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Recalibrating  Software Reliab ility  Mode ls 
SARAH BROCKLEHURST, P. Y. CHAN, BEV LITTLEWOOD, AND JOHN SNELL 

Abstract-In spite of much research effort, there is no  universally 
applicable software reliability growth model  which can be  trusted to 
give accurate predictions of reliability in all circumstances. Worse, we 
are not even in a  position to be  able to decide a  priori which of the 
many models is most suitable in a  particular context. Our own recent 
work has tried to resolve this problem by developing techniques 
whereby, for each program, the accuracy of various models can be  ana- 
lyzed. A user is thus enabled to select that model  which is giving the 
most accurate reliability predictions for the particular program under 
examination. One of these ways of analyzing predictive accuracy, which 
we call the u-plot, in fact allows a  user to estimate the relationship 
between the predicted reliability and  the true reliability. In this paper 
we show how this can be  used to improve reliability predictions in a  
very general way by a  process of recalibration. Simulation results show 
that the technique gives improved reliability predictions in a  large pro- 
portion of cases. However, a  user does not need to trust the efficacy of 
recalibration, since the new reliability estimates produced by the tech- 
n ique are truly predictive and  so their accuracy in a  particular appli- 
cation can be  judged using the earlier methods. The generality of this 
approach would therefore suggest that it be  appl ied as a  matter of 
course whenever a  software reliability model  is used. Indeed, al though 
this work arose from the need to address the poor performance of soff- 
ware reliability models, it is likely to have applicability in other areas 
such as reliability growth model ing for hardware. 

Index Terms-Prediction accuracy, recalibration, reliability growth 
model,  reliability prediction, software reliability. 

I. INTRODUCTION 

T HE earliest attempts to measure and  predict the reli- 
ability of software occurred about  twenty years ago.  

In spite of considerable research work in the intervening 
years, there is still no  definitive method or mode1  which 
can be  universally recommended as “best.” Perhaps this 
should not be  surprising. Estimating and  predicting soft- 
ware reliability is not easy. Perhaps the major difficulty 
is that we are concerned primarily with design faults. 

This situation is very different from that tackled by  the 
conventional hardware reliability theory. Here the dra- 
matic advances of the past quarter century have  come from 
a  concentrat ion on  the random processes of physical fail- 
ure. Thus, for example, we now have  a  good  understand- 
ing of how the reliabilities of complex hardware systems 
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depend  upon,  on  the one  hand,  the detailed system struc- 
ture, on  the other, the reliabilities of the constituent com- 
ponents.  The  very success of this physical hardware re- 
liability theory, however,  is now revealing the importance 
of design faults to the overall reliability of complex sys- 
tems. Our  ability to use  intelligent strategies to minimize 
the effects of physical failure of components  results in a  
higher proport ion of system failures being caused by 
f lawed designs. Such flaws in hardware systems are very 
similar to software faults: they represent the result of hu-  
man  misunderstandings. It seems likely, as  a  result of this, 
that obtaining good  methods for measur ing the effect of 
such flaws on  hardware system reliability will be  as  dif- 
ficult as  measur ing software reliability. 

Software has  no  significant physical manifestation. 
Software failures are merely inherent design faults re- 
vealing themselves under  appropriate operational circum- 
stances. These faults will have  been  resident in the soft- 
ware since their creation in the original design or in 
subsequent  changes.  W e  currently do  not have  good  the- 
ories of how software faults come into being. Presumably 
such theories would require better understanding of hu-  
man  problem solving and  the social processes involved in 
writing software; if so, we should perhaps look to social 
and  psychological sciences, rather than physics, for so- 
lutions. In view of the comparat ive lack of success of these 
sciences in arriving at quantitative understanding, it would 
be  wise not to expect  any  dramatic breakthrough in the 
short term. 

These difficulties notwithstanding, there have  been  im- 
portant advances in software reliability model ing re- 
cently. In fact, there is now a  plethora of models from 
which the user can choose in order to make reliability es- 
timates and  predictions. However,  none  of these has  been  
shown to be  applicable in all circumstances, and  we are 
not presently able to decide in a  particular context which 
would be  the most appropriate model  to use. This presents 
difficulties for a  potential user, who  is solely interested in 
obtaining reliability measures in which he/she can have  
conf idence. 

Our  own recent work [l] has  attempted to tackle this 
problem by devising means  whereby judgements can be  
made  about  the accuracy of past predictions on  u  partic- 
ular dara source. The  intention is that a  user could apply 
such techniques, for each  data source (program), to the 
results produced by several models and  select the model  
which has  so far performed best by  giving the most ac- 
curate reliability predictions. It would then be  sensible, 
in the absence of any  other information, to use  that model  
for the next prediction on  that data source. This “horses 
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for courses” approach obviates the need  for a  priori se- 
lection of a  model: instead each  data source is provided 
with its “best” model. Indeed, this “best” model  may 
change  as more data is collected. 

These new methods of model  selection work by  analyz- 
ing the c loseness between predicted and  actual failure be-  
havior. In particular, they provide information about  two 
especially important types of departure which we call bius 
(or ill-calibration) and  noise (or variability). The  key idea 
in the present work is that this knowledge of the nature of 
past errors of prediction can be  used to improve future 
predictions. The  techniques to be  descr ibed here are quite 
general  and  are not model-dependent .  They will be  shown 
to be  effective in improving predictive accuracy in a  high 
proport ion of cases, but users need  not take this efficacy 
on  trust: their predictive accuracy in a  particular case can 
be  analyzed, just like any  other model, using our  earlier 
techniques [ 11. 

