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QM Background [0]

An Hermitian Operator (matrix) has all the 
properties we need to model the quantum 
thingies of interest.

1. It has a complete spanning set of eigenvectors.
• They can be orthonormal-ized.

2. Its eigenvalues are always real.
3. It is self adjoint so it allows of the spectral decomposition.  

4. Is the projector on the eigenvector
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QM Background [1]

1. A QM Thingie of Interest (TOI), like energy or 
position, or momentum, or a photon’s state of 
polarization, corresponds to an operator that 
mushes around the vectors which are the 
measureable states of the Thingie.

{Operator -> Thingie}  

& 
{Thingie state > vector} 

2. A Quantum System in a physical state is 
represented by a corresponding UNIT vector in 
some abstract Hermitian vector space. 
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QM Background [2/6]

3. A Measurement puts the Quantum System into a 
unique physical state called a “Pure State” 
represented by a vector along a UNIT Basis Vector 
in that abstract vector space.

4. Before any measurement, the system is in an 
unknown mixture of pure states, called a “Mixed 
State Vector”.

5. A measurement corresponds to a projection of a 
UNIT mixed vector onto ONE of the UNIT basis 
vectors of the abstract space. “Pure State Vector”.
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QM Background [3/6]

6. The (length)2 <1 of the projected unit mixed 
state vector (the pure state vector) is the 
PROBABILITY of finding that Pure State in any 
given measurement. 

{Projected pure state length2 = Probability

of getting that measurement result} 

7. All Basis Vectors are actually eigenvectors of the 
operator representing the measured quantity.  
{Possible Pure States}
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QM Background [4/6]

8. The value of the eigenvalue corresponding to 
the measured pure state is the measured 
VALUE of the Thingie in that pure state.

{Eigenvalue of Projected pure state = 
Value of measurement result.} 
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QM Background [5/6]
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Outer Product as a Projector



QM Background [6/6]

9. A measurement corresponds to a meter reading 
of a physical system in an unknown state 
yielding a known state with a known metered 
value. 
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Operator Thingie (Property)

Vector m Unknown State of Thingie

Projected Vector vi is an  
Eigenvector of Operator

Known State

Eigenvector Length 2 = sum (ai)
2 Prob of getting state

Eigenvalue of Eigenvector i Value of Thingie

H = S i( vi vi
*)

m = S ai( vi)

H vi = S i([vi vi
*] vi )= i[vi](1)= ivi

Hv= v

Eigen Value &  Vector

Mixed State

Spectral Decomposition of a Normal (Hermitian)
Operator as weighted sum of projectors.



QM Background [7]

1. A vector space is a collection of thingies that add
(u=v+w), associate u+(w+z)=(u+w)+z, have an 
identity (u+0 =u), an additive inverse (-u+u=0), 
and commute (+) (w+z)=(z+w).

2. There is also a field of scalars that multiply them:  
ku  (|k||u|). This is scalar multiplication.  Scalars 
here are complex #s.

3. In addition to this scalar multiplication, there is a 

(vector·vector) multiplication called the inner 

product (= the scalar product = the dot product).  It 

yields a scalar and is notated u·v [“u dot v”] .
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QM Background [8]
"Hermitian” Inner Product.

3. a. <-, -> [maps to vectors to a scalar (COMPLEX NUMBER)]

3. b. <u+v, w> = <u, w> + <v, w> [ u, v, w are vectors]

3. c. <u, v+w> = <u, v> +  <u, w> Distribution
3. d. <au, v>     = a<u, v> [ a is a COMPLEX NUMBER]

Linear in the left position

3. e. <u, av>     = a*<u, v> [* is COMPLEX CONJUGATION]

Conjugate Linear in the right position

3. f. <u, v> =  <v, u>* [* is COMPLEX CONJUGATION]

3. g. <u, u> = |u|2  0  [= 0 iff u = 0]

[Eric W. Weisstein et al. "Hermitian Inner Product." From MathWorld--A Wolfram Web 
Resource. http://mathworld.wolfram.com/HermitianInnerProduct.html ]

If u and v are real: <u, v> =  <v, u> = def (u·v)
u·v = |u||v|cos(angle between them).
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QM Background [9]
4. |u|= (u·u*).5 is a real number.  “Length”

5. Hermitian operators [H=H*] (* is conjugate 
transpose) map vectors to vectors in the vector 
space.  Hu = v .

6. Eigenvectors (“ownvectors”) of an operator H are 
those vectors that H maps into multiples of 
themselves.  Hu=u .  If |u| =1,  is an eigenvalue 
of H associated with u [there can be more than one 
u for a given ].  

7. An Hermitian operator’s eigenvalues are real ().
8. An Hermitian operator’s eigenvectors form a basis

of the entire [Hermitian Vector] space.
9. In a real inner product space the symmetric 

operators (A=At) are the Hermitian operators. 
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QM Background [10]
Why “EIGEN”?

Let ui be the eigen vectors of H 
and

Let i be the corresponding eigen values.
Then

H = S i( ui ui
*)

Notice that (ui ui
*) acts as a projector operator onto ui . 

(ui ui
*)v = ui ( ui

*v ) = ui ( const. ).   ( ui ui
*) is NOT 

<ui, ui
*> it is the juxtaposition of two vectors.

“Rank 1 
decomposition”

of numerical analysis

The “Spectral” 
Decomposition of the 
Operator H.   The i are 
the “spectra”.
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QM Background [11]
Quantum Mechanics is “just” modeling a physical 

system by “the right” Hermitian vector space.
Measurable Quantity Hermitian Operator 

Measured Value Eigenvalue 

Measured State [“Pure”] Eigenvector

Gen. System States Eigenvector Combination

Probability of Value (Length)2 of projection on   
resultant eigenvector [<=1]

[All states = length 1, all eigenvalues real]

[Sometimes we don’t care about the values!]

[Most times we care only about the line, not the +- direction!]
[Sometimes we know the eigenvectors so we don’t need the operator!]
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Hv= v

H*=H

H(-v)= -v)



QM Background [12]

1. A Quantum System in a physical state is 
represented by a corresponding UNIT vector in 
some abstract Hermitian vector space. 

2. A Measurement puts the Quantum System into a 
unique physical state called a “Pure State” 
represented by a vector along a UNIT Basis 
Vector in that abstract vector space. 

3. Before any measurement, the system is in an 
unknown mixture of pure states, called a “Mixed 
State”.

4. A measurement corresponds to a projection of a 
UNIT mixed vector onto ONE of the UNIT basis 
vectors of the abstract space.
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QM Background [13]
5. The (length)2 <1 of the projected unit mixed 

state vector is the PROBABILITY of finding 
that Pure State in any given measurement. 

6. All Basis Vectors are actually eigenvectors of 
the operator representing the measured 
quantity. 

7. The value of the eigenvalue corresponding to 
the pure state is the measured VALUE in that 
pure state.

8. A measurement corresponds to a meter reading 
of a physical system in an unknown state 
yielding a known state with a known metered 
value. 
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QM Background [14]  Definitions
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QM Background [15]      Definitions
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Anything we can measure is 
represented by an operator
on a Hermitian Inner Product 
Vector Space. 
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QM Background [16]



An operator represents the 
thingie being measured, like
Photon Polarization
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QM Background [17]



The STATE of the thingie is an 
UNKNOWN messy mix of weighted 
basis vectors (possibilities)
(eigenvectors) before the 
measurement.
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QM Background [18]



The measurement projects
the mess onto a single 
eigenvector (a “pure” state).
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QM Background [19]



The length2 of the projection is 
the probability of getting this 
eigenvector (“pure” state). 
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QM Background [20]



Gimmick: All states are unit 
length. SO, all projections are

≤ 1
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QM Background [21]



≤ 1
Means we can consider 

them probabilities.
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QM Background [22]



The final measured state 
vector of the thingie is an 
eigenvector of the operator.
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QM Background [23]



The value of the eigenvalue
IS the value of the 
measurement.  What we 
read on the meter.
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QM Background [24]
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QM Background [25]



What Representation

Real measureable thingie Hermitian Operator

Unknown State of thingie Unknown Weighted mix of Eigenvectors

Measurement of thingie Projection onto 1 Eigenvector

Value of the Measurement The Eigenvalue of the Eigenvector

Real Number Measurements Hermitian Eigenvalues are Always Real

Probability of getting measured value Squared projection (length2)

SUMMARY
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QM Background [26]



In Quantum Computing, why don’t we see the Hermitian 
operators that generate the state vectors?

Because there are and will be many varied physical 
implementations of qubits and other objects with state.  We 
are not primarily interested in their physical implementations.  
We are interested in the state vectors and the results of their 
manipulation, however they were generated.

In Quantum Mechanics, are there other ways to describe a 
system besides state vectors?

Yes.  It’s called a Density Matrix.  It is introduced toward the 
end of the Nielsen & Chuang introduction. We may visit it 
later.
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QM Afterword 1 [27]



What is an observable, what is a complete set of observables, what is a maximal 
measuremet?

Measurable quantities are also called Observables.  If 2 observables share the same 
eigenVECTORS, they commute.  Also they are SIMLUTANEOUSLY measurable.  They 
may have different eigenvalues for an eigenvector.  They may also have different 
projections on the eigenvector (probabilities).

A complete (maximal) set of observables all share the same eigenvectors.  Their 
measurement is the most we can expect out of a measurememt.
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QM Afterword 2 [28]
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Applied to Polarization

Unitary Equivalent States
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QM Background [29]
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Applied to Polarization

Spectral definition
of

Operator H
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QM Background [30]
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The operator does not change here,

only the eigenvectors do.

Applied to Polarization
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QM Background [31]


