
Computing Parity of Combinatorial Functions

Sung-Hyuk Cha

Computer Science Department, Pace University

1 Pace Plaza, New York, NY 10038 USA
scha@pace.edu

Abstract. Finding the parity of a complex combinatorial formula is an important prob-

lem and it can be found efficiently without computing the complex formula itself.

Hence, this article provides concise formulae for popular combinatorial functions such

as exponentiation, factorial, k-permutation, n
th
 Fibonacci, n

th
 Lucas number, summation,

and binomial coefficient (k-combination). While trivial for most functions, computing

the parity of k-combination is quite difficult. Here, an efficient O(logn) algorithm and its

O(logn loglogn) recursive definition for computing the parity of k-combination using a

Fractal, Sierpinski’s Triangle are presented.

1 Introduction

The parity of a positive integer n is whether n is even or odd as defined in the eqn (1) and can be

simply validated by the mod2 function in the eqn (2), i.e., if n is divisible by 2, then n is even.

 









evenn

oddn
nodd

 if0

 if1
 (1)

  2modnnodd  (2)

Table 1. Parity addition and multiplication rules

Addition a + b Multiplication a × b

Rules examples rules examples

e + e = e 4 + 2 = 6 e × e = e 4 × 6 = 24

e + o = o 2 + 3 = 5 e × o = e 2 × 5 = 10

o + e = o 5 + 2 = 7 o × e = e 3 × 4 = 12

o + o = e 3 + 5 = 8 o × o = o 3 × 5 = 15

Table 1 shows the general parity addition and multiplication rules with examples. These rules can

be expressed following eqns (3) and (4). The eqn (5) is the special case of the eqn (4).

 )()()(boddaoddoddbaodd  (3)

)()()(boddaoddbaodd  (4)

)()()()()(2 aoddaoddaoddaaoddaodd  (5)

When a and b are positive integers, c = a × b can be a very big integer. What the eqn (4) means that

one can compute odd(a × b) without computing a × b.

Computing two to a positive integer n
th
 power takes not only Θ(logn) computational time, but also

quite space to represent the big integer output value. But if only the parity is of interest, odd(2
n
) =0 is

trivial as 2
n
 is always divisible by 2 as in the eqn (6).

 


 


otherwise0

0 if1
2

n
odd n (6)

Most combinatorial functions involve large integer values as their outputs, e.g.,

43
43

 = 17343773367030267519903781288812032158308062539012091953077767198995507

54! = 230843697339241380472092742683027581083278564571807941132288000000000000

F337 = 12004657173391489668678522013941832147005954727556362660159637892443617

101P38 = 4754316667896918047001597798032296089764396075469404715079434240000000000

253C101 = 4185450444160841181504584735749915806591589568326561871360076436888800255

Similar to the 2
n
 case, the parity of numerous combinatorial functions such as above cases whose

output is a big positive integer can be computed very efficiently without computing the complicated

functions themselves and taking the mod 2.

The rest of the paper is organized as follows. Section 2 provides concise formulae for trivial cases

such as exponentiation, factorial, k-permutation, n
th
 Fibonacci, n

th
 Lucas number, and summation.

Section 3 gives an efficient O(logn loglogn) algorithm for computing the parity of k-combination

a.k.a. binomial coefficient using the Sierpinski’s Triangle. Finally, section 4 concludes this work.

2 Trivial Parity of Popular Functions

The exponentiation, a
n
 is a product of n factors of a positive integer a as defined in the eqn (7) and

the parity of a
n
 can be found using the eqn (8).


n

n

i

n aaaa 
1

 (7)  


 


otherwise)(

0 if1

aodd

n
aodd n (8)

Inductive Proof: eqn (8):

 
 

(5)eqn by)(

assumptionby)()(

(4)eqn by)()(

).(Suppose

1

aodd

aoddaodd

aoddaoddaodd

aoddaodd

nn

n











■

odd(2
n
) in the eqn (6) and odd(n

n
) in the eqn (9) are special cases of the eqn (8) except for 0

0
, a ma-

thematically mysterious case which we shall not discuss here.

 


 


otherwise)(

0 if?

nodd

n
nodd n (9)

The factorial of a positive integer n is the product of all positive integers less than or equal to n as

defined in the eqn (10) and its parity can be found using the eqn (11).
















otherwise21

0 if1

!