II. RELIABILITY GROWTH AND PREDICTIVE ACCURACY 

In its simplest form, the software reliability growth 
problem concerns the random variables T,, T2, . . . , T,,, 
represent ing the execut ion times between successive fail- 
ures as  a  program is being debugged.  It is general ly as- 
sumed that attempts are made  at each  failure to fix the 
fault which caused that failure. Models vary in the way 
that they represent this fault-finding and  fixing operation: 
details of different approaches can be  found elsewhere [ 11, 
VI, 1151, 1161. 

At stage i, when  observat ions I,. t,. * . . , t, _  , have  
been  made  of the first i - 1  interfailure times, the objec- 
tive is to predict future failure behavior represented by  the 
unobserved T,, T, +  , , . * . random variables. Informally, 
the prediction problem is solved if we can accurately es- 
timate the joint distribution of any  finite subset  of Ti. T, +  , 
. . . This statement, however,  begs  the quest ion of what 
we mean  by “accurately, ” and  it is this issue which forms 
a  major part of our  earlier work [ 11. 

In practice, of course, a  user will be  satisfied with much 
less than a  complete description of all future uncertainty. 
In many  cases, for example, it will be  sufficient to know 
the current reliability of the software under  examination. 
This could be  presented in many  different forms: the re- 
liability function, P( Ti <  f); the current rate of occur- 
rence of failures (ROCOF) [3]; the mean  (or median) time 
to next failure (mttf). Alternatively, a  user may wish to 
predict when  a  turget reliability, perhaps to be  used as  the 
criterion for termination of testing, will be  achieved. 

If we accept  that prediction is our  goal, it can  be  seen 
that the usual discussion of compet ing software reliability 
growth models is misleading. W e  should, instead, be  
compar ing the relative merits of prediction systems. A 
prediction system which will allow us to predict the future 
(T,, 7;+, . - * ) from the past (I,, t2, . . . r, _  , ) comprises: 

1) the probabilistic model  which specifies the distri- 
but ion of any  subset  of the T,‘s conditional on  a  (un- 
known) parameter vector cu; 

2) a  statistical inference procedure for Q! involving use  
of available data (realizations of T,‘s); 

3) a  prediction procedure combining 1) and  2) to allow 
us to make probability statements about  future 7;‘s. 

Of course, the model  is an  important part of this triad 
and  it seems unlikely that good  predictions can be  ob-  
tained if the model  is not “close to reality. ” However,  a  
good  model  is not sufficient: s tages 2) and  3) are vital 
components  of the prediction system. In fact disaster can  
strike at any  of the three stages. 

In principle. it ought  to be  possible to analyze each  of 
the three stages separately so  as  to gain trust in (or to 
mistrust) the predictions. Unfortunately, it is our  experi- 
ence  that this is not possible. There are several reasons. 

In the first place, the models are usually too compli- 
cated for a  traditional “goodness-of-f i t” approach to be  
attempted. Even the simplest exponential  order statistic 
model  [ 151  does  not allow this kind of analysis. This 
should not surprise us: the goodness-of-f i t  problem for in- 
dependent  identically distributed random variables is hard 
in the presence of unknown parameters. The  reliability 
growth context is much worse because of nonstationarity. 

Secondly, statistical propert ies of the estimators of un-  
known parameters for a  non-Bayesian analysis of these 
models are usually not available. For example, several 
models assume, quite reasonably,  that the software con- 
tains only a  finite number  of faults and  that each  of these 
is fixed with certainty upon  its first occurrence. There is 
thus an  upper  bound  on  the number  of observable Ti’S. 
This implies that we cannot  even  trust the usual asymp- 
totic theory for maximum likelihood (ML) estimators. 
Their small sample propert ies are usually impossibly hard 
to obtain (see, for example, the work of Joe  and  Reid ] 1  l] 
on  a  particularly simple model). 

Of course, there is a  proper approach to stages 2) and  
3) in the Bayesian framework. It involves posterior dis- 
tributions of the parameters at s tage 2) and  Bayesian pre- 
dictive distributions for 3) (see [2]). Unfortunately, this 
does  present some analytical difficulties for the popular 
software reliability growth models. However,  with recent 
advances in Bayesian numerical techniques [ 191,  coupled 
with powerful personal  computers, this picture may 
change  in the near  future. 

Finally, it could be  argued that there are models which 
are “obviously” better than others because of the greater 
plausibility of their underlying assumptions. W e  find this 
a  dubious proposit ion. Certainly, the assumptions of some 
models seem overly naive and  it might be  reasonable to 
discount them. However,  this still leaves others which 
cannot  be  rejected a  priori. It is our  belief that under-  
standing of the processes of software engineer ing is so  
imperfect that we cannot  even  choose an  appropriate 
model  when  we have  an  intimate knowledge of the soft- 
ware under  study. At some future time it may be  possible 
to match a  reliability model  to a  program via the charac- 
teristics of that program, or even  of the software devel- 
opment  methodology used.  This is not currently the case. 

Where  does  this leave a  user, who  merely wants to ob-  
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tain trustworthy reliability metrics for his current software 
project? Our  view is that there is no  alternative to a  direct 
examinat ion and  compar ison of the quality of the predic- 
tions emanat ing from different complete prediction sys- 
tems. In [l] we  have  descr ibed several ways in which this 
can  be  done,  the most important tools being the u-plot and  
the prequential likelihood. The  key idea in each  case is 
that a  compar ison is made  between what has  been  pre- 
dicted and  what is (later) actually observed.  W e  believe 
that this emulates how a  user would informally gain con- 
f idence in a  sequence of predictions. 

