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Abstract. This article considers problems of counting the number of possible k-ary trees 

given n number of attributes. The simple underlying counting notions for lists are ex-

tended to the k-ary tree structure in a natural way. Three combinatorial formulae such as 

k-ary tree factorial, r-permutation, and r-sequence are formally defined in both product 

notation and recursive forms with their applications in decision trees. Moreover, the k-

ary tree r-sequence has its application in family trees.  

1   Introduction 

Decision tree based classification, where the leaves represent classifications and the branches 

represent values of the attributes, have been widely used in pattern classification [1] and machine 

learning [2]. Finding the shortest decision tree is an important but hard optimization problem [3, 4]. 

In attempt to find an optimal decision tree, some combinatorial problems regarding decision trees 

were raised in [5]. The purpose of this article is to provide formulae for those problems.  
 

Consider binary decision trees in Figure 1 where inner nodes are Boolean literals (attributes with 

two possible values) and leaves are targets. An attribute in an inner node in a binary decision tree has 

two branches where left and right branches represent 0 and 1 values, respectively. Decision trees are 

simply if-else conditional statements in programming languages. If there are two Boolean literals, 

two decision tree representations are possible. If there are three or more attributes, how many binary 

decision trees are possible? Earlier in [5], the notation ∆ was used to denote the number of possible 

full binary decision trees with n attributes and it was formally defined as in eqn (1). 
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For example, 2∆ = (1×1) × 2 = 2 and 3∆ = (1×1×1×1) × (2×2) × 3 = 12, etc. 
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Figure 1. Binary decision trees 
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In this paper, this binary tree arrangement problem in [5] is generalized into the k-ary tree where 

every attribute has exactly k values, e.g., Figures 2 and 3 illustrate the ternary and quaternary trees 

where every attribute has exactly three and four values, accordingly. Suppose there are n kinds of 

Medical examinations which have „positive‟ and „negative‟ as their values for determining a certain 

disease. Different doctors may follow different binary decision trees in their practices. If the value, 

„undecidable‟ is included, ternary decision trees are formed. The section 2 shall provide the formula 

called „k-ary tree factorial‟ defined in both product and recursive forms to count all possible k-ary 

trees with n attributes. 

 

Imagine that the insurance company limits the number of examinations conducted to each patient 

to be r where 1 ≤ r ≤ n. Then decision trees with r height are formed as exemplified in Figure 4. 

Counting the number of these kinds of decision trees shall be referred to as the „k-ary tree r-

permutation‟ problem defined and dealt in the section 3.  

 

Since the result of an examination may be an error, the examination may be repeated to ensure 

their decisions. In this case, there are more possible k-ary decision trees as illustrated in Figure 5. 

This problem shall be called the „k-ary tree r-sequence‟ and defined and illustrated with the addi-

tional „family tree‟ example in the section 4.  
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2   k-ary Tree Factorial 
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Figure 6. k-ary tree factorial (n = 4) 

 

The factorial of a positive integer n is the product of all positive integers less than or equal to n as 

defined in eqn (2). It merely means the number of ways to arrange n different objects in order. This 

factorial concept can be generalized into the k-ary tree factorial as shown in Figure 6. From the k-ary 

tree point of view, the factorial is simply the unary (k = 1) tree.  

 

Table 1. k-ary tree factorial definition and examples. 
name Product def. Recursive def. examples  
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The root of k-ary trees in Figure 6 has n choices but its k children nodes have n – 1 choices. The 

next level 2 has k
2
 number of nodes which have n – 2 choices each. In general, the level l has k

l
 num-

ber of nodes which have n – l choices each. The k-ary tree factorial is the multiplication of all these 

choices in every node as defined in eqn (5) with examples of unary, binary, and ternary tree factorials 

in eqns (2), (3), and (4), respectively.  

 

The exclamation mark was first used to alert rather alarming rate of growth of the n! function by 

Christian Kramp in 1808 [6]. The growth rate of n! is often described as „astronomical‟ in [7] or 

„maddening‟ and „unimaginably large‟ in [8]. Yet, the binary tree factorial grows even faster than n!, 

e.g., while 9! is only 362880, 9!! is greater than googol as shown in Table 2. Albeit the symbol ∆ was 

used to denote binary tree factorial earlier in [5], the double exclamation marks shall be used here so 

that the k-ary tree factorial can be expressed using k exclamation marks to alert their extremely 

daunting growth rates even more since n! < n!! < n!!! for n > 2, as formally stated in the eqn (6). 

n!<a> < n!<b> if a < b (6) 



Table 2. k-ary tree factorial sequences. 
 Unary Binary Ternary Quaternary Quinary Senary Septenary 

k 1 2 3 4 5 6 7 

n n! n!! n!!! n!!!! n!!!!! n!!!!!! n!!!!!!! 
1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 

3 6 12 24 48 96 192 384 

4 24 576 55296 21233664 32614907904 2.00e+000014 4.93e+0000018 

5 120 1658880 8.45e+0014 1.02e+00030 1.85e+000053 3.24e+000086 3.51e+0000131 

6 720 1.65e+013 3.63e+0045 6.40e+00120 1.28e+000267 6.91e+000519 3.96e+0000921 

7 5040 1.91e+027 3.33e+0137 1.18e+00484 2.44e+001336 7.59e+003119 1.07e+0006452 

8 40320 2.91e+055 2.97e+0413 1.54e+01937 6.90e+006682 1.53e+018720 1.25e+0045165 

9 362880 7.64e+111 2.35e+1241 5.01e+07749 1.41e+033415 1.16e+112322 4.22e+0316156 

10 3628800 5.84e+224 1.29e+3726 6.29e+30999 5.48e+167076 2.38e+673933 2.21e+2213098 

 

The k-ary tree factorial functions generate integer sequences as first 10 sequences are listed in Ta-

ble 2. The integer sequences generated by n!! and n!!! appear in the on-line encyclopedia of integer 

sequence  [9 (A052129 and A123851)] and are called Somo’s quadratic and cubic recurrence se-

quences, respectively. The generating functions were denoted as gn,2 and gn,3, accordingly in [10] 

rather than using the exclamation marks. In all, the k-ary tree factorial defined in this paper is the 

Somo‟s generalized recurrence sequence in [10].  

 

Unfortunately, the double-factorial (n!!) in [9 (A006882), 11] and the multi-factorial (n!
(k)

) in [9, 

12] have different meanings in mathematics as defined in the eqns (7) and (9), respectively. The 

double-factorial is sometimes known as the odd-factorial which is the product of only odd numbers 

less than or equals n. According to the multi-factorial definition in [12], n! > n!! > n!!! which is op-

posite to the k-ary tree factorial. This is somewhat unexpected from the terms „double‟ and „multi‟ 

and thus some revisions in the nomenclature and notations may be necessary for the multi factorial 

concept in [12].  

 

Table 3. multi factorial definition coined in [12]. 
Name Recursive def. example  

factorial )!1(!  nnn  
7! = 1 × 2 × 3 × 4 × 5 × 6 × 7 = 5040 

9! = 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 = 362880 
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51!(6)=51×45×39×33×27×21×15×9×3=226088287425 

51!(7) = 51×44×37×30×23×16×9×2    =    8249662080 

51!(8) = 51× 43× 35× 27× 19× 11× 3  =      433128465 
(9) 

3   k-ary Tree r-Permutation 

Arranging only r distinct objects out of n different objects in an ordered fashion is known as r-

permutation or simply permutation [13, 14], e.g., a number of ways to choose r examinations in or-

der out of n examinations. The r-permutation is the r-th falling factorial power of n and has various 

notations as enumerated in the eqn (10). P(n,r) is used here and its recursive definition is given in the 

eqn (11). 
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Figure 7. k-ary tree permutation where n = 6, r = 4. 

 

Table 4. k-ary tree r-permutation definition. 
Recursive definition Prod. def. examples  
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P(5,3) = 3 × 4 × 5  = 6 

P(7,4) = 4 × 5 × 6 × 7 = 840 

P(8,3) = 6 × 7× 8 = 336 

(11) 
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P2(5,3)= (3×3×3×3) × (4×4) × 5=6480 

P2(6,4) = (3×3×3×3×3×3×3×3) ×  
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The k-ary tree r-permutation, Pk(n,r) is defined in the eqn (13) in a very similar manner to the k-

ary factorial developed in the previous section. The unary tree r-permutation is the conventional r-

permutation as defined in the eqn (11). Some exemplary values of the k-ary tree r-permutation are 

given in Table 5 at the end of this article.  

 

It should be noted that the default bounding condition for r, i.e., 0 ≤ r ≤ n, is omitted for the eqns 

(10~16). If r > n, Pk(n,r) is always 0 and of no interest in this article. When r = 0, Pk(n, 0) is always 

1. If r = 1, Pk(n, 1) is always n. When r = n or n  1, it is the same as n!<k> as stated in the eqn (14). 

n!<k> = Pk(n, n) = Pk(n, n  1) (14) 

For example, {P2(3, 3) = 3!! = (1 × 1 × 1 × 1) × (2 × 2) × 3 = 12} = {P2(3, 2) = (2 × 2) × 3 = 12}. 

 

The r-permutation, P(n,r) is occasionally defined only using the factorial function in many text-

books [11, 12], i.e., n! divided by (n  r)! as given in the eqn (10). Although it should not be recom-

mended to compute P(n,r) in this way, the definition provides the good relationship between the  r-

permutation and factorial functions. Similarly, the k-ary tree r-permutation, Pk(n,r) can be defined 

only using the k-ary tree factorial, n!<k> as in the eqn (15).  
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The eqn (15) means that branches of a k-ary tree factorial are trimmed so that the height of the tree 

becomes r. Hence, the k-ary tree factorial is the upper bound for the k-ary tree permutation as stated 

in the eqn (16). r!<k> is the lower bound.  

r!<k> ≤ Pk(n, r) ≤ n!<k> (16) 



Table 6. binary tree r-permutation P2(18, r) sequences. 

r P2(18, r) 

2 5202 

3 340918272 

4 873736243200000000 

5 1902956767242460454123156275200000000 

6  842589796398773446090847809545997012462456410619043853412545331200000000 

7  9.8450050364399438253064418944124484783806387225585235246332091787275633639784661636e+00140 

8 1.9564990569385013412632794966199095369393233952682265711841202995960268333030141519e+00274 

9 1.9564990569385013412632794966199095369393233952682265711841202995960268333030141519e+00530 

10 7.3054079993032925450953755449075779598770192039437567455423404200339388683139604267e+01018 

11 4.2441542111376058785045461754898671600136488463118516757027454036600691991448438101e+01943 

12 2.4466796217854683088275995595833553640813053043984235283332165198750915602517838625e+03674 

13 4.9670516516865948889839912675409718550407253471918135304423936346470409134756361684e+06861 

14 4.5538025594386159954684720901082755066808882881861267591503750646712422166428292153e+12587 

15 6.4457300659581374113731899549075344536423916237237467314258220425155780789478239226e+22451 

16 1.3138529728867728342025683240792759268600456632395695199425018857651700299157910721e+38086 

17 2.6323437553326643119570018398980278134510790650024734166115968939618177137281397163e+57814 
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Figure 8. DVT binary decision trees where n = 18, r = 7 (see [10]). 

 

Searching an optimal decision tree using the binary tree factorial and r-permutation concepts as 

encoding and decoding schemes in a Genetic Algorithm was proposed in [5]. It was successfully ap-

plied to find better Decision trees to predict the Deep Venous Thrombosis (DVT) in [15] than ones 

built by conventional heuristic algorithms found in [1,2]. Figure 8 shows the decision tree found by 

limiting its height to be 7.  The main Motto of this article is to analyze the decision tree search space 

for [5,15]. Table 6 shows P2(18,r) values and P2(18,7) in Figure 8 is greater than the googol. 

4   k-ary Tree r-Sequence 

In Combinatorics, there are two ways to arrange r objects from n objects in order. One way is 

called „r-permutation‟ if repetition is not allowed and the other is called „r-permutation with repeti-

tion‟ [14], „r-string‟ [13], or „r-sequence‟, e.g., the 5 digit zip-code (n = 10, r = 5) has 100000 possi-

ble sequences and the 8 bit binary code (n = 2, r = 8) has 256 possible sequences. The r-sequence 

denoted as S(n,r) is defined in the eqn (17) and its recursive definition is given in the eqn (18). 
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Figure 9. k-ary tree sequences where n = 3, r = 4. 

 

Table 7. k-ary tree r-sequence definition. 
Recursive definition Prod. def. Examples  
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S(5,3) = 5 × 5 × 5  = 125 

S(7,4) = 7 × 7 × 7 × 7 = 2401 

S(8,3) = 8 × 8× 8 = 512 
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S2(5,3)= (5×5×5×5) × (5×5) × 5=78125 

S2(3,4) = (3×3×3×3×3×3×3×3) ×  

            (3×3×3×3)×(3×3)×3=14348907 
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The term „k-ary tree r-sequence‟ as defined in the eqn (20) takes account of the fact that repetition 

is allowed in the k-ary tree structure and the unary and binary tree r-sequences are defined in the eqns 

(18) and (19), respectively. Suppose that a rabbit can be „brown‟, „gray‟, or „white‟ which means n = 

3. Let left and right branches be father and mother rabbits in Figure 7 (b). The family tree up to r 

ancestors forms a binary tree where repetition is allowed. The total number of this binary family trees 

is multiplying its possible value n = 3 for the number of nodes times as defined in the eqn (19).  

 

Table 8 shows some binary tree sequence values, S2(n,r) and Table 9 shows some k-ary tree se-

quence values, