

QM Background

See Slides 30 \& 31 for the difference in emphasis in Quantum Computing versus Quantum Mechanics.

Pace University
rfrank @ pace.edu

QM Background

See Slides 30 \& 31 for the difference in emphasis in Quantum Computing versus Quantum Mechanics.

Dr. Ronald I. Frank Pace University rfrank@pace.edu

QM Background [0]

An Hermitian Operator (matrix) has all the properties we need to model the quantum thingies of interest. $H=H^{\dagger}=H^{* T}$

1. It has a complete spanning set of eigenvectors. $\underline{v}_{i} \ni H \underline{v}_{i}=\lambda_{i} \underline{v}_{i}$

- They can be orthonormal-ized

2. Its eigenvalues are always real. \square
3. It is self adjoint so it allows of the spectral decomposition.

4. $\underline{v}_{i} \underline{v}_{i}^{T} \triangleq P_{\underline{v}_{i}}$ Is the projector on the eigenvector \underline{v}_{i}

QM Background [1]

1. A QM Thingie of Interest (TOI), like energy or position, or momentum, or a photon's state of polarization, corresponds to an operator that mushes around the vectors which are the measureable states of the Thingie. \{Operator $\leftarrow->$ Thingie\}
\&
\{Thingie state $\leftarrow>$ vector\}
2. A Quantum System in a physical state is represented by a corresponding UNIT vector in some abstract Hermitian vector space.

QM Background [2/6]

3. A Measurement puts the Quantum System into a unique physical state called a "Pure State" represented by a vector along a UNIT Basis Vector in that abstract vector space.
4. Before any measurement, the system is in an unknown mixture of pure states, called a "Mixed State Vector".
5. A measurement corresponds to a projection of a UNIT mixed vector onto ONE of the UNIT basis vectors of the abstract space. "Pure State Vector".

QM Background [3/6]

6. The (length) ${ }^{\mathbf{2}}<\mathbf{1}$ of the projected unit mixed state vector (the pure state vector) is the PROBABILITY of finding that Pure State in any given measurement.
\{Projected pure state length ${ }^{2}=$ Probability of getting that measurement result $\}$
7. All Basis Vectors are actually eigenvectors of the operator representing the measured quantity. \{Possible Pure States\}

QM Background [4/6]

8. The value of the eigenvalue corresponding to the measured pure state is the measured VALUE of the Thingie in that pure state. \{Eigenvalue of Projected pure state $=$ Value of measurement result.\}

QM Background [5/6]

Outer Product as a Projector
[]$\quad]=[\quad] \approx V_{i} V_{i}^{*}=P_{i}$

Applied to Projections, regroup.

$\left\{V_{i} V_{i}^{*}\right\} V_{i}=P V_{i}=V_{i}=V_{i}\left\{V_{i}^{*} V_{i}\right\}=V_{i}(1)=V_{i}$ Projector on eigenvector
$\left\{V_{i} V_{i}^{*}\right\} V_{j \neq i}=P V_{j \neq i}=V_{i}\left\{V_{i}^{*} V_{j \neq i}\right\}=V_{i}(0)=\underline{0}$ Orthogonal Projector

QM Background [6/6]

9. A measurement corresponds to a meter reading of a physical system in an unknown state yielding a known state with a known metered value.

Operator	Thingie (Property)	Eigen Value \& Vector
Vector m	Unknown State of Thingie	$H \underline{v}=\lambda \underline{v}$
Projected Vector \underline{v}_{i} is an Eigenvector of Operator	Known State	
Eigenvector Length ${ }^{2}=\operatorname{sum}\left(\alpha_{i}\right)^{2}$	Prob of getting state	$\underline{\mathrm{m}}=\sum \alpha_{\mathrm{i}}\left(\underline{\mathrm{v}}_{\mathrm{i}}\right)$
Eigenvalue of Eigenvector λ_{i}	Value of Thingie	Mixed State
$H=\sum \lambda_{\mathrm{i}}\left(\underline{\mathrm{V}}_{\mathrm{i}} \underline{\mathrm{V}}_{\mathrm{i}}^{*}\right) \quad \begin{aligned} & \text { Spectral Decomposition of a Normal (Hermitian) } \\ & \text { Operator as weighted sum of projectors. }\end{aligned}$		
$\mathrm{H} \underline{\mathrm{V}}_{\mathrm{i}}=\sum \lambda_{\mathrm{i}}\left(\left[\underline{\mathrm{V}}_{\mathrm{i}} \underline{\mathrm{V}}_{\mathrm{i}}^{*}\right] \underline{\mathrm{V}}_{\mathrm{i}}\right)=\lambda_{\mathrm{i}}\left[\underline{\mathrm{V}}_{\mathrm{i}}\right](1)=\lambda_{\mathrm{i}} \underline{\mathrm{V}}_{\mathrm{i}}$		