A. The  u-Plot 
For simplicity we shall concentrate on  prediction of the 

next time to failure Ti, based  on  observat ions I,. t2, 
. . . , t, - i. The  u-plot uses the predictor pj( t), the esti- 
mate of the distribution function Fi( t) = P( 7; I t), via 

where t, is the later-observed realization of the random 
variable 7;. Thus ui is the probability integral transform 
of the observat ion using the predictive distribution func- 
tion. If the sequence of predictions { pj( ti) } is good,  it is 
easy to see that the sequence { Ui } should look like a  ran- 
dom sample from a  U(0, 1  ) distribution [I]. There are 
various types of departure from such an  appearance which 
might show themselves; here we shall only be  concerned 
with whether the { U, } sequence looks uniformly distrib- 
uted. W e  shall do  this via the u-plot which is the sample 
cumulative distribution (cdf) function of the U, sequence.  
The  departure of this plot from the cdf of U( 0, 1  ), the 
line of unit slope, is an  indication of a  departure of the 
prediction system from accuracy. W e  can use the Kol- 
mogorov distance, that is the maximum vertical devia- 
tion, as  a  measure of this departure and  use standard ta- 
bles to determine whether or not it is statistically 
significant. 

Fig. 1  shows u-plots for Jel inski-Moranda [lo] and  Lit- 
t lewood-Verrall 1141  models making predictions on  a  data 
set, called Sl [ 181,  analyzed in [ 11. These plots are each  
based  on  86  predictions: Fs=,,( t) through F136(  1). The  Kol- 
mogorov distances are 0.205 (JM) and  0.150 (LV). The  
first is significant at the 1  %  level, suggest ing very poor  
prediction from JM; the second is significant at 5  %, which 
suggests that this model  is also performing poorly but is 
somewhat  superior to JM. 

More importantly for our  present purposes,  the shape 
of the plots tells us  that JM is making predictions which 
are too optimistic, while LV predictions are too pessimis- 
tic. This can be  seen as  follows. The  JM plot is every- 
where above  the line of unit s lope (the true U( 0, 1) cdf ), 
so  there are too many  small u, values. But consistently too 
small u  values tells us  that the model  is underest imating 
the chance of small t imes between failure, i.e., the model  
is too optimistic. A similar argument  shows that a  plot 
which is almost everywhere below the line of unit slope, 
such as  LV, is too pessimistic. 

Fig. I. u-plots for JM and LV model predictions of 
SI data 1181. 

through TIIh. 

If we  knew that these deviations between predicted and  
actual behavior were consistent, we could attempt to mea-  
sure the degree of optimism (or pessimism) and  improve 
future predictions by  taking account  of this tendency. It 
is this idea which we shall develop in the next section. 
Before we do  that, we shall briefly descr ibe the prequen-  
tial l ikelihood function (PL) which is a  general  mecha-  
nism for compar ing the accuracy of prediction systems. 

B. The  Prequentiul Likel ihood Funct ion 
The  PL is def ined as  follows. The  predictive distribu- 

tion flj( t) for T, based  on  tl, t2, . . . , t, ~  i will be  as- 
sumed to have  a  probability density function (pdf) 

j;(t) =  F,!(t). 

For predictions of T, +  , , T  ,+25. . . 7  T  , +  ,,, the prequential 
l ikelihood is 

J -cl1 
PL(j, t) =  JT+, A(C). (2) 

A compar ison of two prediction systems, A and  B, over a  
range of predictions of T, 1I, T, +  ?, . . * , T, +,,, can  be  
made  via their prequential l ikelihood ratio 

, +  II 
rI Prw 

PLR,,(j, t) =  ‘7::’ . 

n ffCri) 
i=/+l 

(3) 

Notice how, in a  fashion analogous to the calculation of 
the u  sequence,  the individual contributions to the pre- 
quential l ikelihood are obtained by  substitution into the 
predictor pdf for T, of the later-observed realization t,. 
Dawid [7] shows that if PLR,, +  00  as  n  + 00, prediction 
system B is discredited in favour of A. For the finite sam- 
ples with which we inevitably have  to deal, we shall a rgue 
that PLR,, increasing consistently suggests the superiority 
of A over B. In [ 1] we give intuitive reasons why the PL 
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works. Specifically we show that consistent bias or noisi- 
ness of a  prediction system will tend to give a  smaller PL 
than would otherwise be  the case. 

To  summarize, the PLR can be  regarded as  a  general  
procedure for choosing the best prediction system for a  
particular data source. The  u-plot is a  means  of indicating 
a  particular kind of consistent inaccuracy of prediction 
which could be  a  contributory factor in poor  predictive 
accuracy. Thus a  poor  u-plot might suggest  that poor  pre- 
dictive accuracy (represented by  a  poor  prequential like- 
l ihood) is due  to consistent bias. For such a  case, we shall 
show in the next section how it is possible to remove the 
bias and  so improve the accuracy of reliability predic- 
tions. 

III. RECALIBRATION OF PREDICTIONS 

Consider a  prediction pj( r) of the random variable Tj, 
when  the true (unknown) distribution is F,(t). Let the re- 
lationship between these be  represented by  the function 
Gi where 

F;(t) =  G,[pf(t)]. (4) 
Obviously, if we  knew Gj we could recover the true dis- 
tribution of T, from the inaccurate predictor, pi ( t,). The  
key notion in our  recalibration approach is that in many  
cases the sequence { G;} is approximately stationary, i.e., 
it is only slowly changing in i. 

If the sequence were completely stationary, i.e., G, =  
G  for all i, we  would have  a  more precise interpretation 
of the idea of “consistent bias” used in the previous sec- 
tion. W e  would also have  the possibility of estimating the 
common G  from past predictions and  using it to improve 
the accuracy of future predictions. 

