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2. MOTIVATION
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All encryption methods fail in one 
way.  The distribution of keys is 
insecure.

All current encryption methods can 
be broken with enough computing 
power [which is increasing] except 
one-time-pads OTP (see above).

QKD distribution is secure.
QKD can’t be broken (it is a OTP).



3.  Encryption – Why Bother With QKD?
&

Current State of QKD
&

Overview of QKD
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Why Bother With  QKD? 
(Current Problems Intro)

A  Current State of Network 
Encryption Usage

B  Why should we understand it?

C  Potential Weaknesses

D  What is The Classical Key 
Distribution Problem?

E  Therefore QKD
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A. Current State of Network 
Encryption Usage

• DES  ▬► AES (Symmetric all)

• PKI  (Asymmetric – 2 key)

• IPSEC (Symmetric, AES)

• SSL/TLS  (Negotiated – PKI/Symmetric)
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B.  Why should we understand it?

•PKI & AES 
• Founded on a conjecture
•Ultimately on computational burden 
too large for an enemy.

• BUT Faster Computers Coming 
• BUT Quantum Computers

Will Break It!
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C.  Potential Weaknesses

1. PKI Based on assumptions about 
factoring large numbers.

2. Security of 3rd Party PKI Key Vault

3. Security of (Pr) Key 
• Distribution Problem
• 3rd Party Vault Current MO
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D.  What is The Classical Key
Distribution Problem? 

• One-time-pads (1 key/1 message)

IT IS SYMMETRIC! [You & Me: Pads ≡]
Key as long as message (|K|~|M|)

Vernam Cipher (K  M) [XOR]

ONLY Unbreakable Code
(Proved by Shannon)

If done right.
The Key (PAD)

Distribution Problem Again
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E. WHY QKD? [1/3]

• Computation capability is 

increasing non-linearly

• Quantum Computers Promise

to Completely Negate Efficacy

of Current Encryption Technology

(i.e., kill it dead ) (not imminent)
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E. WHY QKD? [2/3]

• QKD is Based On Physics 

• Unaffected By Either:

• Current Computer Technology

or

• QUANTUM COMPUTING CAPABILITY

• It is a handshake protocol

• It can sense Eve (Alice, Eve, Bob)

• After Key Distribution:

• Use classical

or

• Q-encryption 
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QKD SOLVES THE
KEY DISTRIBUTION 

PROBLEM 
&

IS UNBREAKABLE
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E. WHY QKD? [3/3]



Summary:  So What?

• More Secure Data Transmission 

• QKD Used For:

• IPSEC (for Internet) (& SSL)

• Replace PKI, AES

• It is a Vernam One-Time-Pad (Unbreakable!)

• Solves the key distribution problem

• Borming’s Dissertation (for Grids)

• Chinese from a satellite.

• Chinese national effort to secure networking.

4/3/2018 QKD ©  Ronald I Frank 2003 - 2018  V1 13



Current QKD State
• QKD

• There are products that do it 
(100+ km distances) [MAGIQTECH]

• Open air QE coming to a satellite near you
• BBN Boston Network & Vienna Network

• QKD In TCP/IP
• Research progressing

•QKD Education
• QE appearing in CS texts [Tanenbaum’s Networking]

• Cultural Motivation to Learn
• 30% GDP derives from QM
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[Waite, Stephen R., 2002]
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NY PPT Devil

• A key for encryption/decryption is sent 
using Quantum Mechanical Phenomena.

• The key may be a quantum encryption key or
a non-Quantum encryption Key, e. g., a PKI 
private key. 

• The transmission may  or may not involve
entanglement.

OVERVIEW of QKD [1/2]
A Crypto Key

Entanglement

Two (or more) particles created as single coupled
complimentary set.     A measurement of one
determines the complimentary value of the 
other(s) regardless of separation.



One-time-pads (1TP)

• QKD is to used create a shared key for a 1TP

• The 1TP is used to send an encrypted message

•Only proved unbreakable encryption scheme.

• This is done many time/sec (>100)
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OVERVIEW of QKD [2/2]



4. Vectors & QM
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Vectors

TRICK
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Vectors
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NY PPT Devil

Mechanical FORCE

Vector Examples

Electric FORCE

Magnetic FORCE

Black Hole
Vertical Jets

Vectors



WHY Vectors (Linear Algebra)?
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The world can be effectively modelled
by Objects that have Observable States with
Measureable  [real] Values with known 
probabilities of measurement.

States can be effectively modelled
by vectors [combination of eigenvectors].

Objects can be effectively modelled
by Hermitian Operators on vectors.

Measureable values of the object can be 
effectively modelled by eigenvalues of the 
eigenvectors of the object.  Hermitian => real.



WHY Vectors (Linear Algebra)?
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The probability of finding the initial [before 
measurement] system in the final eigenstate 
vector [i] with measured eigenvalue [λ] after 
measurement , can be effectively modelled as 
the square of the projection of the initial 
[before measurement] system vector onto 
the eigenvector [i] found as the result of the 
measurement. 



Example (Continued):
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H v
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 

  

Hermitian operators have a spanning set of 
eigenvectors with all eigenvalues real.

https://en.wikipedia.org/wiki/Spectral_theorem

For convenience we take the eigenvectors 
& other state vectors to be of unit length.

If the operator is real symmetric this is the 
principle components theorem.  

https://en.wikipedia.org/wiki/Principal_component_analysis

   
T

T T T TA X X A X X X X A    

https://en.wikipedia.org/wiki/Spectral_theorem
https://en.wikipedia.org/wiki/Principal_component_analysis


Example (Continued):
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Example (Continued):

4/3/2018 QKD ©  Ronald I Frank 2003 - 2018  V1 25

 
1 1

( ) ( )
i N i N

T

i ii ii i
i i

v w kv v 
 

 

 

   

 

2 2 2

1

2 2

1

2

( ) : 1 ( ) 1 ( ) 1

( )

has the properites of a pro

1 & ( ) 1

bability.( )  

j N

i i i
j

j N

i i
j

i

k w k k

k k

k













     
 

   
 



Example:
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The energy of a particle can be effectively
modelled by a Hermitian Operator.

The location and velocity states of the 
particle can be effectively modelled by sets of 
eigenvectors of the Hermitian operator.

The value of the particle’s energy when in one 
of the states can be effectively modelled by 
the eigenvalue corresponding to that state.

The Heisenberg Uncertainty Principle says we 
can’t simultaneously measure the location 
state/value and the velocity state/value from 
the 2 sets.
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Quantum Mechanics is “just” modeling a physical 
system by “the right” Hermitian vector space.

Measurable Quantity Hermitian Operator 

Measured Value Eigenvalue

[All states = length 1, all eigenvalues real]

Measured State [“Pure”] Eigenvector

Gen. System States Eigenvector Combination

[Sometimes we don’t care about the values!]

[Most times we care only about the line, not the +- direction!]
[Sometimes we know the eigenvectors so we don’t need the operator!]

*H H

v vH 

   v vH   

Vectors & QM

Probability of Value (Length)2 of projection on   
resultant eigenvector [<=1]
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1. A Quantum System in a physical state is 
represented by a corresponding UNIT vector 
in some abstract Hermitian vector space. 

2. A Measurement puts the Quantum System 
into a unique physical state called a “Pure 
State” represented by a vector along a UNIT 
Basis Vector in that abstract vector space. 

3. Before any measurement, the system is in an 
unknown mixture of pure states, called a 
“Mixed State”.

4. A measurement corresponds to a projection 
of a UNIT mixed vector onto ONE of the UNIT 
basis vectors of the abstract space.

Vectors & QM
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5. The (length)2 <1 of the projected unit 
mixed state vector is the PROBABILITY of 
finding that Pure State in any given 
measurement. 

6. All Basis Vectors are actually eigenvectors 
of the operator representing the measured 
quantity. 

7. The value of the eigenvalue corresponding 
to the pure state is the measured VALUE in 
that pure state.

8. A measurement corresponds to a meter 
reading of a physical system in an 
unknown state yielding a known state with 
a known metered value. 

Vectors & QM



Components as Projections
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5. Physical Background of
The  QKD Algorithm
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Background
(2-D Polarization, & Probability)
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2. Polarization of Light

• Components as Projections

• Polarized Photons

• Filtered Photons Have P=1

3. Discrete Probability (Definition)

1. 2-D Vector Uses

Addition (“OR”)

Multiplication (“AND”)
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http://www.molphys.leidenuniv.nl/monos/smo/index.html?basics/light_anim.htm

Propagating Electromagnetic Field

E(t) = Electric Field
H(t) = Magnetic Field

Normally rotates as it goes:
“circularly polarized”.

Rotates
Around

Direction
of 

Propagation

Physics of QKD

IF       Fixed Plane
THEN ”Polarized”

2, 3-component Fields = 6 components



Polarization of Light

• A photon is a “particle” of light
• A photon can be polarized along a direction

• A photon can be polarized by a filter
• Once polarized by a filter (QM Think)

• it passes through that filter:   p= 100%
• it is blocked by a filter at 90°: p = 0 %

[2-D TRICK]
• it passes a (45°) filter BUT

• it becomes (45°) polarized

• there is a 50% chance of being one
• there is a 50% chance of being other
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In the 2-D space perpendicular to the propagation direction.



2x(2-D Vector) Bases
• A photon state is a unit ‘vector’    ,    ,    , or     .

[We use only the ray (line) not the direction]

• {    &    } are a basis of the 2-D space

• {     &    } are also a basis of the 2-D space

• These are also the 4 filters (directions) we use as
2 pairs +,       & X,      

• A photon in a state in one basis is represented
• as a sum in the other basis
• with projected lengths = 1cos(45°)=1/
• giving [1cos(45°)]2= .5 as probabilities
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

 &



The 2-D space is perpendicular to the propagation direction.



A UNIT basis vector represented 
in a Second, 45° rotated basis

has (projection)2 = .5 on EITHER 
second-basis direction.

I.e., we have p=.5  (I.e., EQUAL)
probabilities of getting either 

second-basis vector as a 
measurement state result.

Polarized Photons
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0

1

Polarization, correctly aligned filter 
correctly detects the bit sent 

© Copyright IBM Corporation 2018, © Copyright Gary 

Fisher 2007-2018

1

0

37



11

Rectilinear polarization, diagonal filter, 
quantum effect yields either bit

© Copyright IBM Corporation 2018, © Copyright Gary 

Fisher 2007-2018

1

Photon has all possible states until detection, at which 

time it must choose a state based on the sending and 

detecting polarity filters

0

1

0

38



Diagonal polarization, rectilinear filter, 
quantum effect yields either bit

© Copyright IBM Corporation 2018, © Copyright Gary 

Fisher 2007-2018

0

1

0

1

39



4


q 

FILTER

Horizontal

Vertical

4


q 

1

1

1

Photon Polarization

Other of the 
FILTER SETS

4


q 

4


q          = 45 °
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Two Axes Rotated 45 Degrees Relative to Each Other

The Unit Axis Vectors of Each

Project onto the Other as

Vectors of Equal Length:

4


q 

Rotated Vertical

Rotated Horizontal

Horizontal

Vertical

4


q 

4


q 

4


q 

1

1

1
1

1

4


q 

R

Rotated Basis 
p=.5=12 cos(45)2

1
cos

4 2

 
 

 

1
cos

4 2

 
 

 

1
cos

4 2

 
 

 

1
cos

4 2

 
 

 

Signs don’t matter 
because we square 
lengths.
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Filtered Photons Have P=1 
Of passing same filter again.

They lie along the filter direction
so: cos(0)2 = 12 = 1 = P.

OR
cos(180)2 = (-1)2 = 1 = P.

So we care only about the line not the (+ or -) direction of the vector.
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Discrete Probability
• 0 ≤  pi ≤ 1 for all cases i 

• i discrete & finite

• {Sum of pi over all cases i}  = 1

• Probability  of case j AND case k =
pj pk

• Probability  of case j OR case k =
pj + pk
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QKD Algorithm Background [1/3]
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1. The whole purpose of the QKD algorithm is 
to find a secure 1TP (Key) for encryption

2. A polarized photon is a particle of light that 
has a known [i.e., measured] electric field 
orientation orthogonal to propagation
• PASSING LIGHT THRU A POLARIZATION 

FILTER IS MEASURING ITS FIELD 
ORIENTATION

• We use two filter SETS called
because that is what they look like.

• They are rotated relative to each other 
by 45° TRICK!!!  TRICK!!!  TRICK!!!

&
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• We use 4 filters.                        
• We can call them horizontal, vertical, right 45 

and left 45 (since the last two are at 45 degrees 
to the vertical). 

• Polarized Photon State Vectors 
• A state of vertical polarization is notated          
• A state of horizontal polarization is notated      

• A state of 45° right polarization is notated          
• A state of 45° left polarization is notated

[We really want only the ray not the direction
since signs don’t count because we square lengths]



QKD Algorithm Background [2/3]
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We chose one state from each basis pair to 
represent a 1 bit

(the other of the pair is the 0 bit) TRICK

[Arbitrary choice of rep]

1, 0

1, 0





QKD Algorithm Background [1/3]



6. Quantum Key Distribution
The Algorithm
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See the Bibliography for sources.

What QKD IS
(The Details)

4/3/2018 QKD ©  Ronald I Frank 2003 - 2018  V1 48



4/3/2018 QKD ©  Ronald I Frank 2003 - 2018  V1 49



Alice sends N random bits (photons) using a random choice 
of N filters.  Alice knows her bits (filters) & sets.

1. Bob uses a random choice of receiving filters
• Bob knows his measured bits (filters) & sets.
• Some are errors because he chose the wrong set
• A bad set gives a bit error 50% of the time
• A good set gives a correct bit 100% of the time

2. Alice calls Bob in the open and tells him HER Filter SETS

3. Bob tells Alice which of HIS SETS agree (M bits)
• This determines a secret set of M known bit values
• This is a key (after 4) for encryption - if no Eve 

4. Alice calls Bob and reads to him a discardable subset of 
HER actual FILTERS (i.e., BITS).  If they agree there has 
been no Eve.  Otherwise, there has been an Eve.  
DISCARD ALL!
Singh, Simon. The Code Book.Anchor Books NY. ISBN 0-385-49532-3 (1999) PP. 339-344

Quantum Key Distribution Algorithm
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Discussion [1/6]
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Any measured (filtered) Photon is in a pure state

If measured again by the same filter get same 
state.

If measured by the other filter of the same SET
(90°) see NOTHING so know bit (2-D TRICK).

If measured by the OTHER SET, get one of them
with p = .5 by QM rep in other basis.

Notice neither Bob or EVE knows Alice’s filters
when they have to choose their own.



Bob’s random choice of a filter set matching Alice’s 
is equi-probable (p = .5).

Either choice of bit (particular filter), given a matching pair
will give correct info (actual bit or NOTHING, which 
implies the other bit 2-D TRICK!!!).

A choice of picking correct filter set  (½). 

The chance of picking N matching filters to Alice’s hidden 
choices is (½)N  [the AND case].  (½)N is 1/(2N) ~ 10(-N/3.3) 

For N = 128 ~ 10(-36)

Doing it 100 times a second for one second ~ 10(-36)100 

~ 10(-3600) 

~ 10(-3600) qualifies as the definition of impossible.

Discussion [2/6]
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Individual Photon Polarization
Measurement is a Quantum Process

Knowing that the wrong basis gives either result with p = 
.5 (therefore no knowledge) is a quantum result.

Knowing that p = .5 because of the probability law of 
mixed state projections in 45° is a quantum result.

Knowing that a result of NO PHOTON means the 
complimentary pure state (therefore full knowledge - in 
2-D ONLY) is a quantum result.  2-D, IS A TRICK - AGAIN.

Discussion [3/6]
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Any attempt to measure (read) an unknown
(mixed) state MUST modify (Project) that state.

What we know is only the outcome state of the 
measurement, not the input state.

So – we can’t copy (clone) a state.

The No Cloning Theorem

The No Cloning Theorem

Discussion [4/6]
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Any attempt to read an unknown (mixed) photon 
and pass it on will introduce a probabilistic error.

There is a No Cloning Theorem.

In this case, cloning involves reading a photon. 

Reading means applying a filter.  

Eve can only pick a random choice of filter & SET
which introduces a random change to an incoming 

photon – sometimes - and sometimes not.  
She never knows which!  

Quantum Key Distribution EVE Eavesdropping

Discussion [5/6]
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Only if her filter SET happens to match the filter 
SET used by Alice to send the photon is there no 
error;

• Eve can’t know if there is a match.  

• A possible basis change causes ambiguity in her
resultant measurement knowledge.

• No Cloning causes her to almost always pass on
some changed photons. 
• [She can be detected.]

Quantum Key Distribution EVE Eavesdropping

Discussion [6/6]
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Algorithm Diagrams
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• UML Swim Lanes w/o Eve
• UML Swim Lanes w/ Eve
• Text Formulation
• Flowchart (Again)



The Following Diagram: QKD Algorithm Overview
W/O Eve 1 of 2
W/O Eve 2 of 2

The The Following Diagram: QKD Algorithm Overview
W/   Eve 1 of 2
W/   Eve 2 of 2

Quantum Key Distribution Algorithm Summary

Quantum Key Distribution Results

Quantum Key Distribution One Time Pad

SUMMARY of Algorithm
• We can securely transmit an unbreakable

one time pad (Symmetric Key) of any
desired length.

• We can ALWAYS detect EVE eavesdropping.
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W/O Eve 1 of 2
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W/O Eve 2 of 2
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10. 



W/Eve 1 of 2

4/3/2018 QKD ©  Ronald I Frank 2003 - 2018  V1 61



W/Eve 2 of 2
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Alice sends N random bits (photons) using a random choice 
of N filters.  Alice knows her bits and filters.

1. Bob uses a random choice of receiving filters
• Bob knows his measured bits and filters
• Some are errors because he chose the wrong filter
• A bad filter gives a bit error 50% of the time
• A good filter gives a correct bit 100% of the time

2. Alice calls Bob in the open and tells him HER Filter SETS

3. Bob tells Alice which of HIS SETS agree (M)
• This determines a secret set of M known bit values
• This is a key for encryption - if no Eve 

5. Alice calls Bob and reads to him a discardable subset of 
HER actual FILTERS (bits).  If they agree there has been 
no Eve.  Otherwise, there has been an Eve.  DISCARD 
ALL!

Singh, Simon. The Code Book.Anchor Books NY. ISBN 0-385-49532-3 (1999) PP. 339-344

Quantum Key Distribution Algorithm
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1. This leaves both with a long 
random bit string which is secret 
and has not been read by an Eve 
(P~1).

2. This bit string is used as a secure 
symmetric key for a one-time-pad.

3. The Navajo box generates new 
keys every 10 ms (100/sec).

Quantum Key Distribution Results
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Quantum Key Distribution
1TP

One-time-pads are
(classically)

known
(i.e., proven)
Unbreakable

(By Shannon).
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Algorithm Results

We can securely transmit an 
unbreakable one time pad 

(Symmetric Key) of any 
desired length.

We can ALWAYS detect EVE 
eavesdropping.
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Algorithm Uses   [1/2]

We can use the quantum key to 
distribute secure encrypted 

messages.

We can use the quantum key to 
distribute classical Private Keys  

(as messages).

BORMING’s Dissertation
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Algorithm Uses   [2/2]

We can use the quantum key to 
distribute classical messages with 

a secure digital signature

[Open text with encrypted 

hash of long message].
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7. Quantum Key Distribution
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8. Appendix on Vector 
Algebra

And
Hermitian

Inner product Spaces



WHY Vectors (Linear Algebra)?
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The world can be effectively modelled
by Objects that have Observable States with
Measureable  Values with given probability.

States can be effectively modelled
by vectors.

Objects can be effectively modelled
by Operators on vectors.

Measureable values of the object can be 
effectively modelled by eigenvalues of the 
eigenvectors of the object.



WHY Vectors (Linear Algebra)?
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He probability of finding the initial (before 
measurement) system in the final eigenstate i 
with measured eigenvalue i after 
measurement , can be effectively modelled as 
the square of the projection of the initial 
(before measurement) system vector onto 
the eigenvector i (found as the result of the 
measurement).
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NY PPT Devil

A set of thingies that ADD, and scalars (numbers) 
can multiply them.  {Vector: +, ● and Scalar: +,-,*,/}

Vectors

Vectors

Component Model (x1, y1, z1)  3D
(x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3) 

component-wise 
addition
s(x1, y1, z1) = (sx2, sy2, sz2) 

component-wise scalar multiplication
Inner Product (x1, y1, z1) (x2, y2, z2) = a scalar
vector/vector multiplication=[x1 x2,+ y1 y2, + z1 z2]

ADD (component-wise component multiplication)

Length {(x1, y1, z1) (x1, y1, z1)}.5 = a scalar >=0
{x1 x2,+ y1 y2, + z1 z2} .5 >=0
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1. A vector space is a collection of thingies that 
add (u=v+w), associate u+(w+z)=(u+w)+z, 
have an identity (u+0 =u), an additive inverse         
(-u+u=0), and commute (+) (w+z)=(z+w).

2. There is also a field of scalars that multiply 
them:  su.  This is scalar multiplication.  
Scalars in QM are complex #s.

3. In addition to this scalar multiplication, there 

is a (vector  vector) multiplication called the 

scalar product (= the inner product = the dot 
product).  It yields a scalar and is notated 

(u·v) [“u dot v”] or <u, y>.

Vectors
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1. A Basis of an (n-D) vector space is a set of n 
vectors which are:
a. Linearly independent (Can’t sum to one of 

them)
&

b. Span (generate) all vectors of the space

2. We can always find an orthonormal basis 
which are:
a. Of length 1
b. Mutually orthogonal.

Vectors
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"Hermitian” Inner Product.
1. <-, -> [maps vectors to a scalar (COMPLEX NUMBER)]

2. <u+v, w> = <u, w> + <v, w> [ u, v, w are vectors]

3. <u, v+w> = <u, v> +  <u, w> Bi-Linear
4. <su, v>     = s<u, v> [ s is a COMPLEX NUMBER]

5. <u, sv>     = s*<u, v> [* is COMPLEX CONJUGATION]

6. <u, v> =  <v, u>* [Conjugate Symmetric] 

7. <u, u> = |u|2 0 [= 0 iff u = 0]

<Hu, v> = < u, H*v> = < u, Hv > [Hermitian Definition] 

[Eric W. Weisstein et al. "Hermitian Inner Product." From MathWorld--A Wolfram 
Web Resource. http://mathworld.wolfram.com/HermitianInnerProduct.html ]

If u and v are real: <u, v> =  <v, u> = def (u·v)
u·v = |u||v|cos(angle between them).

Vectors

/
http://mathworld.wolfram.com/HermitianInnerProduct.html
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• |u|= (u·u*).5 is a real number.  “Length”

• Hermitian operators [H=H*] (* is conjugate 
transpose) map vectors to vectors in the 
vector space.  Hu = v .

• Eigenvectors (“ownvectors”) of an operator H 
are those vectors that H maps into multiples of 
themselves.  Hu=u .  If |u| =1, is an 
eigenvalue of H associated with u [there can 
be more than one u for a given ].  

• An Hermitian operator’s eigenvalues are real.
• An Hermitian operator’s eigenvectors form a 

basis of the entire [Hermitian Vector] space.
• In a real inner product space the symmetric 

operators (A=At) are the Hermitian operators. 

Vectors



Sin(nx) & Cos (nx)
Form an Orthonormal Basis

of an
Infinite Dimensional Space

(all n) and are the
Eigenvectors of the

Second Derivative Operator
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9. Appendix on Sin & Cos

 2

2

d

dx



Mixed (n, m)      sin(nx) / cos(mx) are orthogonal
Same (n = m)    sin(nx) / cos(nx) are orthogonal

cos( )sin( ) 0nx mx dx






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Mixed (n, m)      Sin(nx) / sin(mx) are orthogonal
Same  (n = m)   Sin(nx) / sin(nx) are normalizable

2

sin( )sin( ) [ , 1]

. . sin ( ) [ 1]

. . sin( )sin( ) 0 [ ]

mnnx mx dx m n

i e nx dx n

i e nx mx dx m n























 

 

 






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Mixed cos(nx) / cos(mx) are orthogonal
Same cos(nx) / cos(nx) are normalizable

2

cos( )cos( ) [ , 1]

. . cos ( ) [ 1]

. . cos( )cos( ) 0 [ & 1]

mnnx mx dx m n

i e nx dx n

i e nx mx dx m n























 

 

  






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(1)sin( ) 0mx dx







(1)cos( ) 0nx dx







cos(nx) & sin(nx) are
Orthogonal to a constant (1).
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So What?
Any
• Continuous function f(x) on [-, ]
• With only a finite number
• of
• Finite jump discontinuities

Equals the infinite sum

0

1 1

( ) cos( ) sin( )
2

n n

n n

a
f x a nx b nx

 

 

   
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where  

 

 

 

0 1

cos( )

sin( )

1
( ) 0 ( ) 1, ( )

1
( )cos( ) 0 ( ) cos( ), ( )

1
( )sin( ) 0 ( ) sin( ), ( )

n nx

n nx

a f x dx P f x f x

a f x nx dx P f x nx f x

b f x nx dx P f x nx f x

























 
   
 

 
   
 

 
   
 






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2
2

2

2
2

2

(sin( )) (sin( ))
sin( ) sin( ) cos( ) sin( )

(cos( )) (cos( ))
cos( ) cos( ) sin( ) cos( )

d nx d nx
nx x n nx n nx

dx dx

d nx d nx
nx nx n nx n nx

dx dx

       

       

 
22

2 2

sin( ) sin( )( )

cos( ) cos( )

nx n nxd
H H

nxdx n nx

  
      

   

Therefore sin & cos are the Eigenvectors
of the

Second Derivative Operator
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