1

ni

n

n
n

i


 (10)  



 


otherwise0

1or 0 if1
!

n
nodd (11)

Proof: eqn (11): odd(n!) = 0 if n > 1

12!
31

 


n

i

n

i

iin

Since n! contains 2, it is always divisible by 2. ■

The k-Permutation is the k-th falling factorial power of n as defined in the eqn (12) and its parity

can be found using the eqn (13).

  


k

n

kni

k

kn

n

k knnni
kn

n
nPP)1()1(

)!(

!

1




 


 (12)

 
















1 if0

1 if)(

0 if1

k

knodd

k

Podd n

k
 (13)

Proof: eqn (13)

 

  .0 thusandeven be tohas)1(or either

),1()1(i.e., ,1 If

)(thusand ,1 If







n

k

n

k

n

k

n

k

Poddnn

knnnPk

noddPoddnPk



■

Fibonacci number is defined recursively in the eqn (14) and its parity can be computed using the

eqn (15). Table 2 provides some insights where gray cells are odd and white cells are even.

















 1 if

1 if1

0 if0

21 nFF

n

n

F

nn

n
 (14)  



 


otherwise1

03mod if0 n
Fodd n

 (15)

Inductive Proof: eqn (15)

Let n = 3p

Base case p = 0, odd(F0 = 0) = 0, odd(F1 = 1) = 1, and odd(F1 = 1) = 1

Suppose odd(F3p) = 0, odd(F3p+1) = 1, and odd(F3p+2) = 1

Show 3(p+1) case: Show odd(F3(p+1)) = 0, odd(F3(p+1)+1) = 1, and odd(F3(p+1)+2) = 1

odd(F3p+3) = odd(F3p+1+F3p+2) by Fibonacci definition (14)

 = odd(odd(F3p+1)+ odd(F3p+2)) by eqn (3)

 = odd(1 + 1) = 0 by assumption

odd(F3p+4) = odd(F3p+2+F3p+3) by Fibonacci definition (14)

 = odd(odd(F3p+2)+ odd(F3p+3)) by eqn (3)

 = odd(1 + 0) = 1 by assumption

odd(F3p+5) = odd(F3p+3+F3p+4) by Fibonacci definition (14)

 = odd(odd(F3p+3)+ odd(F3p+4)) by eqn (3)

 = odd(0 + 1) = 1 by assumption ■

Lucas number is defined recursively in the eqn (16) and its parity can be computed using the eqn

(17). Proof for the eqn (17) is similar to one for the eqn (15).

Table 2. Parity examples of summation, Fibonacci, and Lucas sequences

n i i2 i3 Fn Ln

1 1 1 1 1 1

2 3 5 9 1 3

3 6 14 36 2 4

4 10 30 100 3 7

5 15 55 225 5 11

6 21 91 441 8 18

7 28 140 784 13 29

8 36 204 1296 21 47

9 45 285 2025 34 76

10 55 385 3025 55 123

11 66 506 4356 89 199

12 78 650 6084 144 322

13 91 819 8281 233 521

14 105 1015 11025 377 843

15 120 1240 14400 610 1364

16 136 1496 18496 987 2207

17 153 1785 23409 1597 3571

18 171 2109 29241 2584 5778

19 190 2470 36100 4181 9349

20 210 2870 44100 6765 15127

















 1 if

1 if1

0 if2

21 nLL

n

n

L

nn

n
 (16)  



 


otherwise1

03mod if0 n
Lodd n

 (17)

Consider following popular summations with their respective polynomial expressions in eqns

(18~20). Albeit their integer outputs can be easily computed in constant time, parity of them can be

found even faster using the eqn (21) regardless of the positive integer exponent p.

2

)1(

1






nn
i

n

i

 (18)
6

)12)(1(

1

2 




nnn
i

n

i

 (19)

2

1

3

2

)1(







 




nn
i

n

i

 (20)


 










 otherwise0

2or 14mod if1

1

n
iodd

n

i

p (21)

Inductive Proof: eqn (21)

Let n = 4q

Base case q = 0,

  11 ,00
1

1









 

i

pp ioddodd   122
1

1

1

1

2

1




























 



p

i

pp

i

p

i

p oddioddoddiiodd

  033
2

1

2

1

3

1




























 



p

i

pp

i

p

i

p oddioddoddiiodd

 0 ,1 ,1 ,0 Suppose
34

1

24

1

14

1

4

1

















































q

i

p
q

i

p
q

i

p
q

i

p ioddioddioddiodd

Show 4(q+1) case:

    00044)44(
34

1

34

1

44

1






















































oddqoddioddoddqioddiodd
q

i

pp
q

i

p
q

i

p

    11054)54(
44

1

44

1

54

1






















































oddqoddioddoddqioddiodd
q

i

pp
q

i

p
q

i

p

    10164)64(
54

1

54

1

64

1






















































oddqoddioddoddqioddiodd
q

i

pp
q

i

p
q

i

p

    01174)74(
64

1

64

1

74

1






















































oddqoddioddoddqioddiodd
q

i

pp
q

i

p
q

i

p

■

3 Parity of Binomial Coefficient

The k-combination, a.k.a. binomial coefficient is defined in the eqn (22). Unfortunately, the parity

of binomial coefficient is not as trivial as ones in the previous section.

!)!(

!
),(

kkn

n

k

n
CknCC n

kkn










 (22)

Computing the eqn (22) takes linear time, Θ(n) and one may have to compute n! which is a much

bigger integer than nCk. To minimize its computational time and space a little bit, one may use the

algorithm in the eqn (23) which takes Θ(min(nk, k)) time and min(nPk, nPn-k+1) space.











































 kkn
kn

kn

kn

P

knk
k

knn

k

P

k

n

kn

kn

n

kn

k

k

n

k

 if
)1)((

))1((

)!(

 if
)1(

))1((

!









  


(23)

If only the space is of concern, one can use the Pascal’s rule in the eqn (24) which takes O(n
2
) or

Θ(min(n(nk), nk)) time but only nCk space. Yet, an efficient algorithm for odd(nCk) without compu-

ting nCk is of great interest here. One quick naïve algorithm is to extend the Pascal’s rule [1] in the

eqn (24) to its parity in the eqn (25).








 























k

n

k

n

k

n 1

1

1
 (24) 


































 

















































k

n
odd

k

n
oddodd

k

n
odd

1

1

1
 (25)

The parity triangle of the Pascal’s triangle in Figure 1 (a) is given in Figure 1 (b). This naïve algo-

rithm takes O(n
2
) or Θ(min(n(nk), nk)) time.

(a) Pascal’s Triangle (b) Parity of Pascal’s Triangle

Figure 1. Pascal’s Triangle

However, a careful observation of parity of Pascal’s triangle gives a much efficient algorithm for

odd(nCk). If all ones and zeros are colored with black and white, respectively, it becomes the beauti-

ful fractal known as the Sierpinski’s triangle [2] as shown in Figure 2. The Sierpinski’s triangle

presents a pattern of nested triangles. With this fractal recurring triangle patterns, the parity of bi-

nomial coefficient can be computed very efficiently.

n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

2 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

4 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

5 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

6 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

8 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0

9 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

10 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

11 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

12 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

13 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

16 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0

17 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0

18 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

Figure 2. Sierpinski’s Triangle.

(a) four triangles (b) symmetric folding (c) shift up

Figure 3. Figurative steps for the fast odd(nCk) algorithm.

The sketch of the recursive algorithm is given in Figure 3. Every odd(nCk) lies in an isosceles right

triangle T with hypotenuse as its base. T consists of four isosceles right triangles, U, L, Z, and R as

shown in Figure 3 (a). If odd(nCk) lies in U, U becomes T. Notice that Z is the upside-down triangle

and contains all zeros. If odd(nCk) lies in Z (Zero zone), it should be solved in constant time. Notice

also that U = L = R, and thus, if odd(nCk) lies in L or R, we can map its corresponding point in U and

solve it recursively.

The row-symmetry property of binomial coefficient in the eqn (26) [1] extends to their parities as

in the eqn (27) as well.





















kn

n

k

n
 (26) 














































kn

n
odd

k

n
odd (27)

If odd(nCk) lies in R, the eqn (27) can be utilized to map odd(nCk) to its symmetric part odd(nCnk) in L

as shown in Figure 3 (b).

Notice that the base line of T contains all ones and it occurs at every n = 2
b
 – 1 where b > 0 as de-

fined in the eqn (28).

0 & 12~0any for 1
12




























 
bx

x
odd n

b

 (28)

Similarly, the base line of the upside down U contains all zeros embraced by ones at both ends and it

occurs at every n = 2
b
 where b > 0 as defined in the eqn (29).





































b

bb

x

x

x
odd

2or 1 if1

12~1any for 02
 (29)

For any point at the n
th
 row, its base for the smallest T is  nlog

2 and its base for the upside down

triangle, Z is  nlog
2 . The log function is the base-two-log here. Any point in L can be shifted up to U

by subtracting  nlog
2 from n. as shown in Figure 3 (c).

The eqn (30) shows the recursive formula for odd(nCk).

 

 












































































 



























shiftup) & (fold1&
2

 if
2

up)(shift 1&
2

 if
2

case) (base1 if1

zone) (zero if0

log

log

nnk
n

kn

n
odd

n
n

k
k

n
odd

nk

nk

k

n
odd

n

n

(30)

For example, 254C239, k needs to be folded to k = 254 – 239 = 15. To shift up to a simpler problem, the

floor of log254 needs to be computed first which is 7. And then 2
7
 = 128 must be subtracted from the

original n = 254 resulting in 126. And thus a new simpler problem 126C15 needs to be solved recursive-

ly. The recursive procedure is called only five times as illustrated in Figure 4 (a).

       

0
15

14

15

30

15

62

15

126

239

254

1630
162

430log
shiftup

3262
322

562log
shiftup

64126
642

6126log
shiftup

239254
128254

1282

7254log
shiftup & fold

4567








































































































































nk

nnn
k
n

oddoddoddoddodd

(a)

0
151

2

875

1026

shiftup & fold
















































nk

oddodd

(b) best case

0
21511

1

21511

65537

shiftup















































    
nk

oddodd

(c) best case

1
1

1

4

5

4

13

25

29

25

61

100

125

100

253

1shiftup & foldshiftupshiftup & foldshiftupshiftup & foldshiftup






























































































































































n

oddoddoddoddoddoddodd

(d) worst case

Figure 4. Illustration of the fast odd(nCk) eqn (30) algorithm

The best case scenario is when the recursive procedure is called only once or twice as illustrated in

Figure 4 (b) and (c). Zero zone cases belong to the best case. Notice that x =  nlog and 2
x
 must be

computed within the procedure though. Both take Θ(log n) if efficient divide and conquer algorithms

are used as given in eqns (31) and (32), respectively. Hence the best case computational complexity

is Θ(log n).

 
 








2 if1log

2 if0
log

2
n

n
n

n
 (31)    










1 if

1 if

22 naa

na
a nn

n (32)

In the worst case, the recursive procedure is called up to Θ(log n) times, e.g., Figure 4 (d).

Theorem 1: The worst case running time for the eqn (30) recursive algorithm is Θ(logn loglogn).

Proof:   .loglogLet nnb 

For each iteration, b and 2
b
 must be computed which takes Θ(logb).

There are up to b number of recursive calls in the worst case: <2
b
, 2

b1
,…, 2, 1>.

The total running time is log(b) + log(b1) + … + log(1)

)loglog(log)log()log(
1

nnbbi
b

i




■

Therefore, the computational running time for the eqn (30) recursive algorithm is O(logn loglogn).

The recursive formula is an excellent way to define the concept but a naïve direct implementation

of a certain recursive definition as an algorithm often result in expensive computational time. Most

famous examples include Fibonacci in the eqn (14) and Pascal’s rule in the eqn (24); direct imple-

mentation of the formulae result in exponential time complexity while Θ(n) and O(n
2
) iterative algo-

rithms are known, respectively.

Similarly, the eqn (30) gives an excellent and concise recursive formula for the parity of binomial

coefficient but the direct implementation takes O(logn loglogn) while a Θ(logn) algorithm is possible

based on the eqn (30). The eqns (31) and (32) do not need to be computed in every recursive call but

only once in the beginning. Consider the pseudo code for an iterative version for the eqn (30) whose

computational running time is Θ(logn).

Algorithm I: oddC(n,k)

if k = 0, return 1
 n

b
log

2

while n > 1 & k < n

 if k > n/2

 k ←nk

 while b > n

 b ← b/2

 n ←nb

if k > n, return 0

else return 1

Note that eqns (31) and (32) are executed only once in the line two of the pseudo code and thus

Algorithm I takes Θ(logn).

Corollary 1. Two leg sides of T are odd. Proof in the eqn (33)

Proof:
nk

k

n

k

n
odd or 0 if 1 































■
(33)

1
0

0

0

4

20

20

256

276

shiftupshiftup & foldshiftup & fold
























































































oddoddoddodd 1
20

20

256

276

shiftup & fold














































oddodd

(a) without right leg side termination (b) with right leg side termination

Figure 5. Illustration of the two leg side termination

For example in Figure 5, a naïve direct implementation algorithm of the eqn (30) may call some un-

necessary recursive calls while the iterative Algorithm I terminates immediately as it contains the two

leg side corollary 1. One may add Corollary 1 to the eqn (30) to improve it slightly but once again,

the purpose of the eqn (30) is to provide as concise formula as possible. The author strongly recom-

mends the Algorithm I rather than any recursive version.

Here are some further facts regarding the Pascal’s parity triangle T. Notice that C(2,1), C(4,2),

C(6,3), C(8,4), C(10,5), C(12,6), etc, are all even numbers.

Corollary 2. The altitude of T contain all even except for n = 0 as defined in the eqn (34).



 























otherwise0

0 if12 m

m

m
odd (34)

Proof:







 






















m

m

m

m

m

m 12

1

122
 by Pascal definition (24)








 














m

m

m

m 12

1

12
 by row symmetry property (27)

0

1

12
2

2
 




































m

m
odd

m

m
odd

■

Corollary 3. The parity of the sum of nth row in T is always even as defined in the eqn (35).

0
0

























n

k k

n
oddodd (35)

Proof: There are two cases.

Case 1: If n is odd, i.e., n = 2m – 1, the n
th
 row in T contains even number of possible values for k,

i.e., k = {0,1,…,n}. There are exactly 2m possible values for k. Suppose that the left half of the row

contains x number of ones, then the other right half of the row must contain x number of ones be-

cause of the row symmetry property (27). Hence, the sum of the row is an even number.

Case 2: If n is even, i.e., n = 2m, the n
th
 row in T contains odd number of possible values for k, and

the middle of the row is k = m. The middle one is even because of Corollary 2. Suppose that the left

side of the row (k = 0 ~ m 1) contains x number of ones, then the right half of the row (k = m+1 ~ n)

must contain x number of ones as well because of the row symmetry property (27). Hence, the sum of

the row is an even number. ■

Corollary 4. The parity of the row sum of bionomial coefficient is even as defined in the eqn (36).

0
0

























n

k k

n
odd (36)

Proof: The row-sum property of binomial coefficient [1] is given in the eqn (37).

n
n

k k

n
2

0












 (37)

  02
0






















 



n
n

k

odd
k

n
odd

■

4 Conclusions

In this article, concise parity formulae for exponentiation, factorial, k-permutation, n
th
 Fibonacci,

n
th
 Lucas number, summation, and binomial coefficient (k-combination) are studied and summarized

in Table 3. While computing their parities takes constant time for most of combinatorial functions,

no constant time formula is known for the binomial coefficient. Here, an efficient and concise recur-

sive formula is presented.

It was also shown that the naïve direct implementation of the recursive formula for the binomial

coefficient takes O(logn loglogn). An O(logn) iterative version is also presented. Note that loglogn

grows extremely slow, e.g.,

loglog(256) = 3.

loglog(65535) = 4.

loglog(68719476736) = 5.

loglog(18446744073709551616) = 6

loglog(340282366920938463463374607431768211456) = 7

loglog(115792089237316195423570985008687907853269984665640564039457584007913129639936) = 8

Hence, the difference between two implementations should not be notable.

Table 3. Summary of formulae for combinatorial functions

 


 


otherwise)(

0 if1

aodd

n
aodd n  



 


otherwise0

1or 0 if1
!

n
nodd

 
















1 if0

1 if)(

0 if1

k

knodd

k

Podd n

k



 










 otherwise0

2or 14mod if1

1

n
iodd

n

i

p

 


 


otherwise1

03mod if0 n
Fodd n

  


 


otherwise1

03mod if0 n
Lodd n

 

 












































































 



























1&
2

 if
2

1&
2

 if
2

1 if1

 if0

log

log

nnk
n

kn

n
odd

n
n

k
k

n
odd

nk

nk

k

n
odd

n

n

References

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Introduction to

Algorithms, 2
nd

 ed., MIT Press, 2001

2. Michael F. Barnsley, SuperFractals, Cambridge University Press 2006

