 
slope. These results suggest the true medi- 
ans lie somewhere between the two clus- 
ters in Figure lb. 

Figure 1 d shows log(PLR) plotted for 
each model against a reference model, 
DU. This analvsis reveals that KL and LV 
are significantlv superior to the other six 

LI i  1  

models for this data set, even 
know them to be poor, too. 

though we 

Recause all the models give noor z1- 
plots, we have no trustvvorthyvpredictions 
for this data set. Therefore, all models are 
candidates for recalibration. Figure le 
shows that recalibration bring: much 
closer agreement in the predicted me& 
ans. And the u-plots of the recalibrated 
predictions in Figure If are an enormous 
imnrovement over the raw predictions. 
Now none of the deviations from the unit 
slope is statistically significant. 

Figure lg shows the log(PLR) plots of 
recalibrated versus raw predictions. The 
improvement in predictive accuracy is 
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________. 

1 ASSESSIIG PREQKTWE ACCURACr: PLR 
/ The prequential likeli- curs after time 5. Obviously, overall increase with some fluc- 
/ hood ratio is a way to decide 

means to say that A’s predictions 
you would expect 5 to he in the are doser to the truth than B’s tuation. 

which of a pair of prediction main body of the true distribu- If model A’s predictions are Usually, we are interest4 in 
I systems gives the most accu- tion (it is more IikeIy to occur more accurate than B’s, 

rate results for a particular ~A(t,+“B(~) will tend to be 
comparing the accuracy of more 

where$(@ is larger). If you eval- 
data source. 

thantwopredictionsequences. 
uate the two predictious at this larger than 1. The prequential %doth&,weselectoarbitrar- 

Figure A shows a true d&i- value oft, you see there is a ten- 
bution (the probability density 

iIy as a &euce and conduct 
dencyformodelA’sprediction 

likelihood ratio is simply a run- 

fu.nction)ofthetimeto&lure, tohelargerthanmodelB”s- 
ning product of such terms pair&z comparisons of others 

Tj, and predictions of the PDF 
over many successive predic- againstir,asahove 

model A’s PDF tends to have tions: 
1 from two models, A and B. A is 

PLR is a ~mpletely general 

1 dearlybetterthanB. 
more large values dose to the procedure for identifying the 
largevahresoftheiruedistribu- 

F  & 

i EventuaUy the failure oc- tion than Bs. This is what it 
PLR+ n ^B 

jzk .fj (9) 
better of a Pair of prediction se- 
quences. Apart from the intu- 

andthisshouldtendtoincrease im’ePku’sibilityofPLRasa 

dramatic in all cases, but slightly less so for CSRl data et. The CSRl data set, col- 
KL and LV These two models were the 
best performing pair of the original eight 

lected from a single-user workstation at 
The PLR analysis in Figure 2d show 

that KL performs best overall, with L7 

- since they were not as bad as the other 
the Centre for Software Reliability, repre- , second. The relatively poor performax 

six, they had less room for improvement. 
sents some 397 user-perceived failures: I of the other models is due partly to bias, a 

Figure lh shows that all recalibrated 
genuine software failures, plus failures j shown by the ZI-plots, and in some case 

models perform roughly comparably. In this 
caused by usability problems, inadequate i partly to noise, as evidenced by the grea 
documentation, and so on. 

graph, no single plot shows a consistent 
~ fluczations in the medians in Figure 2b. 

Figure 2a shows the cumulative failure 
trend, compared with the corresponding 

Once again, none of the raw predic 

plots in Figure 1 d (note the scale change). 
plot for the raw data; Figure 2b shows the dons can be trusted according to the u 

Clearly, recalibration had a dramatic ’ 
median predictions from the eight mod- 
els. Two things are striking: There is little 

plot analysis, and these models are cand 

effect on the accuracy of the predictions 
dates for recalibration. Figure 2e shou 

evidence of reliability growth until about the effect of recalibration on the media 
you can make about this data set. Faced 
with these results, a user would clearly 

halfway through the data set, and again predictions. The change in medians fror 

make future predictions using one of the 
there is marked disagreement among the Figure 2 b is in the right direction, accordin 
models when the growth does start. 

recalibrated versions of the models, possi- 
to the raw zl-plots. The zl-plots of the recal 

bly GOS (the S suffix designates a recali- 
In Figure 2c, the ~p1ot.s again show 

brated model), although there is little dif- 
that all models perform poorly-all de+ 

brated predictions in Figure 2f confirm th: 

ations from the unit slope are significant. 
there has indeed been an improvemen 

ference between GOS and JMS or LMS. 
However, only KLS has a plot that does nc 

As more data becomes available, of 
More to the point, there are great differ- , significantly deviate from the line of un 

course, you must update the analysis and 
ences in the nature of the prediction er- / slope (although MOS, DUS, LNHPP! 

decide which, if any, predictions to trust. 
rots: JM, GO, LM, and LNHPP are too ~ and LVS are only just significant). 

The most important advantage to this 
optimistic; KL and LVare pessimistic; and ~ While the zl-plots for MOS and DU 

procedure is that it lets the data speak for 
M O  and DU have a pronounced S-shaped improved a great deal, there is little chang 

itself and does not require the user to be- 
u-plot, intersecting the line of unit slope at in the medians (Figures 2b and 2e). This 

’ about (0.5, 0.5). This indicates M O  and 
lieve ahead of time that a model will give 

because the raw medians were very acct 
DU predict the median time to failure ac- 

accurate predictions. Since such beliefs are 
rate, but other points on the raw predictiv 

highly questionable, this is an important 
curately, but are too optimistic in estimat- distributions were not, and these hav 
ing the probability of small t imes to failure 

new way to acquire confidence in reliabil- 
been improved by recalibration. 

ity predictions. 
and too pessimistic in estimating large 
times to failure. 

Figure 2g shows a steady increase in a 
log(PLR) plots and confirms that, in a 

38 JULY 1992 



0 Execution time (minutes) 110,000 
U 

(Cl 

-60 
Cumulotive failures 

400 
[Al 

110 

zz c.- 
ti 
2 

-10 L 
60 

turndative failures ‘60 

[El 
hmulotive foilurer 

cwm of two mod& iduzte they pm&t the mrdlnz 

-501 ’ ’ ’ J 
60 

[HI 
Cumulative failures 400 60 

Gl 
Cumulative foilurer 400 

IEEE SOFTWARE 



EIGHT MODELS 

l plJJ.d~~-.l Iof-anrh (1121,: 
()nc ~~fthc carlicst models. it 3s. 
wmc’5 that Murcs occur pmel!~ 
at random and that all t&Its 
contd~utc eqwlly to un- 
reliabili~. It also assumes that 
fiues arc perfect; thus. a 
program’s faihlre rate improves 
1)~. the WIIW amount at each fix. 
(%.Jelinski and t?K. ,\lorancla, 
“Software Rcliahitity Re- 
search,” in .Stntirticai (hrpmr 
P(~~~)~-JJJ~~Joc hhntion. 1%: 
Fr&ergcr, ed., Academic 
I’re\s. Ncw~~rk, IY72, pp. 
465-4X-l). 

+ (hr/-<)kmfoto ((x)): Sin- 
ilar toJ,LI, except it assunies the 
failure rate improve5 continu- 
ouslv in time. (AL. (&I and 
K. (Ikumoto, “Time-Depen- 
dent 1.;rror-l)eteaion Rate 

+ .2h~-Okmwto (MO): 
Similar to (XI, except it at- 
tempts to consider that later 
fixes have a smaller effect on a 
Program’s reliability than ear- 
lier ones. (J.D. Musa and K 
Okumoto, “rZ Logarithmic 
Poisson Execution Time 
Model for Software Reliabiliw 
Measuremen<” Pmt. Int ‘I cbnf: 
Sofiwre Eng., IEEE CS Press, 
Los Alamitos, Calif., 1984, pp. 
N-2 38.) 

+ I1uune (DU): Developed 
for hum-in hardware testing, in 
which defective components 
are detected and replaced with 
good ones in the early days of 
use. &gin, it assumes the fail- 
ure rate changes continuously 
in time. (L.H. Crow, “Confi- 

tlencc InterA I’rocedur~s for 
Reliabili~ (;rowth .1nalysl$,” 
‘I&h. Report 197, US Ann) 
121ateriel Systems Analysis Xc- 
tility, Aherdecn, hid., 1977.) 

+ l,itt/t~owi(Li\~): Similar 
toJ,Cl, except it assumes that 
different faults have dif&rent 
sizes (they contribute unequally 
to unreliahilit)). It assume\ 
larger faults tend to he re- 
moved earl!;, so there is a law of 
diminishing rehems in dehug- 
ging. (B. Littlewood, “Stochas- 
tic Reliability Growth: A ,Mtxlel 
for Fault-Removal in Gmputer 
Programs and &r&are De- 
sihms,” lI$J+1 ‘I?~~~.~. Rehbiligt, 
Oct. 1081, pp. 113-320.) 

+ Iittln~wui Non~~o~qeneo~~r 
I’o&?l Anr6!~ (1 XHPP): Similar 
to LM, but a5-umes a c( )ntinuous 
change in failure rdte (instead of 
discrete Punps) when tives t&e 
place. (D.R. ITiller, “l~,qxme~l- 

9 k+h7LWl~/- 1  h-J?///  (I ,\ j: 

I.cts the six of,;w inlpro\c- 
ment in the failure ratr at .I li\ 
var) randomly, represent+ 
the uncertainty alxjut fault si7c 
and tlic efficacy of the lix. (8. 
Littlewood andJ.L. Verrall, “A 
Bayesian Reliability Growth 
hlodel for Computer Sok- 
ware,“.T. Royd Sthtiai Sot. C., 
\?)I. 22, 1073, PP. !3L-346.) 

6 KeilkvLidmood (KL): 
Similar t(l L1< but uses a differ- 
ent mathematical f&m for reli- 
ability growth. (PA. Keiller et 
al., “Comparison ofsoftware 
Reliability Predictions,” plor. 
IEEE ht4 .$mp. Fault-‘T&ant 
CY~~nputin~q, IEEE <:S Press, 
Los Alanitos, Calif., 1983, pp. 
IX-134.) 

cases, the recalibrated predictions are su- 
perior to the raw ones. The greatest im- 
provement is in DU, but this is largely 
because this model performs so poorly 
without recalibration. Figure 2h shows 
that after recalibration, the best predic- 
tions are coming from DUS, with KLS 
and LVS next best. 

In this case, you would be advised to 
use DUS, bearing in 

traduce this complication here to save 
space. 

CSR2 data set. Our third data set is a 
subset of the second - failures that are 
known to be due to software faults. The 
data displayed in Figure 3a is notable for 
several extremely large interfailure times, 
including one of 9,549 minutes. Although 

you might think that . 

- 
Users should never 

these large numbers are 
outliers that should be 
excluded horn the data, 

mind that you must re- 
peat this analysis at future 
stages in case there 
should be a reversal in 
fortunes among the 
models. Here, recalibra- 
tion has turned the 
worst-performing mod- 
el. DU. into the best. 

believe claims that a 
particular model is 
universally reliable. 

real evidence. 
Unfortunately, there 

is no obvious statistical 
test for outliers for non- 
stationary data. Because DtiS. ’ 

In this analysis, we have deliberately 
taken no account of the fact that there seems 
to be little evidence of reliability growth until 
quite late - we have blindly applied the 
models and the recalibration procedure as a 
naive user would. Clearly, you could do 
some simple preprocessing to detect the 
early stationarity of the data, such as applying 
simple tests for trend. You could then ex- 
clude the early part of the data in applying 
the growth models. However, we do not in- 

40 

the problem of outliers may arise fre- 
quently in practice - and it has no obvi- 
ous solution - we retained the possibly 
extreme values to show their effect on the 
models and the analysis. 

The PLR analysis in Figure 3d is 
greatly influenced by the ability of the 
models to cope with a very large time. LV 
and KL cope best because they give a pre- 
dictive distribution that assigns fairly high 
probability to large times; DU is worst. If 
we were to omit the 9,549 observation and 
join the plots, KL and LV are still superior 
and there is little difference among the 
others. 

The median predictions in Figure 3 b The main point, though, is that on this 
show that the models respond to the large evidence none of the predictions can be 
times differently. Four models (JM, trusted and recalibration is appropriate. 
LNHPP, GO, and LM) respond dramati- Figure 3e shows the recalibrated medians, 
cally to a large time by making the next which are in much closer agreement than 
predicted median much larger, and this the raw ones, although the large observa- 

I ( 
I 
! 

I ’ 
( 

-elative optimism continues for many pre. 
dictions before dying away. Two model: 
&V and KL) seem completely unaffectec 
)y large times, exhibiting a mucl 
;moother and steadier median growth 
Two others (NIO and DU) are affecter 
only slightly. 

The zl-plots in Figure 3c confirm tha 
he models most affected by large time 
give very optimistic predictions. LV an- 
KL are too pessimistic. The best u-plots 
come from M O  and DU, but even these 
are poor. Once again, we have objective 
evidence that all these models are giving 
inaccurate results. 
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tion still has a lingering effect on some 
models. The zl-plots in Figure 3f show a 
dramatic improvement - no deviations 
are statistically significant at the 10 per- 
cent level. 

There is overwhelming evidence horn 
the PLR analysis of recalibrated versus 
raw predictions in Figure 3g that 
recalibration is working very well for most 
models. It provides the least improvement 
for KL and LV, but these models needed 
the least improvement. 

Finally, the comparison of recalibrated 
predictions in Figure 3 h, shows again the 
huge effect ofthe single, large observation. 
Ifwe take account ofthis single prediction, 
then once again the recalibrated LV and 
KL models are best, but all the evidence 
for their superiority comes merely from 
their ability to cope with this single obser- 
vation. The different recalibrated predic- 
tions seem to be of roughly comparable 
accuracy if this observation is ignored, and 
that would seem to be a sensible procedure 
for anyone wishing to make further pre- 
dictions on this data set. 

T 
he techniques we have described are 
important because they largely resolve 

a reliability modeling dilemma: Users are 
faced with a plethora of models, but none 
can be trusted to give accurate results al- 
ways, and there is no way to select before- 
hand the model most appropriate for a 
particular application. 

We cannot overemphasize that users 
should never believe claims for the univer- 
sal validity of a particular reliability model. 
Indeed, we believe that the relatively poor 
adoption of reliability modeling has been 
caused in part by certain models being sold 
as panaceas. 

We think our techniques provide a way 
to overcome these difficulties. We also 
think it is now possible to measure and 
predict reliability for the relatively modest 
levels needed in the vast majority of appli- 
cations. Most important, the techniques 
give the user confidence that the results 
are sufficiently accurate for the program 
under examination. Users need not sub- 
scribe to dubious claims about a model’s 
inherent plausibility to trust the reliability 
figures it generates. 

In the examples we chose, the raw 
models perform badly. We deliberately 
chose these examples to show the power 
of the recalibration technique, but 
sometimes a model will perform reason- 
ably well before recalibration. From a 
user’s point of view, this is immaterial. 
Recalibration is easy to do and is genuinely 
predictive, so it should be applied as a mat- 
ter of course. Then it is easy to use the 
analytical methods to find which version 
(raw or recalibrated) is performing best. 

Although these techniques depend on 
rather novel and subtle statistical methods, 
we think their actual use and interpreta- 
tion are comparatively straightforward. At 
the Centre for Software Reliability, we’ve 
developed software-available from us - 
to do these analyses. 

Our approach is suitable for anyone 

contemplating measuring and predictin; 
software reliability. Most of the time, th 
results are trustworthy. In rare cases ii 
which none of the models work before o 
after recalibration, our techniques wil 
serve as a warning. 

Finally, a word of caution. Software i 
being used increasingly in safety-critica 
applications that demand a very high reli 
ability. This poses enormous - possibl, 
insurmountable - problems for systen 
validation. We emphasize that all ou 
techniques are designed for fairly modes 
reliability levels. Techniques that depenl 
on reliability growth cannot assure ver 
high reliability without infeasibly larg 
observation periods. It has been arguel 
that assuring ultrahigh reliability is eve] 
harder than we have sug 

$ 
ested -that es 

sentially it is impossible.- 4 
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