QM Background [7]

1. A vector space is a collection of thingies that add $(\underline{u}=\underline{v}+\underline{w})$, associate $\underline{u}+(\underline{w}+\underline{z})=(\underline{u}+\underline{w})+\underline{z}$, have an identity $(\underline{u}+\underline{0}=\underline{u})$, an additive inverse ($-\underline{u}+\underline{u}=\underline{0}$), and commute (+) $(\underline{w}+\underline{z})=(\underline{z}+\underline{w})$.
2. There is also a field of scalars that multiply them: $k \underline{u} \Rightarrow(|k||\underline{u}|)$. This is scalar multiplication. Scalars here are complex \#s.
3. In addition to this scalar multiplication, there is a (vector•vector) multiplication called the inner product ($=$ the scalar product $=$ the dot product). It yields a scalar and is notated $\underline{\mathbf{u}} \underline{\mathbf{V}}$ ["u dot $\underline{\mathrm{v}}$ "].

QM Background [8]

"Hermitian" Inner Product.

3. a. $\langle-,-\rangle \quad$ [maps to vectors to a scalar (COMPLEX NUMBER)]
4. b. $\langle\underline{u}+\underline{v}, \underline{w}\rangle=\langle\underline{u}, \underline{w}\rangle+\langle\underline{v}, \underline{w}\rangle \quad[\underline{u}, \underline{v}, \underline{w}$ are vectors]
5. c. $\langle\underline{u}, \underline{v}+\underline{w}\rangle=\langle\underline{u}, \underline{v}\rangle+\langle\underline{u}, \underline{w}\rangle$ Distribution
6. d. $\langle\mathrm{a} \underline{u}, \underline{v}\rangle=a<\underline{u}, \underline{v}\rangle$ [a is a COMPLEX NUMBER]

Linear in the left position
3. e. $\langle\underline{u}, a \underline{v}\rangle=a *<\underline{u}, \underline{v}\rangle \quad[*$ is COMPLEX CONJUGATION] Conjugate Linear in the right position
3. f. $\langle\underline{u}, \underline{v}\rangle=\langle\underline{v}, \underline{u}\rangle *$ [* is COMPLEX CONJUGATION]
3. g. $\langle\underline{u}, \underline{u}\rangle=|\underline{u}|^{2} \geq 0$

$$
[=0 \text { iff } \underline{u}=\underline{0}]
$$

[Eric W. Weisstein et al. "Hermitian Inner Product." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HermitianInnerProduct.html]

If \underline{u} and \underline{v} are real: $<\underline{u}, \underline{v}\rangle=\langle\underline{v}, \underline{u}\rangle=\operatorname{def}(\underline{u} \cdot \underline{v})$ $\underline{u} \cdot \underline{v}=|\underline{u}||\underline{v}| \cos ($ angle between them $)$.

QM Background [9]

4. $|\underline{\mathrm{u}}|=\left(\underline{\mathbf{u}} \cdot \underline{\mathrm{u}}^{*}\right)^{5}$ is a real number. "Length"
5. Hermitian operators [$\mathrm{H}=\mathrm{H}^{*}$] (* is conjugate transpose) map vectors to vectors in the vector space. $\mathrm{H} \underline{\mathrm{u}}=\underline{\mathrm{v}}$.
6. Eigenvectors ("ownvectors") of an operator H are those vectors that H maps into multiples of themselves. $H \underline{u}=\lambda \underline{u}$. If $|\underline{u}|=1, \lambda$ is an eigenvalue of H associated with \underline{u} [there can be more than one u for a given λ].
7. An Hermitian operator's eigenvalues are real ($\boldsymbol{\lambda}$).
8. An Hermitian operator's eigenvectors form a basis of the entire [Hermitian Vector] space.
9. In a real inner product space the symmetric operators $\left(A=A^{t}\right)$ are the Hermitian operators.

QM Background [10]

Why "EIGEN"?

Let \underline{u}_{i} be the eigen vectors of H
and

Let λ_{i} be the corresponding eigen values.

| The "Spectral"
 Decomposition of the
 Operator H. The λ_{i} are
 the "spectra". |
| :--- | \left\lvert\,$=\sum \lambda_{i}\left(\underline{U}_{i} \underline{U}_{i}^{*}\right)$| "Rank 1
 decomposition"
 of numerical analysis |
| :---: |\right.

