
CS777 Slide 1

CS777

Forensics

Dr Olly Gotel
ogotel@pace.edu
http://csis.pace.edu/~ogotel/cs777

CS777 Slide 2

Today’s Agenda

•  Why does software fail?

•  Classic examples from the software engineering hall
 of shame

•  Over to you … case studies in engineering failure … &
 the lessons we learn from them

•  Movie

CS777 Slide 3

What Have all These Got in Common?

CS777 Slide 4

All Areas of Engineering Failure

•  Engineering is all about creating cost-effective
 solutions to practical problems, by applying scientific
 knowledge to building things in the service of
 mankind

•  Good engineering practices are designed to prevent
 accidents – especially those that cause loss of life!

•  We improve our practices by studying & learning
 from:
–  good examples
–  things that go wrong!

Software things

CS777 Slide 5

Normal Accidents

•  Perrow’s “Normal Accident Theory”:
–  accidents can be normal, but

lead to catastrophes
–  particularly true in systems

with high interactive complexity
–  systems fail systemically
–  the answers to such failures

are also systemic!

CS777 Slide 6

“The quality of the systems we develop
 increasingly determines the quality of our
 existence” [Van Vliet]

The world is in danger!

YOU are in danger!

CS777 Slide 7

From a Dutch Newspaper (1980)

•  “For a short period last Tuesday the United States
 brought their atomic bombers & nuclear missiles to
 an increased state of alarm when, because of a
 computer error, a false alarm indicated that the
 Soviet Union had started a missile attack.”

•  “For the second time within a few days, a deranged
 computer reported that the Soviet Union had started
 a nuclear attack against the United States. Last
 Saturday, the DoD affirmed the false message, which
 resulted in the engines of the planes of the strategic
 air force being started up.”

[Reported in Van Vliet]

CS777 Slide 8

From a Computer Magazine (1983)

•  “The court in Dusseldorf has discharged a woman
 (54), who was on trial for murdering her daughter.
 An erroneous message from a computerized system
 made the insurance company inform her that she
 was seriously ill. She was said to suffer an incurable
 form of syphilis. Moreover, she was said to have
 infected both her children. In panic, she strangled
 her 15 year old daughter and tried to kill her 13 year
 old son and herself. The boy escaped, and with some
 help he enlisted prevented the woman from dying of
 an overdose. The judge blamed the computer error
 and considered the woman not responsible for her
 actions.”

[Reported in Van Vliet]

CS777 Slide 9

More Light-Hearted (or not?)

•  “A 51-year-old woman was subjected to a harrowing
 two-hour ordeal [on 16 Apr 2001] when she was
 imprisoned in a hi-tech public convenience. Maureen
 Shotton, from Whitley Bay, was captured by the
 maverick cyberloo during a shopping trip to
 Newcastle-upon-Tyne. The toilet, which boasts state
-of-the-art electronic auto-flush and door sensors,
 steadfastly refused to release Maureen, and further
 resisted attempts by passers-by to force the door.
 Maureen was finally liberated when the fire brigade
 ripped the roof off the cantankerous crapper.
 Maureen's terrifying experience confirms that it is a
 short step from belligerent bogs to Terminator-style
 cyborgs hunting down and exterminating mankind.”

http://catless.ncl.ac.uk/Risks/

FIND A FUNNY INCIDENT

CS777 Slide 10

Systems Failure

•  System components fail for many reasons:
–  parts wear out
–  screws come loose
–  circuits get fried
–  components used to do things they were not

 designed to do
…

•  These rarely lead to catastrophe:
–  back-ups & redundancy
–  fault tolerance
–  certification
–  checks and balances
…

Point failure

Engineering practice

CS777 Slide 11

Reasons For Failure

•  Can generally trace failures to a single root cause, but
 many systemic reasons for failure

•  Humans make mistakes, but good engineering
 practices (especially a system of thorough testing &
 validation), are designed to catch these mistakes

•  Failure is generally a result of failure in engineering &
 in its management – so this is what YOU have to
 learn to avoid!

False safety in numbers
False confidence

“Its worked up to now…”

CS777 Slide 12

Software Failure

•  Software systems have components that:
–  are invisible, intangible & abstract
–  make little sense in isolation
–  have no limits on complexity & not continuous
–  have no laws governing behaviour
–  don’t wear out
–  replicate perfectly

•  Software reliability is determined by manifestation of
 errors already present, not wear & tear

•  Needs its own system of engineering practices

CS777 Slide 13

Errors in Software Development

•  Programming errors – programs don’t meet
 specifications)

•  Specification errors – specifications simply plain wrong

•  Requirements errors – solving the wrong problems

•  Requirements change – solving yesterday’s problems

CS777 Slide 14

How to Look at Failure?

•  This is NOT a negative orientation
•  Our aim in engineering software should not be the

 absence of bugs (nice but impractical?), it should be
 the demonstrable presence of quality (a quality
 product engineered using a quality process)

•  What is quality? Some say conformance to user
 requirements is the key issue

•  Positive orientation - look for the presence of
 QUALITY in those systems and projects that do work

Start building YOUR checklist of things to look for!

CS777 Slide 15

Classic Case Studies

•  Self-destruct of Ariane-5, Flight 501 in 1996
•  Space Shuttle Challenger Accident (Flight STS51-L) in1986
•  Loss of NASA’s Mars Polar Lander and Deep Space 2 Mission in

 1999
•  Loss of NASA’s Mars Climate Orbiter in 1999
•  Denver International Airport Baggage Handling System Fiasco

 (1989-1995)
•  Therac-25 Accidents (1985-1987)
•  AT&T Network Crash of 1990
•  Abandonment of the London Stock Exchange Taurus Trading

 System in 1993
•  Patriot Missile Failure of 1991
•  Failure of the Aegis System on U.S.S. Vincennes in 1988
•  Failure of the Titan IV B-32 Mission in 1999
•  Various Airbus Disasters (over the years)

CS777 Slide 16

Remember Your Task?

•  To do some software forensics and find out about the
 failure/incident you were allocated

•  Discuss:
–  Summary of the incident – what happened?
–  Cause(s) of failure & events leading up to failure?

 In what way was the system unreliable? In what
 way does this example show good or poor quality
 practices?

– What would be an acceptable failure rate for such
 a system and how would you determine and
 specify this?

–  Broader lesson(s) from the failure?

class assignment

CS777 Slide 17

Student Work

•  See the zip folder for slides on some of the studies
 done by the students…

CS777 Slide 18

1st Set of Incidents - Synopsis

Table due to Dr Steve Easterbook (ex-NASA), 2001

CS777 Slide 19

Software Runaways - Lessons

•  Generally huge
•  Generally multiple causes
•  Generally lauded as “breakthroughs” in early days
•  Technology just as often a cause of failure as

 management:
–  use of new technology
–  use of latest software engineering concepts
–  complexity got out of hand
–  integrating too many new technologies
–  performance issues (i.e. too slow to be useful)

The findings from [Glass 1998]

CS777 Slide 20

Cobb’s Paradox

•  “We know why projects fail, we know how to prevent
 their failure -- so why do they still fail?”

Martin Cobb
Treasury Board of Canada Secretariat

Ottawa, Canada
•  Reasons:

–  SE is hard
–  SE is multi-disciplinary & requires lots of skills
–  perception that discipline in SE is too costly
–  people still think SE is not that important
–  Quality costs!

CS777 Slide 21

General Lessons

•  Systems fail systemically

•  In real applications there is a collision of social,
 human & technical systems

•  Good software engineering is not a luxury:
–  if you fail to use known good practice, expect to

 answer to a Public Inquiry
–  software professionals are likely to require a

 licence in the future … get a jump start
–  it is not acceptable for you not to know the quality

 and reliability of your software systems!!!

Incidents like this don’t happen
 often in the software field – but
 when they do, they are very VISIBLE

CS777 Slide 22

Key Points

•  Developing reliable software systems depends, not so
 much on writing perfect code, but on how good we
 are at:
–  sharing information between people

 (communication)
–  identifying risks early & tracking these
–  questioning all assumptions
–  tracking & discharging problem reports
–  managing (resources & risks)
–  following engineering best practice
–  testing everything we do…systematically
–  BUT… building quality in! Not testing it in!

Depends
 on smart
 &
 informed
 people …
 i.e. YOU!

CS777 Slide 23

Movie Time…

CS777 Slide 24

Some Additional Useful Resources

•  “To Engineer is Human” by Henry Petroski

•  “Software Runaways” by Robert Glass

•  “Computer-Related Risks” by Peter Neumann

•  “Safeware” by Nancy Leveson

•  “Normal Accidents” by Charles Perrow