Of course, in practice such complete stationarity is un-  
likely to be  achieved. However,  it does  seem to be  the 
case that the sequence changes  only slowly in many  cases. 
This opens  up  the possibility of approximating Gj with an  
estimate G,? and  so forming a  new prediction 

P,*(t) =  G,*[pJt)]. (5) 
A suitable estimator for Gj is suggested by  the observat ion 
that G, is the distribution function of Ui =  F,(T). W e  
shall therefore base  our  estimate G,* on  the u-plot, cal- 
culated from predictions which have  been  made  prior to 
T, which is the sample cdf formed from the u,‘s forj <  
i. The  new prediction (5) recalibrates the raw model  out- 
put, F’,(t), in the light of our  knowledge of the accuracy 
of past predictions for the data source under  study. The  
new procedure is therefore a  truly predictive one,  “learn- 
ing” from past errors. 

The  simplest form for G,‘” is the u-plot with steps joined 
up  to form a  polygon (Fig. 2). Later we shall consider a  
version which is smoothed using a  spline technique. The  
complete procedure for forming a  recalibrated prediction 
for the next time to failure T, is then: 

Stage I Check that error in previous predictions is ap-  
proximately stationary. (See [l] for a  plot- 
ting technique, the y-plot, which detects 

Fig. 2 Method of drawing the joined-up step recalibrating function 
Here there are r u-points and each step is of size 1 /(r + I ). 

G:. 

nonstationarity, a l though we shall see  later 
that recalibration often works well even  in 
the presence of nonstationarity .) 

Stage 2  Find u-plot for predictions made  before Ti, 
i.e., based  on  t,, t2, * * * t, i, and  join up  
the steps to form a  polygon G”. 

Stage 3  Use the basic prediction system to make a  
‘<raw” prediction fj ( I). 

Stage 4  Recalibrate the raw prediction using (5). 

This whole procedure can be  repeated at each  stage so 
that the functions G,* used  for recalibration will be  based  
on  more information about  past errors as  i increases. For 
the simple joined-up u-plot this is not computationally 
onerous:  by  far the greatest computat ional effort is needed  
for the statistical inference procedures used  to obtain the 
raw model  predictions. 

It is important to emphasize that the procedure de-  
scribed above  does  in fact produce a  genuine predicrion 
system in the sense descr ibed earlier: at each  stage we are 
using only past observat ions to make predictions about  
the unobserved future failure behavior.  

Fig. 3  shows the effect of recalibration on  the predic- 
tions made  in Fig. 1. In the case of the JM model  it is 
known that the raw predictions are too optimistic, and  the 
recalibration makes them less optimistic: in the case of 
LV, which is initially too pessimistic, the recalibrated 
version is now less pessimistic. These conclusions are 
confirmed in the more formal analysis based  on  the u-plot 
technique: for JM* the Kolmogorov distance of the 
u*-plot is 0 .119 (compared to 0.205 for the raw predic- 
tions), for LV* it is 0 .089 (compared to 0.150). Not only 
are these an  improvement in each  case, the distances are 
now no  longer statistically significant at the 10% level. 

Notice that, a l though Fig. 3, for simplicity, only shows 
median predictions, the recalibration is working on  the 
complete predictive distribution. Thus it could be  ex- 
pected to improve other reliability estimates, such as  the 
rate of occurrence of failures. in the examples shown here. 
The  recalibration procedure changes  the complete shape 
of the distribution and  can therefore correct for far more 
subtle errors than the mainly simple “optimism” or “pes- 
simism” of these examples. 
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JM 

i 
Fig. 3. Predictive medians of TT, through T,,,. raw and recalibrated using 

joined-up recalibrator Gn* for Muss System I data [ 181. 

median(i) 
3.000000000E+05 - 

2 .OD5COOOOOE+O5 - 

l .O@00000OOE+05 - 

i 
Fig. 4. Raw predictive medians of T,,,, through T,,,, for all nine models. 

Musa SS3 data [ 181. 

Fig. 4  shows an  analysis of a  data set, SS3 from [ 181,  
which exhibits startling disagreement between raw pre- 
dictions from JM and  LV models. In fact, in an  analysis 
of this data using nine models (51, it can  be  seen that seven 
of them are in close agreement  with one  another and  are 
close to the JM plot in Fig. 4; the remaining two are close 
to the LV plot in Fig. 4. A user might conclude that the 
seven models which give similar answers are closer to the 
truth than the more isolated pair, but this would be  wrong. 
In fact for this data set none  is giving acceptable answers.  

This is shown by the u-plots for JM and  LV predictions 
in Fig. 5. Clearly, the JM predictions are optimistic, and  
those from LV pessimistic. The  effect is a  gross one,  as  
can be  seen from the Kolmogorov distances, 0 .272 (JM) 
and  0.238 (LV). which are very highly significant (well 
beyond  the 1% level, the highest tabulated). The  pre- 
quential l ikelihood shows that LV is superior to JM [ 11. 
but neither of them, nor  any  other model  we have  used,  
gives accurate reliability predictions for this data source. 

The  detailed shape of the u-plots in Fig. 5  is interest- 
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12 1 
Fig. 5. wplots for raw predlctions of T,,,, through Tz,,. JM and LV model\. 

Muss SS3 data [ 181. 

ing. As was stated above,  the most notable feature is the 
extreme optimism or pessimism. However,  this is not a  
simple effect in either case. For JM the behavior of the 
plot at each  extremity suggests too many  very small u  val- 
ues  and  too many  very large ones.  For LV there seem to 
be  too many  fairly large u’s and  roe few u’s near  to 1  .O. 
Thus, a l though the statements above  about  optimism and  
pessimism are correct to a  first approximation, a  more 
detailed analysis shows that the u-plots are giving precise 
information about  the incorrect shapes of the complete 
predictive distributions. It can  therefore be  seen how the 
recalibration procedure based  on  such u-plots can effect 
subtle changes  in the complete estimated distribution 
function for the random variable T,. 

