
Software Quality and Reliabitity Basics

John D. Muss
AT&T Bell Laboratories

Whippany, NJ 07981

ABSTRAa

The importance of software quality and the relationship of software
reliability to software quality are discussed. The need for software
reliability measures is demonstrated by outlining some possible
applications. Basic software reliability concepts are presented,
including software modeling.

Why Measure?

Increasing global competition and high development costs have
intensified the pressures to quantify software quality and to measure
and control the level of quality delivered. Software reliability is the
most important and most measurable aspect of software quality and it
is very customer oriented. It is a measure of how well the program
functions to meet its operational requirements.

Why is this quantification of quality so important? Almost all of
the institutions (airlines, banks, manufacturers, universities, etc.) that
use software in their operations find themselves facing sharply
increasing international competition. As our global society becomes
more dependent on information (as contrasted to capital or labor) in
the production of goods and services, the pressures for higher quality,
lower cost, and faster delivery for software products are increasing.
And we have more software developers eager to compete for customers.
But software quality, cost, and schedules are conflicting characteristics;
you can’t have one without paying with another. Schedules and cost
have tended to dominate until now because they can be concretely
measured and specified. We have lacked a clear measure of quality.

The foregoing pressures have made a quantitative measure of
quality necessary for both software developer and customer. Such a
measure, plus the understanding of how it interacts with costs and
schedules (i.e., a model) makes precise tradeoffs between goals
possible. It enables you to plan more accurately for the resources you
will need and to lay out schedules with greater confidence. Finally,
better planning and better measurement lead to better visibility of the
software development progress. Consequently, you can monitor
development progress more accurately and exercise better control over
it.

How Can Software Reliability Measures Help You?

Users of software reliability measures have found [ll that
developer-customer dialog is substantially enhanced. It is necessary to
define “failure” for the system concerned. This definition is, in effect, a
negative specification of requirements, and it generally leads to a
clarification for everyone of what these requirements are. Reliability
figures can readily be related to the operational costs of failure. Thus

CH2468-7/87/0000/0114$01 .OO 0 1987 IEEE

the customer comes to understand the real
reliability requirements of the system in question. Similarly, the

developer can relate reliability level requested to development costs.
Thus, the stage is set for negotiation of an optimum solution for the
customer of the sum of capital (purchase price of the system) and
operational costs. By increasing the precision with which the
customer’s needs are met, productivity in the broadest sense is
enhanced.

Software reliability measures guide the developer to better
decisions. In the system engineering stage, they promote quantitative
specification of design goals, schedules, and resources required. They
let you determine quality level during test and thus provide the means
for evaluating the effect of various actions on quality so that it can be
controlled. The measures also help in the better management of
project resources.

The user will also benefit from software reliability measures,
because the user is concerned with efficient operation of the system. If
operational needs with respect to quality are inaccurately specified, the
user will either get a system at an excessively high price or with an
excessively high operational cost.

The models associated with software reliability measurement
structure and enhance both developer and customer understanding of
software quality and the factors affecting it. The factors include the
time the program has been executing, software producr characteristics,
development process characteristics (including resources), and the
operational environment or ways in which the software is used. These
models permit the prediction, during test, of when various levels of
quality will be obtained. Thus, once a quality objective has been
chosen, release date can be predicted.

Developer and user, through accurate specification of what is a
failure and what failure rate (or quality level) is optimum, can each
increase customer satisfaction, provided the specification is met. The
improved reputation resulting from high levels of customer satisfaction
generally leads to a greater market share and higher profitability.

Basic Concepts

Software reliability is defined as the probability of failure-free
operation of a computer program for a specified time in a specified
environment. For example, a program might have a reliability of 0.82
for 8 hours of execution. A failure is a departure of program
operation from requirements. Failure intensity, an alternate way of
expressing software reliability, is defined as failures occurring with
respect to some time unit. An expression equivalent to the reliability
figure given above is that a program has a failure intensity of 0.025
failures per hour of execution. A fault is a defect in a program that
causes a failure.

114

Software reliability is influenced by fault introduction resulting
from new or modified code, fault removal that occurs in debugging,
and the environment or ways in which the program is used. As a
program is executed, failures will occur. If fault removal actions are
taken (however imperfectly) in response to the failures, failure
intensity will decrease as a function of time. Software reliability
models characterize this change, as shown in Figure 1. A number of
models have been developed [2-101; see [ll for a classification and
comparison of the models.

TIME

Figure 1. Software reliability model

References

111 J.D. Musa, A. Iannino, and K. Okumoto, Software Reliability:
Measurement, Prediction, Application, McGraw-Hill New
York, 1987.

121 Z. Jelinski and P.B. Moranda, “Software reliability research,” in
Statistical Computer Performance Evaluation, W. Freiberger,
Ed. New York: Academic Press, 1972, pp. 465-484.

[31 P. Moranda, “Predictions of software reliability during
debugging,” in Proc. Ann. Reliability and Maintainability
Symp. (Washington, DC), pp. 327-332, Jan. 1975.

141 M. Shooman, “Probabilistic models for software reliability
prediction,” in Statistical Computer Performance Evaluation,
W. Freiberger, Ed. New York: Academic Press, 1972, pp.
48.5502.

151 G.J. Schick and R.W. Wolverton, “Assessment of software
reliability,” presented in 11 th Annual Meeting of German
Operations Research Society, Hamburg, Germany, Sept. 6-8,
1972; in Proc. Operations Research, Physica-Verlag,
Wurzburg-Wien, 1973, pp. 395.422.

[61 J.D. Musa, “A theory of software reliability and its application,”
IEEE Trans. Software Eng., SE-l(3), pp, 312-327, Sept. 1975.

[71 B. Littlewood and J.L. Verrall, “A Bayesian reliability growth
model for computer software,” J. Roy. Stat. Sot. - Series C,
22(3), pp. 332-346, 1973.

Applications and State of the Art

Many applications for software reliability measurement have been
developed, and considerable experience has been gained in its use 111.
We are now at the point where practicing software engineers in
industry are independently testing the technology. This panel session
presents a small sample of this work. It is not intended to be a
comprehensive survey of applications. Rather than try to present such
a survey or evaluate the state of the art, we will let the practitioners
speak for themselves.

[Sl B. Littlewood, “What makes a reliable program -few bugs, or a
small failure rate?,” AFZPS Conf. Proc., 49, pp. 707-713, May
1980.

191 A.L. Gael and K. Okumoto, “Time-dependent error-detection
rate model for software reliability and other performance
measures,” IEEE Trans. Rel.. R-28(3), pp. 206-211, Aug.
1979.

1101 J.D. Musa and K. Okumoto, “A logarithmic Poisson execution
time model for software reliability measurement,” Proc. 7th
International Conference on Software Engineering, Orlando,
Florida, March 26-29, 1984, pp. 230-238.

Author

John D. Musa is Supervisor of Software Quality at AT&T Bell
Laboratories, Whippany, N.J. He has participated in or managed a
variety of software products. His technical background and interests
include software reliability, software engineering, and human factors.
He is principal author (with A. Iannino and K. Okumoto) of the
pioneering book “Software Reliability: Measurement, Prediction,
Application,” McGraw-Hill, 1987. He is a Fellow of the IEEE, cited
for “contributions to software engineering, particularly software
reliability.”

11.5

