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ver the years,
many software reliability models have

been published, quite a few from our own |

Centre for Software Reliability. Unfortu-
nately, no single model can be universally
recommended. In fact, the accuracy of the
reliability measures generated by the
models varies dramatically: Some models
sometimes give good results, some are al-
most universally awful, and none can be
trusted to be accurate at all imes. Worse,
it does not seem possible to identify in ad-
vance those data sets for which a particu-
lar model is appropriate.'

This unsatsfactory situation has un-
doubtedly been the major factor in the
poor adoption of reliability models. Users
who have experienced poor results are
once bitten, twice shy, unwilling to uy
new techniques.

It is with some trepidation that we
claim our approach has largely eliminated

these problems —our credo contains some \
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caveats. We believe it i now possible in
mi0st cases to obtain reasonably accurate reli-
ability measures for software and to have
reasonable confidence that this is the case in a
particular situation, so long as the reliabil-
ity levels required are relatively modest.
The italicized words here are important
— there are some limits to what can be
achieved — but these limits are not so re-
strictive that they should deter you from
trying to measure and predict software re-
liability in an industrial context.

RELIABILITY AS A PREDICTION PROBLEM

In the form in which it has been most
studied, the software-reliability problem
involves dynamic assessment and predic-
tion of reliabilityin the presence of thatre-
liability growth which results from fault
i removal. This usually involves executing a
{ program in an environment (test or real),
observing failures, and fixing the faults
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that caused the failures. The expected fail-
ure behavior is therefore reliability
growth, at least in the long term, although
bad fixes that introduce new faults may
cause short-term reversals.

Reliability-growth models use the data
collected in this procedure, usually in the
form of successive execution times be-
tween failures (or sometimes the number
of failures in successive, measured time in-
tervals), to estimate current reliability and
predict future reliability growth.

What’s important is that all questions
of practical interest involve predicdon.
Even if you want to know current reliabil-
ity, you are really asking about the future:
In this case, about the random variable 7,
the time to the next failure. However you
express reliability — as a rate of failure
occurrence, the probability of surviving a
specified mission without failure, the
mean time to next failure, or any other
convenient way — you are trying to pre-
dict the future.

So when you ask if a model is giving
accurate reliability measures, you are re-
ally asking if it is predicting accurately.
This is sometimes overlooked even in
the technical literature, where authors
“validated” a model by showing
that it can accurately explain past failure
behavior and thereby claim thatitis “ac-
curate.” The ability to capture the past
accurately does not necessarily imply an
ability to predict accurately. As Niels
Bohr said, “Prediction is difficult, espe-
cially of the future.”

have

NEW APPROACH

Consider the simplest prediction prob-
lem: estimating current reliability. Assume
you have observed the successive inter-
failure tdmes #1, #2,..., t,_1, and you want to
predict the next dme to failure, 7;. To do
this, you use amodel to obtain an estimate,
(), of the true (but unknown) distribu-
tion function Fy(#) = P(T; < 1). If you knew
the true distribution function, you could
calculate any current reliability measure.

You start the program again and wait
until it fails, which is a realization #; of the
random variable 7. You repeat this opera-
tion for some range of i values. Informally,

you say that the model gives good results if
what you observe tends to be in close agree-
ment with what had been predicted.

Our approach is based on formal ways :

to compare prediction with observation.

Of course, this problem would be eas-
jer if you could observe the true F(z) and
compare it with the predicdon, F (®). But
you must somehow use only #;, which is all
you have. This is not a simple problem,
and itis compounded because itis nonsta-
tionary — you want to
predict accurately a se-
quence of different distri-
butions, from each of
which you will observe
only one t;.

However, you can
make some simple com-
parisons. Suppose you
need an accurate estimate
of only the median of T,
the value of T; that is ex-
ceeded with probability 1/2. You could
count what proportion of the actual 7, ex-
ceeded their predicted medians, and if this
proportion is very different from 1/2, you
can conclude that the median predictions
were poor.

But this analysis does not tell you very
much. Even if a series of predictions

.|
The ability to capture
the past accurately does
not necessarily imply an
ability o predict
accurately.

passed this test, it would give you confi- ;

dence in the medians only. It does not tell
you if other measures are accurate. What
you really need is a way to detect any dif-
ference between prediction, F{r), and
truth, F{?).

Urplot. Our first technique aims to de-
tect systermatic differences between pre-
dicted and observed failure behavior. The
u-plot, described in the box on p. 36,1s a
generalization of the median check.

Theidea behind itis very similar to bias
in statstics. In statistics, you use data to
calculate an estimator of a population pa-
rameter. The estimator is unbiased if its
average value is equal to the (unknown)
parameter.

because we want to estimate a function,
not just a number, at each stage, and be-
cause the problem’s inherent non-
stationarity means we can detect predic-

tion errors only over a sequence of differ-
ent predictions.

In the event that the prediction errors
are stationary — the nature of the error is
the same at every stage — there will be a
constant functional relationship between
F(r) and F;(t). In such cases, you can use
the u-plot to recalibrate the model — es-
sendally training it to learn from its mis-
takes — and obrain more accurate predic-
dons.

Recalibrating models
to improve prediction ac-
curacy exploits the fact
that sometimes predic-
tion errors are indeed ap-
proximately stationary.
Clearly, there is always an
unknown function, G,
that will transform the
predicted distribution
into the true distribution.
However, only some-
times is this function approximately the
same in all cases: G;= G forall 7.

When it is, you can estimate G using
the comparison of earlier predictions
against their corresponding observations
and, by adjusting future predictions, im-
prove their accuracy. In fact, the u-plot
based on these earlier predictions is a suit-
able estimator of G.*

You adjust, or recalibrate, a model in
four steps:

1. Obtain the #-plot, G; 7ofpredlcuom
made before stage /. (It is better ifG isa
smoothed version of a joined-up, step-
function #-plot, so our examples use a
spline-smoothed version.)

2. Obtain F() from the raw (un-
recalibrated) model for prediction at stage 7.

3. Calculate the recalibrated predic-
tion £ = G [F{#).

4. Repeat at each stage /.

"This procedure is truly predictive, be-
cause it uses only the past to predict the
future. You must believe neither that the
recalibrated predictions will be better than

. the raw ones, nor that the prediction er-
Of course, our case is more complex '

rors, G, are approximately stationary. You
can use other techniques to compare and
analyze prediction accuracy, including the
prequendal likelihood ratio, described
next, which can show if recalibration has
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You use a #-plot to deter-
mine if predictions, F{#), are on
average close to the true distri-
bution, F;(?). For example, if
| you can show that the random
variable, T truly had the distri-
bution F;(t) — the predicton
and the truth were identical —
;\hen the random variable U; =
F{T;) will be uniformly distrib-
uted on (0,1). In statistics, this is
called the probability integral
transform.!

Ifyou observe the regliza-
ton t;and calculate ; = F(t;),
then »; will be a realization of a
uniform random variable.
Doing this for a sequence of
predictions gives a sequence
| {as}, which should look like a

ASSESSING PREDICTIVE ACCURACY: U-PLOY

random sample from a uniform
distribution. Any departure
from the uniformity indicates
some deviation between the
predictions, {F; (#)}, and the
truth, {F;@)}.

To find such departures,
you plot a sample distribution
function of {u}}. This is a step
function, constructed by plac-
ing points u1, %2, ..., #, (each of
these is a number between 0
and 1) on the interval (0,1).
"Then, from left to right plotan
increasing step function, with
each step of height 1/(z + 1) at
each # on the abscissa. The re-
sulting monotonically increas-
ing function has a range (0,1).
This s the u-plot.

If the {1} sequence s truly
uniform, the z-plot should be
close to the line of unit slope.
Any serious departure indicates
inaccurate predictions. A com-
mon way to test if departures
are significant is to compare
them to mbles for the
Kolmogorov distance, the maxi-
mum vertical deviation of the
plot from the line.! However, for-
mal tests to prove significant de-
partures are often unnecessary:
As with the examples in this arti-
cle, itis often clear from simply
looking at the plots that the pre-
dictions are poor.

More important, informal
inspections of #-plots can re-
veal a lot about prediction er-

rors. For example, when predic-
tions are consistently too opti-
mistic, the model underesti-
mates the chance of the next
failure occurring before ¢ (for
all /). In such a #-plot, the us
will bunch to the left of the
(0,1) interval, giving a plot that
is above the line of unitslope.
Similarly, a z-plot that is entirely
below the line indicates predic-
tions that are too pessimistic.
More complex z-plots can some-
times be interpreted in terms of
the nature of the inaccurate pre-
dictions they represent.
REFERENCES
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produced better results than the raw ‘

model.

Even when a model gives predictions
for a data set that have a good u-plot, there
is no guarantee that the model is accurate
in every way. In statistics, even if you have

an unbiased estimator, you might still de-
cide to use a biased one. For example, the |

unbiased estimator may have a large vari-
ance, so although its expected value is
equal to the unknown parameter, its value
in a particular case may be far from the
expected value. This is the difference be-
tween what happens on average and what
happens in a particular instance. Similar ar-
guments apply to a good z-plot, which de-
scribes average behavior but can also mask
large inaccuracies in particular predictions.

Prequential lkelihood ratio. This deficiency
led us to adopt a second technique, the
prequential likelihood ratdo, described in
the box on p. 38.

The PLR lets you compare two
models’ abilides to predict a particular
data source so that you can select the one
that has been most accurate over a se-
quence of predictions. Unlike the #-plot,
which is specific to a pardcular type of in-
accuracy, the PLR is general — the model
it selects as best is objectvely best in a
general way.® For example, it can detect

when the predictions are too noisy and so '

are individually inaccurate, even when the
u-plot looks good and the predictions
seem unbiased.

|
|
1
|

We admit that both techniques are
nontrivial, and you may find them very

| the predicted medians only, if these are

unfamiliar at first. This is not surprising, |

because traditional statistical methods
have neglected prediction in favor of esti-
mation. Techniques like PLR analysis
have become available only recently.

However, it is really very straightfor- :

ward to use these techniques, which in-
volve nothing more than simple graphical
analysis.

THREE DATA SETS

Here we illustrate how to apply these
techniques, using three sets of real failure
data.

$83 data set. Our first example uses the
SS3 data set of 278 interfailure times, col-
lected by John Musa.* This data set is un-
usual because all eight models we use for
comparison seem to give extremely poor
results as determined by the u-plot, but
recalibration dramatically improves all
eight. The box on p. 40 lists the models we
used.

Figure la shows the raw data plotted as
cumulative number of failures against total
elapsed execution dme. Figure 1b shows
the successive predictions of the median
next time to failure. The graph shows ex-
traordinary disagreement among the

sults that are far more pessimistic than the
other six. Although the graph applies to

inaccurate, then other measures of reli-
ability will also be inaccurate.

In fact, the u-plots in Figure lc show
that i/ predictions are extremely inaccu-
rate; plots differ from the line of unitslope
with very high statistical significance. The
six models that approximately agree in
Figure 1b are in fact much too optimistic
— their #-plots are almost always above
the line of unit slope. LV and KL, on the
other hand, are too pessimistic — their

- u-plots are generally below the line of unit

slope. These results suggest the true medi-
ans lie somewhere between the two clus-
ters in Figure 1b.

Figure 1d shows log(PLR) plotted for
each model against a reference model,
DU. This analysis reveals that KL.and LV
are significantly superior to the other six
models for this data set, even though we
know them to be poor, too.

Because all the models give poor u-
plots, we have no trustworthy predictions
for this data set. Therefore, all models are
candidates for recalibration. Figure le
shows that recalibration brings much
closer agreement in the predicted medi-
ans. And the #-plots of the recalibrated
predictions in Figure 1f are an enormous
improvement over the raw predictions.
Now none of the deviations from the unit

© slope is statistically significant.
models. The LV and KL models give re-

Figure 1g shows the log(PLR) plots of
recalibrated versus raw predictions. The
improvement in predictive accuracy is
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Figure 1. A recalibration example using the SS3 data
set. (A) The raw ammidative number of failures plotted
agamst elapsed execution time; (B) and the eight
models' divergent predictions of the median next time to
Sailure. (C) Al the predictions’ u-plots differ from the
line of unit slope with very bigh statistical significance.
These plots suggest the true medians lie somewhere
between the two dusters i (B). (D) Plotting the |
prequential likelibood ratio (log(PLR) for each model |
DUSOLS against a reference model, DU, shows LV and LK are
FIPrS s superior but (C) indicates predictions from all eight

" KLSDUS models are poor: (E) The recalilnated predicted medians
(the S suffix neans “recalibrared”) are much doser in
agreement; (F) and the u-plots of the vecalibrated |,
predictions  are enormowsly  improved. (G) The !
log(PLR) plots of recalibrated versus v predictions ||
show dramatic improvement in predicrve accuracy for
o all eight; (H) and all recalibrated imodels perform
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The prequential likeli-

. hood ratio is a way to decide
 which of a pair of prediction
systems gives the most accu-
rate results for a particular
data source.

bution (the probability density

function) of the time to failure,
T, and predictions of the PDF
from two models, 4 and B. A is
clearly better than B.
Eventually the failure oc-

Figure A shows a true distri-

ASSESSING PREDICTIVE ACCURACY: PLR

curs after time #;. Obviously,

you would expect #; to lie in the
main body of the true distribu-

tion (it is more Jikely to occur

where f() is larger). If you eval-
uate the two predictions at this
value of 7, you see there is a ten-

SRR SRIRp: I, Bt SRR
dnuLy for modd A5 }uu‘hLuUu

tobelarger than model B's —
model A’s PDF tends to have
more large values close to the
large values of the trme distribu-

tlonthanB’s Thisis whatit

Model 4: f/‘(r)

Probabily

Truedmnbmmnsf(r) Model B: fﬂ(”

M

; hgureA The true probability density function (sofidfine) of the time toﬁzzluremd
‘ the predicted PDFS fiom model A (long dashed line) and model B (short dashed line).

means to say that 4’ predictions
are doser to the truth than B’s.

If model A’s predictions are
more accurate than B’s,
F5)/fP) wil tend o be
larger than 1. The prequential
likelihood ratio is simply a run-
ning product of such terms

over many successive predic-
tions:
a0
iy

and this should tend to increase
with 7 if model A’ predictions
are better than B’s. Conversely,
B's superiority is indicated if
this product shows a consistent
decrease.

Of course, even if A is con-
sistently more accurate than B,
there is no guarantee that a sin-
glef745)/(5) will always be
greater than one. But you can
expect the plot of PLR (or for
convenience, its log) to exhibit

prLR4B _

S

overall increase with some fluc-
tuation.

Usually, we are interested in
comparing the accuracy of more
than two prediction sequences.
To do this, we select one arbitrar-
ily as areference and conduct
pairwise comparisons of others
againstit, asabove.

PLR is a completely general
procedure for identifying the

better of a pair of prediction sé-

quences. Apart from the intu-
itive plausibility of PLR asa
means of selecting between
many competing prediction
methods on a particular data
source, support for this tech-
nique comes from amore for-
mal asymptotic theory.!

REFERENCES
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“The Prequential Approach,”

Royal Statistical Soc. A, Vol. 147,
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dramatic in all cases, but slightly less so for
KL and LV. Thesc two models were the
best performing pair of the original eight
— since they were not as bad as the other
six, they had less room for improvement.
Figure 1h shows that all recalibrated
models perform roughly comparably. In this
graph, no single plot shows a consistent
trend, compared with the corresponding
plots in Figure 1d (note the scale change).
Clearly, recalibration had a dramatic
effect on the accuracy of the predictions
you can make about this data set. Faced
with these results, a user would clearly
make future predictions using one of the
recalibrated versions of the models, possi-
bly GOS (the S suffix designates a recali-
brated model), although there is little dif-
ference between GOS and JMS or LMS.
As more data becomes available, of
course, you must update the analysis and
decide which, if any, predictions to trust.
The most important advantage to this
procedure is that it lets the data speak for
itself and does not require the user to be-
lieve ahead of time that a model will give
accurate predictions. Since such beliefs are
highly questionable, this is an important
new way to acquire confidence in reliabil-

ity predictions.

tmes to failure.

(SR data set. The CSR1 data set, col-
lected from a single-user workstation at
the Centre for Software Reliability, repre-
sents some 397 user-perceived failures:
genuine software failures, plus failures
caused by usability problems, inadequate
documentation, and so on.

Figure 2a shows the cumulative failure
plot for the raw data; Figure 2b shows the
median predictions from the eight mod-
els. Two things are striking: There is little
evidence of reliability growth until about
halfway through the data set, and again
there is marked disagreement among the
models when the growth does start.

In Figure 2c, the #-plots again show
that all models perform poorly — all devi-
ations from the unit slope are significant.
More to the point, there are great differ-
ences in the nature of the prediction er-
rors: JM, GO, LM, and LNHPP are too
optimistic; KL and LV are pessimistic; and
MO and DU have a pronounced S-shaped
u-plot, intersecting the line of unit slope at
about (0.5, 0.5). This indicates MO and
DU predict the median time to failure ac-
curately, but are too optimistic in estimat-
ing the probability of small times to failure
and too pessimistic in estimating large

The PLR analysis in Figure 2d shows
that KL performs best overall, with LV
second. The relatively poor performance
of the other models is due partly to bias, as
shown by the #-plots, and in some cases
partly to noise, as evidenced by the great
fluctuations in the medians in Figure 2b.

Once again, none of the raw predic-
tions can be trusted according to the u-
plot analysis, and these models are candi-
dates for recalibraton. Figure 2e shows
the effect of recalibration on the median
predicdons. The change in medians from
Figure 2bis in the right direction, according
to the raw #-plots. The #-plots of the recali-
brated predictions in Figure 2f confirm that
there has indeed been an improvement.
However, only KLS has a plot that does not
significanty deviate from the line of unit
slope (although MOS, DUS, LNHPPS,
and LVS are only just significant).

While the #-plots for MOS and DUS
improved a great deal, there islittle change
in the medians (Figures 2b and 2e). This is
because the raw medians were very accu-
rate, but other points on the raw predictive
distributions were not, and these have
been improved by recalibration.

Figure 2g shows a steady increase in all
log(PLR) plots and confirms that, in all
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Figure 2. Anabysis of the CSR1 data set. (A) The
cummlative failure plot for the vaw data and (B) the
median predictions from the eight models. There is
marked disagreement among the models from when
reliability growth starts, about balfway through the
data. (C) The u-plots show that some models are too ||
ptimistic, others too pessimistic, and the S-shaped |
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The recalibvated models’ median predictions. The
change from (B) is in the right divection, according to |
the raw u-plots. (F) Improvement is confirmed by the
] w-plots of the vecalibrated predictions and the (G) |
-10 — . 50— — . steady increase in all log (PLR) plots. In all cases, the }
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Cumulative failures 400 60 recalibrated predictions are supevior to the raw ones,
(G) (H) with (H) the best predicrions coming from DUS.
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EIGHT MODELS

In applying our techniques,
we used these eight reliability
models:

o Jelinski-Moranda (JM):
One of the earliest models, it as-
swines that failures occur purely
atrandom and that all faults
contribute equally to un-
reliability. Tt also assumes that
fixes are perfect; thus, a
program’s failure rate improves
by the same amount at each fix.
. (7. Jelinski and PB. Moranda,
“Software Reliability Re-
search,” in Statistical Computer
Performance Evaluation, W.
Freiberger, ed., Academic
Press, New York, 1972, pp.
465-484).

o Goel-Okumoto (GO): Sun-
ilar to JM, except it assumes the
failure rate improves continu-
ously in tme. (A.L. Goel and
K. Okumoto, “Time-Depen-
dent Error-Detection Rate

Model for Software and Other
Performance Measures,” IEEE
Tians. Reliability, Aug. 1979, pp.
206-211.)

& Musa-Okumoto (MO):
Similar to (GO, except it at-
tempts to consider that later
fixes have a smaller effect on a
program’s reliability than ear-
lier ones. (J.D. Musa and K.
Okumoto, “A Logarithmic
Poisson Execution Time
Model for Software Reliability
Measurement,” Proc. Int'l Conf.
Software Eng., IEEE CS Press,
Los Alamitos, Calif., 1984, pp.
230-238)

¢ Duane (DU): Developed
for burn-in hardware testing, in
which defective components
are detected and replaced with
good ones in the early days of
use. Again, it assumes the fail-
ure rate changes continuously
in time. (L.H. Crow, “Confi-

dence Interval Procedures for

tal Order Statstic Modcels of

Reliability Growth Analysis,”
“Tech. Report 197, US Arm

Materiel Sys

v
Ac-
tvity, Aberdeen, Md., 1977.)

¢ Littlewood (LM): Similar
to JM, except it assumes that
different faults have different
sizes (they contribute unequally
to unreliability). It assumes
larger faults tend to be re-
moved early, so there is a law of
diminishing returns in debug-
ging. (B. Litdewood, “Stochas-
tic Reliability Growth: A Model
for Fault-Removal in Computer
Programs and Hardware De-
signs,” ILEE Trans. Relubiity,
Oct. 1981, pp. 313-320.)

¢ Littlewood Nonbarmogeneous
Poissont Process (ILNHPP): Similar
to LM, but assumes a continuous
change in tailure rate (instead of
discrete jurnps) when fixes take
place. (D.R. Miller, “Fxponen-

Software Relability Growth,”
[EEE Trans. Software Fng.. Jan.
1086, pp. 12-24)

o Littlewood-1 ervall (IN):
LLets the size of \he improve-
ment in the failure rate ata fix
vary randomly, representing
the uncertainty about fault size
and the efficacy of the fix. (B.
Littlewood and J.L. Verrall, “A
Bayesian Reliability Growth
Maodel for Computer Soft-
ware,” 7. Royal Statistical Soc. C.,
Vol. 22,1973, pp. 332-346.)

¢ Keiller-Lirtlewood (KL):
Similar to LV, but uses a differ-
ent mathemadcal form for reli-
ability growth. (PA. Keiller et
al., “Comparison of Software
Reliability Predictions,” Proc.
IEEE Int’l Symp. Fault-Tolerant
Compuring, IEEE CS Press,
Los Alamitos, Calif., 1983, pp.
128-134)

cases, the recalibrated predictions are su-
perior to the raw ones. The greatest im-
provement is in DU, but this is largely
because this model performs so poorly
without recalibration. Figure 2h shows
that after recalibration, the best predic-
dons are coming from DUS, with KLS
and LVS next best.

In this case, you would be advised to
use DUS, bearing in
mind that you must re-
peat this analysis at future
stages in case there
should be a reversal in
fortunes among the
models. Here, recalibra-
tion has turned the
worst-performing mod-
el, DU, into the best,
DUS.

In this analysis, we have deliberately
taken no account of the fact that there seems
to be little evidence of reliability growth untl
quite late — we have blindly applied the
models and the recalibration procedure as a
naive user would. Clearly, you could do
some simple preprocessing to detect the
early stationarity of the data, such asapplying
simple tests for trend. You could then ex-
clude the early part of the data in applying
the growth models. However, we do not in-

|

Users should never

believe claims that o
parficulor model is

universally reliable.

troduce this complication here to save
space.

(SR2 data set. Our third data set is a
subset of the second — failures that are
known to be due to software faults. The
data displayed in Figure 3a is notable for
several extremely large interfailure times,
including one of 9,549 minutes. Although
you might think that
these large numbers are
outliers that should be
excluded from the data,
such exclusion can only
be justified in the face of
real evidence.

Unfortunately, there
is no obvious statistical
test for outliers for non-
stationary data. Because
the problem of outliers may arise fre-
quently in practice — and it has no obvi-
ous solution — we retained the possibly
extreme values to show their effect on the
models and the analysis.

The median predictions in Figure 3b
show that the models respond to the large
times differently. Four models (JM,
LNHPP, GO, and LM) respond dramati-
cally to a large time by making the next
predicted median much larger, and this

relative optimism continues for many pre-
dictons before dying away. Two models
(LV and KL) seem completely unaffected
by large times, exhibiting a much
smoother and steadier median growth.
Two others (MO and DU) are affected
only slightly.

The z-plots in Figure 3¢ confirm that
the models most affected by large times
give very optimistic predictions. LV and
KL are too pessimistic. The best u#-plots
come from MO and DU, but even these
are poor. Once again, we have objective
evidence that all these models are giving
inaccurate results.

The PLR analysis in Figure 3d is
greatly influenced by the ability of the
models to cope with a very large time. LV
and KL cope best because they give a pre-
dictive distribution that assigns fairly high
probability to large times; DU is worst. If
we were to omit the 9,549 observation and
join the plots, KL and LV are still superior
and there is little difference among the
others.

The main point, though, is that on this
evidence none of the predictions can be
trusted and recalibration is appropriate.
Figure 3e shows the recalibrated medians,
which are in much closer agreement than
the raw ones, although the large observa-
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tion still has a lingering effect on some
models. The #-plots in Figure 3f show a
dramatic improvement — no deviatons
are statistically significant at the 10 per-
centlevel.

There is overwhelming evidence from
the PLR analysis of recalibrated versus
raw predictions in Figure 3g that
recalibration is working very well for most
models. It provides the least improvement
for KL and LV, but these models needed
the least improvement.

Finally, the comparison of recalibrated
predictions in Figure 3h, shows again the
huge effect of the single, large observation.
If we take account of this single prediction,
then once again the recalibrated LV and
KL models are best, but all the evidence
for their superiority comes merely from
their ability to cope with this single obser-
vation. The different recalibrated predic-
dons seem to be of roughly comparable
accuracy if this observation is ignored, and
thatwould seem to be a sensible procedure
for anyone wishing to make further pre-
dictions on this data set.

The techniques we have described are
important because they largely resolve
a reliability modeling dilemma: Users are
faced with a plethora of models, but none
can be trusted to give accurate results al-
ways, and there is no way to select before-
hand the model most appropriate for a
particular application.

We cannot overemphasize that users
should never believe claims for the univer-
sal validity of a particular reliability model.
Indeed, we believe that the relatively poor
adoption of reliability modeling has been
caused in part by certain models being sold
as panaceas.

‘We think our techniques provide a way
to overcome these difficuldes. We also
think it is now possible to measure and
predict reliability for the relatively modest
levels needed in the vast majority of appli-
cadons. Most important, the techniques
give the user confidence that the results
are sufficienty accurate for the program
under examination. Users need not sub-
scribe to dubious claims about a model’s
inherent plausibility to trust the reliability
figures it generates.

In the examples we chose, the raw
models perform badly. We deliberately
chose these examples to show the power
of the recalibration technique, but
sometimes a model will perform reason-
ably well before recalibration. From a
user’s point of view, this is immaterial.
Recalibration is easy to do and is genuinely
predictive, so it should be applied as a mat-
ter of course. Then it is easy to use the
analytical methods to find which version
(raw or recalibrated) is performing best.

Although these techniques depend on
rather novel and subtle statistical methods,
we think their actual use and interpreta-
tion are comparatively straightforward. At
the Centre for Software Reliability, we've
developed software — available from us —
to do these analyses.

Our approach is suitable for anyone

contemplating measuring and predicting
software reliability. Most of the dme, the
results are trustworthy. In rare cases in
which none of the models work before or
after recalibration, our techniques will
serve as a warning.

Finally, a word of caudon. Software is
being used increasingly in safety-critical
applications that demand a very high reli-
ability. This poses enormous — possibly
insurmountable — problems for system
validation. We emphasize that all our
techniques are designed for fairly modest
reliability levels. Techniques that depend
on reliability growth cannot assure very
high reliability without infeasibly large
observation periods. It has been argued
that assuring ultrahigh reliability is even
harder than we have suggested — thates-
sentially itis impossible.’ ¢
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