The  recalibration technique works dramatically well for 
this data. Table I shows a  compar ison between raw model  
predictions and  recalibrated predictions for the following 
nine models: JM (Jel inski-Moranda [lo]), BJM (Baye- 
sian Jel inski-Moranda [12]), GO (Goel-Okumoto [9]), 
MO (Musa-Okumoto [ 171).  D (Duane [6]), L  (Litt lewood 
[ 13]), LNHPP (Litt lewood nonhomogeneous  Poisson 
process [l]), LV (Littlewood-Verrall [ 14]), and  KL 
(Keiller-Littlewood [ 11). 

All n ine raw u-plots have  Kolmogorov distances which 
are significant well beyond  the tabulated 1%. After recal- 
ibration, all the distances have  been  more than halved and  
none  are significant at this high level. Fig. 6  shows the 
dramatic improvement given by  recalibration on  the JM 
and  LV u-plots in compar ison with the raw predictions 
(see Fig. 5). The  differences in the detailed median pre- 
dictions (only for JM and  LV again, for simplicity) can  
be  seen by  compar ing Figs. 4  and  7. There is much closer 
agreement  between the recalibrated models than between 
the raw ones.  

In both the above  examples there is ev idence that pre- 
diction systems which were in d isagreement have  been  
brought  into closer agreement  by  the recalibration tech- 
nique. Much more important, however.  we have  objective 

Fig. 6. rc*-plots for (joined-up) recalibrated predictions of T,,,, through 
T2,*, JM and LV models. Muaa SS3 data 1181. 

evidence from the compar ison of u-plot with u*-plot that 
recalibrated predictions are less “biased” than the raw 
ones.  

These results are encouraging for the efficacy of the re- 
calibration approach,  but they are not sufficient grounds 
for assuming, even  in the two examples here. that the re- 
calibrated predictions should be  preferred to the raw ones.  
It may be  that the advantage of less bias has  been  bought  
at the expense of some other deviation between predicted 
and  actual reliability. W e  have  suggested in the previous 
section that the prequential l ikelihood should be  used as  
arbiter between compet ing prediction systems for any  par- 
ticular data source. It would seem appropriate, therefore, 
to judge whether a  raw or recalibrated prediction system 
is objectively best by  compar ing their prequential likeli- 
hoods  for a  series of predictions. Unfortunately this pre- 
sents problems for recalibrated piedictions which are 
based  on  the simple polygonal joined-up u-plots sug- 
gested above.  The  reason is somewhat  “technical” and  
is due  to the fact that the PL uses the probabiliry densir! 
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Fig. 7. Medians of (joined-up) recalibrated predictions of T,,,, through 

Tz7*, JM and LV models. Musa SS3 data [ 181. 

jkncrion of the predictive distribution: 
, +  II ; +  II 

from (5), letting ,q* denote the derivative of G,?. . . 

(6) 

Unfortunately. since G(” is a  polygon, its derivative 
g,* is discontinuous. This means  that?: is also discontin- 
uous:  Figs. 8(a) and  (b) show an  example of this problem. 
This discontinuity general ly causes PL to report badly on  
the predictive accuracy of a  recalibrated model  in com- 
petition with the raw version. A user might therefore con- 
e lude that recalibration had  made  the predictions less ac- 
curate. W e  think this can  be  misleading. It is true that it 
would be  unreasonable to bel ieve that the rrue predictive 
pdf is grossly discontinuous; the rejection of such a  pdf 
by  the PL criterion is therefore strictly correct. However,  
in practice users are not directly interested in predictive 
pdf’s but in probabilities. Such probabilit ies will be  ob-  
tained from the pdf by  integration, which has  the effect of 
smoothing out the discontinuity. It is therefore perfectly 
possible for PL to reject a  recalibrated prediction system 
in favor of the raw version, even  when  the recalibrated 
(probability) predictions are the most accurate. A rejec- 
tion in such circumstances is, we believe, unfair: a  user 
needs  to know which prediction system is performing best 
for the kinds of prediction he  is likely to make.  

1  
(a) 

4 

There are two ways forward which will be  descr ibed in (b) 
the next two sections. Fig. 8. (a) The jolned-up recalibrator Gf7X based on a u-plot of 18X points. 

The first approach attempts to decide whether recali- for the LV model on Muba SS3 data. This is a polygon with I88 vertices. 

bration can be  trusted to give improved results in a  wide although the resolution of the figure does not allow this to be shown. (b) 
The derivative of G* 27x In 

class of c ircumstances by  compar ing both recalibrated and  
(a). This hgure shows the dramatic fluctuations 

in the slopes of successive edges of G&,. 



raw predictions with the true reliability when this is 
known. In practice. of course, such knowledge of the truth 
is not available so we shall have to use simulated inter- 
failure times. We shall show that in a high proportion of 
cases the recalibrated prediction system is superior to the 
raw one. However. as might be expected, this is not al- 
ways the case. 

Our second approach. therefore. applies a smoothing to 
the polygonal G,* in order to give a continuous recali- 
brated predictive pdf. This allows the use 6f PL as a cri- 
terion for judging which prediction system is giving most 
accurate results. Use of this smoothing is computationally 
more intensive than use of the simple joined-up u-plot. 

A user therefore has a choice: appeal to the general ef- 
ficacy of the approach as demonstrated by the simulation 
results based on the simple recalibration technique. or use 
the smoothed version and use PL to decide whether re- 
calibration is working in the particular example under 
study. 

IV. SIMULATION RESULTS 
The simulation experiment [4] consisted of generating 

100 realizations of the interfailure time sequence tl, t’, 
. . . tloo from each of the models JM, L, LV, KL. and D. 
with constant parameters being used for each model. 
These data sets were then analysed using the “wrong” 
models: thus, for example the JM data set was analyzed 
using the L, LV, KL, and D models. 

The model parameters were estimated based on tl, t2, 
. . . t)- ,, to obtain p,(t) forj = 20, . .A. 101. Then, for 
i ~40,. . . 101, the u-plot using u,, = F, (t,), forj = 20, 
. . . i - I, was used to obtain G,* and hence p,y (t). It 
was thus possible to compare the known true F,(t) with 
the raw predictor p,(t) and with the recalibrated predictor 
P*(t) for i = 40, * f * , 101. 

In a particular case a user is interested in knowing 
whether the raw or recalibrated predicted distribution is 
closer to the true one. There are various ways we could 
examine the differences between predicted and true dis- 
tributions. Perhaps the most obvious is a direct measure 
of the distance between the two functions, such as the 
Kolmogorov distance. This is defined as follows. For raw 
predictions let d,(t) = F,(t) - F,(t) and for recalibrated 
d,*(t) = P,*(t) - F,(t), both for i = 40, . . . 101. The 
Kolmogorov distances are ii = sup,, o ( 8, (t) / = 1 d, ( 7) ( 
and l* = sup, > o 1 d:(t) ( = 1 (i,*( y ) 1. A simpler proce- 
dure is to merely check whether the recalibrated or raw 
median is closer to the true one. 

The first analysis concerns only predictions of Tlol; 
there are 2000 such predictions in the experiment. If we 
consider those predictions of T,,, for which the u-plot 
(based on predictions prior to Tlo, ) was significant at the 
5 %  level. indicating that there was evidence of bias, 89 %  
of the recalibrated predictions rr,ere sqerior to the cor- 
responding ruw ones. This figure rises to 92% if we only 
recalibrate for u-plots which are significant at the 1% 
level. 

Even when we recalibrated regcrrdle.~s of the [r-plot evi- 
dence, the recalibrated predictions improved on raw ones 
in 61% of cases. Here there will be many cases where 
raw predictions are close to the truth: then we would not 
expect the recalibration to introduce an improvement and 
the recalibrated and raw predictions should be close to 
one another. However, since the recalibrated predictive 
distribution is polygonal (“lumpy”), the Kolmogorov 
distance (which compares the musimum deviations of the 
two predictions from the truth) will tend to discriminate 
against the recalibration in favor of the raw prediction. 
This figure of 61% can therefore be thought of as a con- 
servative one. 

Other simple comparisons between recalibrated and raw 
predictions are fairer in this situation. For example. the 
recalibrated median is closer than the raw one to the true 
median in 70% of these cases. This figure rises to 91 %  
when we recalibrate only for u-plots significant at 5%. 
and 94% when we recalibrate only for u-plots significant 
at 1%. 

These results for Tl,,l are supported by the more exten- 
sive recalibrations of the predictions of 7Y,,,. . . . , Tlol: 
here recalibrated medians are closer to the true one in 86% 
of cases when the u-plot at stage 100 was 5% significant. 
and are closer in 93% of cases when the u-plot is signif- 
icant at I %. 

In summary, even when we blindly used the recalibra- 
tion on ull predictions. there was an improvement in about 
7 out of 10 cases. More importantly. when we adopted 
the more rational and discriminating approach of only 
using the technique when the u-plot analysis suggested 
recalibration might be fruitful (by indicating the presence 
of “bias”). there WYIS improvement ubout 9 out of 10 
times. 

Of course, we do not know whether our simulated data 
was typical of real software reliability data. Indeed, since 
we were generating data according to several models with 
very different underlying assumptions, some of the data 
sets are likely to be unrealistic. However, we believe that 
these results are encouraging for the general power of the 
approach. 

In practice a user might wish to have more than a belief 
in the general efficacy of the approach: he needs to know 
that it is working for the particular data source under ex- 
amination. The obvious approach is to use the methods of 
analysis of predictive quality [l] discussed earlier. In the 
next section we show how this can be done. 

V. PARAMETRIC SPLINE SMOOTHING 

The u-plot is merely the sample cdf of the observed u’s. 
Thus the problem of estimating the approximately station- 
ary function G, in (4) is simply the problem of obtaining 
an estimate of a cdf from a finite random sample. There 
are several ways in which this can be done so that the 
estimator is diff‘erentiable and so has a smooth pdf. We 
could, for example, fit an appropriate parametric family 
of distributions to the data. An example is the family of 
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Beta (cy, /3) distributions with pdf 

f(u) =  u-l (1 - uypqa, 0) 0 5 LL 5 1. 

(7) 

This is a  fairly flexible family, but it is not sufficiently 
wide to represent all the general  shapes of u-plots which 
we have  encountered in practice (see [S] for an  example). 
This seems likely to be  a  problem with other candidate 
parametric families of distributions. Another less impor- 
tant difficulty is that the evaluation of the cdf is not easy 
for certain regions of the parameter space.  

The  need  for a  method of fitting a  very general  class of 
u-plot data suggests the use  of parametric splines. which 
are widely used  in computer  graphics because of their ver- 
satility. W e  shall use  the cumulative chord as  the param- 
eter, whereupon the spline is def ined as  follows. Let {x,, 
y,}, for i =  1, 2, . . . , r, denote the r points of the 
u-plot to which we want to fit the spline, and  let 

PI =  PLI +  [( x, - x,-l)z +  (.v, - ?;-I)-] ’ I ’ (8) 

with p,$ =  0, x0  = 0, and  v0 = 0; i.e., p,! is the distance 
from the origin, a long the polygon, to the ith point. Here 
X, is the ith order statistic of the u’s and  .v, is the height of 
the u-plot at xi. For convenience we shall use  the nor- 
malized chord 

Pi =  PI/P:. (9) 

so  that both parametric functions will have  domain [ 0, 1  1. 
W e  now have  two sets of data, (x,, p, } and  { v,, p, >, to 

each  of which we fit a  three knot least-squares cubic 
spline; call these x =  x ( p) and  y =  v ( p). These splines 
are each  constrained so that x ( p) and  v ( p) are strictly 
increasing functions taking values between 0  and  1  for p  
in (0, l), withx(0) =  ~(0) =  Oandx(  1) =  v( 1) =  1. 
It follows that the function def ined parametrically as  
(X ( p  ), y  ( p  ) ) is also strictly increasing between 0  and  1. 
W e  call this function the parametric spline and  it has  the 
propert ies of a  cdf. More importantly for our  needs,  it is 
everywhere differentiable with a  smooth derivative. This 
means  that if we  use this function to recalibrate software 
reliability predictions we are certain to obtain a  smooth 
recalibrated predictive density. W e  can therefore use  pre- 
quential l ikelihood as  a  criterion of predictive accuracy 
and  be  confident that we shall not encounter  the difficul- 
ties we met with the polygonal joined-up u-plot. 

Clearly, using this spline is more tedious than recali- 
brating predictions from the joined-up u-plot; details can  
be  found in [5]. However,  run times are general ly much 
less than are required for the original raw predictions. 
Since these raw predictions must always be  computed,  the 
small overhead involved in using the spline is worth- 
while. Most importantly this technique allows a  user to 
determine, via prequential analysis, whether the recali- 
brated predictions are objectively better than the raw ones  
for a  particular data source. It also similarly allows com- 
par isons to be  made  between different recalibrated predic- 
tion systems. Such knowledge about  the performance in a  

hIa SC, JM BJM GO MO D” L LNHPP L” KL 

no predx,io”s) 

” 2049E .,R,,E .17736 .0982A .1567D .1,2x4 .0982A ,504D .145-m 
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particular instance is more valuable than the general  as- 
sertions of efficacy which come from the earlier simula- 
tion exercise. 

To  distinguish it from the earlier polygonal G*, we shall 
denote the spline smoothed recalibrating function by  G  **. 
The  recalibrated predictions are then 

p**(t) =  G”*[p!(t)]. (10) 

Table II shows the u-plot and  v-plot Kolmogorov dis- 
tances for the same data sets as  those used in Table I. It 
can  be  seen that the entries in the two tables are very sim- 
ilar. This is to be  expected since the spline recalibrated 
predictive distribution function is des igned to be  a  smooth 
function close to the joined-up recalibrated predictive dis- 
tribution. If these two functions are close, the u’s based  
on  them will be  close and  thus so will the plots. In prac- 
tical terms this means  that the predictions of probabilit ies 
from the two techniques will be  very similar, and  in par- 
ticular their medians are very close (compare Fig. 9  to 
Fig. 7). However,  their predictions of probuhility densi- 
ties will be  very different: it is this difference we wish to 
exploit in the use  of the prequential l ikelihood for the 
spline version. 

In Fig. 10  the evolution of the prequential l ikelihood 
ratios is shown for the various recalibrated predictions 
against raw model  predictions. Notice how, for LV, the 
prequential l ikelihood seems to be  suggest ing that the 
joined-up recalibrated predictions are worse than the raw 
ones.  This is a  dramatic example of the effect of the dis- 
continuity of joined-up recalibrated probability densit ies 
upon  the likelihood: it causes a  spurious rejection of these 
recalibrated predictions in favor of those from the raw 
model. That this is, indeed, spurious can be  seen from the 
behavior of the spline recalibrated predictions: there is 
overwhelming evidence that the LV** : LV prequential 
l ikelihood ratio is increasing rapidly (it has  reached more 
than e4’ during these predictions!). A user could therefore 
be  very confident that the LV** predictions here are more 
accurate than the LV ones.  

A compar ison of JM** and  JM is even  more dramatic: 
the PLR reaches ego  over the range of predictions shown. 
This is partly due  to the fact that raw JM predictions are 
significantly less accurate than those of raw LV (al though 
both are bad  from u-plot evidence). Thus JM starts off 
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Fig. 9. Mediana ol’spline recalibrated predictions oI’T,,,, through T?,,. JM 

and LV models. Mum SS3 data. Note closcnea.s to results in Fig. 7 for 
joined-up recalibratton. 
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Fig. IO. Plot of log PLR agatnst i. showing compariwn of predtctive ac- 
curacy between each type of recalibration and the raw predlctmns: JM 
and LV models. Muaa SS3 data. 

with more room for improvement. In fact, after recalibra- 
tion, the two spline predictors LV** and  JM** have  com- 
parable accuracy on  the prequential l ikelihood evidence, 
with slight ev idence of superiority for JM**. 

Fig. 11  shows an  example of recalibrated probability 
density functions at stage 278  in the SS3 data set. The  
two raw predictive densit ies from LV and  JM disagree 
greatly, but after recalibration there is close agreement  

between LV** and  JM**. This is illustrated even more 
dramatically in Fig. 12  which shows predictive densit ies 
for stage 121  in the Sl data. Notice here the curious mode  
which appears  in each  predictive density after recalibra- 
tion. Neither of the raw predictive densit ies (exponential  
for JM, Pareto for LV) can have  a  nonzero mode,  which 
suggests that the “learning” from past errors can give an  
insight not present in the raw models. What  is particularly 
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Fig. I I. Examples of individual spltne recalibrated predictive probability 
density functions for 7’,,,. using JM and LV models on Musa SS3 data. 
Note great difkrence between raw predictions. and closeness of recali- 
brated. 

Fig. 12. As in Ftg. 1 I. but for T,?,. Musa SI data. Note. again. closeness 
of the two recalibrated predictions and how these differ greatly from the 
(very difl‘erent) raw predictions. 

striking, we believe, in figures like this is not only the 
close agreement of the two predictions after recalibration, 
but how drumatically these differ from the raw predic- 
tions. 

These figures give some indication of the power of the 
method to change fundamentally the raw prediction, on 
the evidence of analysis of past predictive error. Thus the 
improvements in simple summary statistics shown in the 
median plots (Figs. 3, 4, 7, 9) are merely the tip of an 
iceberg: when recalibration works it will do so in very 
general ways and a user could reasonably expect all reli- 
ability measures to improve in accuracy. 

VI. RETRODICTIVE RECALIBRATION 

The recalibration technique described in this paper is 
based on an analysis of the accuracy of similar predictions 
at earlier stages in the acquisition of data from testing a 
program. Thus when we came to recalibrate the predic- 
tion of Tlol it was necessary to make predictions of T2(), 
T 21, . . . 3 T,,, (each based only on the data observed 
prior to making the prediction) in order to calculate the 
G” (or G,**), i = 40, . * * , 101, which transforms the 
raw prediction. F,(t). For all the models each such pre- 
diction is quite computationally intensive, so a single re- 
calibration can require considerable effort. If recalibration 
is to take place at each stage as each new interfailure time 
is observed, then of course this overhead disappears, since 
it will be necessary to calculate each raw prediction any- 
way. 

However, the problem seemed sufficiently important 
that we examined a retrodictive recalibration procedure 
which only needs a single basic calculation (e.g., max- 
imization of a likelihood function) for each recalibration. 
For those models using maximum likelihood estimation 
of the parameters this scheme works as follows. To pre- 
dict T,,,, we use all available data, tl, . . . , tioo, to cal- 
culate an estimate of the model parameters. This is used, 
of course, to obtain the raw prediction of Tlol. It is also 
used to retrodict (i.e., “predict” the past) T,, T?, * * . 
TIOo. Since we have the actual observations of this past, 
we can compare the retrodictions with these in the same 
way that we do with genuine predictions. In particular we 
can form the retrodictive u-plot and use this to recalibrate 
the raw prediction of Tlol. 

Unfortunately, this procedure seems to be useless! The 
reason is fairly subtle. It seems to be the case that a pre- 
diction of T,, based on tl, * * * , tj I, can be in error in 
different ways from a retrodiction of T, ( j < i ) also based 
on cl, * * . , t,- I. More precisely, the approximate sta- 
tionarity in the errors of prediction of T, (based on t,, 
. . . I, ~, ) as we vary i is very different from the ap- 
proximate stationarity of errors of “prediction” (really 
retrodiction) of 7; (based on t,, * . * ,t,-,)aswevaryj 
for fixed i. It seems that we can expect to obtain the first 
kind of approximate stationarity. but not the second: it is, 
of course, such approximate stationarity which underpins 
the basic idea of recalibration. 

Once again this seems to suggest that in assessing soft- 
ware reliability we must be careful of making unfounded 
generalizations. Just as we cannot assume that a model 
performing accurately on one data set necessarily will give 
good performance on another [I], so we cannot assume 
that information gained from an analysis of the accuracy 
of one t?.pe of prediction will necessarily be trustworthy 
for another. Although these remarks are based on the evi- 
dence of retrodictive error being a poor guide to one-step- 
ahead prediction, it is likely that the implications are more 
far reaching. For example, the predictive recalibration 
method for one-step-ahead predictions may not be effec- 
tive for predictions further ahead. Thus if we wished to 
recalibrate a raw 20-step-ahead prediction it may be nec- 
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essary to use  a  form of the G  function which is itself based  
on  a  compar ison of 20-step-ahead raw predictions with 
actual (later observed)  data. W e  hope  to investigate issues 
of this kind in future work. 

VII. DISCUSSION AND CONCLUSION 

W e  have shown that recalibration can be  a  powerful 
technique for improving the accuracy of software reli- 
ability growth predictions. The  technique is completely 
general,  in the sense that it is not model-dependent .  It can  
be  appl ied to any  predictive scheme and  wil! clearly have  
applications to prediction outside the software context, for 
example, to hardware reliability growth modeling. It can  
also be  used for different types of prediction, but it should 
be  remembered that recalibration should be  based  on  past 
predictions of the same type. 

Our  simulation results for the simple joined-up G* sug- 
gest that it offers an  improvement in accuracy over the 
original models in a  high proport ion of cases. This a lone 
would be  sufficient reason for advocat ing that it he  appl ied 
as  a  matter of course to all models: essentially doubl ing 
the number  of prediction systems available to the user. 

As we have  demonstrated elsewhere [ 11, a  user cannot  
select a  model  CI priori from this plethora of available 
models and  know that it is the best for the job. Instead. it 
is necessary to apply all available models to each  data 
source and  use the techniques descr ibed in [ I], principally 
the prequential likelihood. to select the one  which is giv- 
ing most accurate reliability predictions for the particulcrr 
&U/J .;ource (program) under  study. 

To  make this method of discriminating between reli- 
ability prediction systems work for recalibrated models, 
we have  introduced the notion of a  spl ine-smoothed re- 
calibrated prediction. The  user is now in a  position to ap-  
ply several models, and  their recalibrated versions, to his/ 
her  data and  select that which is objectively performing 
best. W e  believe that this eclectic approach should in 
future be  standard practice. 

Our  results give a  new insight into reliability growth 
modeling. It can  now be  seen as  essentially a  two stage 
process: first capturing the long term trend and  then using 
these new ideas to estimate local behavior.  A rich class 
of new models could be  formed from a  disrrihufion-free 
fitting of trend, fol lowed by a  later analysis of detailed 
probabilistic structure a long the lines descr ibed above.  W e  
are currently investigating these possibilities: early results 
are encouraging.  
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