Notice that $\left(\underline{u}_{i} \underline{u}_{i}^{*}\right)$ acts as a projector operator onto \underline{u}_{i}. $\left(\underline{u}_{i} \underline{u}_{i}^{*}\right) \underline{v}=\underline{u}_{i}\left(\underline{u}_{i}^{*} \underline{v}\right)=\underline{u}_{i}$ (const.). ($\left.\underline{u}_{i} \underline{u}_{i}^{*}\right)$ is NOT $<\underline{u}_{i}, \underline{u}_{i}^{*}>$ it is the juxtaposition of two vectors.
$\left[\begin{array}{l}x \\ x \\ x \\ x\end{array}\right][x, x, x, x]=\left(\begin{array}{cccc}x & x & x & x \\ x & x & x & x \\ x & x & x & x \\ x & x & x & x\end{array}\right)$
$[x, x, x, x]\left[\begin{array}{c}x \\ x \\ x \\ x\end{array}\right]=($ SCALAR $)$

QM Background [11]

Quantum Mechanics is "just" modeling a physical system by "the right" Hermitian vector space.
 Gen. System States
Probability of Value
$\longleftrightarrow$$\longleftrightarrow \begin{gathered}\text { Eigenvector Combination } \\ \text { (Lesultant eigenvector [}[<=1]\end{gathered}$ [All states $=$ length 1 , all eigenvalues real]

QM Background [12]

1. A Quantum System in a physical state is represented by a corresponding UNIT vector in some abstract Hermitian vector space.
2. A Measurement puts the Quantum System into a unique physical state called a "Pure State" represented by a vector along a UNIT Basis Vector in that abstract vector space.
3. Before any measurement, the system is in an unknown mixture of pure states, called a "Mixed State".
4. A measurement corresponds to a projection of a UNIT mixed vector onto ONE of the UNIT basis vectors of the abstract space.

QM Background [13]

5. The (length) ${ }^{2}<1$ of the projected unit mixed state vector is the PROBABILITY of finding that Pure State in any given measurement.
6. All Basis Vectors are actually eigenvectors of the operator representing the measured quantity.
7. The value of the eigenvalue corresponding to the pure state is the measured VALUE in that pure state.
8. A measurement corresponds to a meter reading of a physical system in an unknown state yielding a known state with a known metered value.

QM Background [14] Definitions

```
H\triangleq Operator (moves vectors to vectors)
v}\triangleqV\mathrm{ Vector (has a lenght and a direction) (a sum of basis vectors)
\lambda\triangleq Eigenvalue (of H) iff Hv= \lambdav
    in which case, v is called an Eigenvector associated with }
    (H just 'stretches' v but doesn't move it)
|v \triangleq length of v. |v|=1, v is a unit vector.
H\triangleq H}\mp@subsup{H}{}{*}\mathrm{ (conjugate transpose)
H=H}\mp@subsup{H}{}{\dagger}\mathrm{ then H is called "Hermitian" [It has only real eigenvalues]
    and is has a complete set of basis vectors (ANY vector is
    a weighted sum of the basis vectors)
<v,w>}\mathrm{ is an Hermitian inner product if it is a complex number,
    <v,w>=<\textrm{w},\textrm{v}>* and <\alphau+\betav,w>=\alpha<u,w>+\beta< < v,w>
        and }\alpha<\textrm{u},\textrm{w}>=\alpha*<\textrm{w},\textrm{u}> i.e., it is "conjugate linear
```


QM Background [15] Definitions


```
u u* is an operator (matrix)
Hv}=\mp@subsup{\lambda}{1}{}v(\mp@subsup{v}{}{*}v)+\mp@subsup{\lambda}{2}{}u(\mp@subsup{u}{}{*}v)=\mp@subsup{\lambda}{1}{}v(1)+\mp@subsup{\lambda}{2}{}u(0)=\mp@subsup{\lambda}{1}{}v\quad\mathrm{ An Eigenvector
U=\mp@subsup{U}{}{*}\quadU\mp@subsup{U}{}{*}=\mp@subsup{U}{}{*}U=I\quad\mathrm{ Unitary Operator}
< \mp@subsup{u}{}{*}\mp@subsup{U}{}{*},U\textrm{u}>=<<\mp@subsup{\textrm{u}}{}{*},\mp@subsup{U}{}{*}U\textrm{u}>=<\mp@subsup{\textrm{u}}{}{*},I\textrm{u}>=1 Preserves lengths (like a rotation)
UNITARY EQUIVALENCE (Rotate the Operator & vectors)
\hat{H}=UHU\mp@subsup{U}{}{*}=\mp@subsup{\lambda}{1}{}(Uv)(\mp@subsup{v}{}{*}\mp@subsup{U}{}{*})+\mp@subsup{\lambda}{2U}{}(U\textrm{Uu})(\mp@subsup{\textrm{u}}{}{*}\mp@subsup{U}{}{*})=\mp@subsup{\lambda}{1}{}(\hat{v})(\hat{v})}\mp@subsup{)}{}{\wedge}+\mp@subsup{\lambda}{2}{}(\hat{u})(\hat{u}
where v = Uv u}=|
```


QM Background [16]

Anything we can measure is represented by an operator on a Hermitian Inner Product Vector Space.

QM Background [17]

An operator represents the thingie being measured, like Photon Polarization

QM Background [18]

The STATE of the thingie is an UNKNOWN messy mix of weighted basis vectors (possibilities) (eigenvectors) before the measurement.

QM Background [19]

The measurement projects the mess onto a single eigenvector (a "pure" state).

QM Background [20]

The length ${ }^{2}$ of the projection is the probability of getting this eigenvector ("pure" state).

QM Background [21]

Gimmick: All states are unit length. SO, all projections are ≤ 1

QM Background [22]

≤ 1

Means we can consider them probabilities.

QM Background [23]

The final measured state vector of the thingie is an eigenvector of the operator.

QM Background [24]

The value of the eigenvalue IS the value of the measurement. What we read on the meter.

QM Background [25]

QM Background [26] SUMMARY

What	Representation
Real measureable thingie	Hermitian $\underline{\text { Operator }}$
Unknown State of thingie	$\underline{\text { Unknown Weighted mix of Eigenvectors }}$
Measurement of thingie	Projection onto 1 Eigenvector
Value of the Measurement	The Eigenvalue of the Eigenvector
Real Number Measurements	Hermitian Eigenvalues are Always Real
Probability of getting measured value	Squared projection (length ${ }^{\mathbf{2}}$)

QM Afterword 1 [27]

In Quantum Computing, why don't we see the Hermitian operators that generate the state vectors?

Because there are and will be many varied physical implementations of qubits and other objects with state. We are not primarily interested in their physical implementations. We are interested in the state vectors and the results of their manipulation, however they were generated.

In Quantum Mechanics, are there other ways to describe a system besides state vectors?

Yes. It's called a Density Matrix. It is introduced toward the end of the Nielsen \& Chuang introduction. We may visit it later.

QM Afterword 2 [28]

What is an observable, what is a complete set of observables, what is a maximal measuremet?

Measurable quantities are also called Observables. If 2 observables share the same eigenVECTORS, they commute. Also they are SIMLUTANEOUSLY measurable. They may have different eigenvalues for an eigenvector. They may also have different projections on the eigenvector (probabilities).

A complete (maximal) set of observables all share the same eigenvectors. Their measurement is the most we can expect out of a measurememt.

QM Background [29]

Applied to Polarization
 Unitary Equivalent States

$u=\imath=\binom{0}{1}, \quad v=\leftrightarrow=\binom{1}{0}$
$\hat{\imath}=\Sigma=\binom{-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}, \hat{v}=\swarrow=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$

QM Background [30]

Applied to Polarization

$$
\left.\left.\begin{array}{l}
U=\left(\begin{array}{ll}
\operatorname{COS}\left(\frac{\pi}{4}\right) & -\operatorname{SIN}\left(\frac{\pi}{4}\right) \\
\operatorname{SIN}\left(\frac{\pi}{4}\right) & \operatorname{COS}\left(\frac{\pi}{4}\right)
\end{array}\right)=\left(\begin{array}{ll}
\left(\frac{1}{\sqrt{2}}\right) & -\left(\frac{1}{\sqrt{2}}\right) \\
\left(\frac{1}{\sqrt{2}}\right) & \left(\frac{1}{\sqrt{2}}\right)
\end{array}\right) \\
\operatorname{det} U=1, U\binom{1}{0}=\binom{\left(\frac{1}{\sqrt{2}}\right)}{\left(\frac{1}{\sqrt{2}}\right)}=\left(\frac{1}{\sqrt{2}}\right)
\end{array}\right) \begin{array}{l}
1 \\
1
\end{array}\right) .
$$

Spectral definition
of
Operator H

$$
\begin{aligned}
& H=1\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+1\binom{0}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right)= \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

QM Background [31]

Applied to Polarization

$H=\hat{H}$

$$
\begin{array}{|l}
\left(\begin{array}{l}
\left(\frac{1}{\sqrt{2}}\right) \\
\binom{\left(\frac{1}{\sqrt{2}}\right)}{\left(\begin{array}{l}
\sqrt{2}
\end{array}\right)}\binom{1}{0}=\left(\begin{array}{l}
\left.\frac{1}{\sqrt{2}}\right) \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)=\hat{v}=\swarrow \\
\left(\begin{array}{l}
\left(\frac{1}{\sqrt{2}}\right)
\end{array}-\left(\frac{1}{\sqrt{2}}\right)\right. \\
\left(\begin{array}{l}
\left.\frac{1}{\sqrt{2}}\right)
\end{array}\right)\binom{0}{1}=\binom{\left.-\frac{1}{\sqrt{2}}\right)}{\frac{1}{\sqrt{2}}}=\hat{u}=\nwarrow \\
\hline
\end{array}\right.
\end{array}
$$

The operator does not change here, only the eigenvectors do.

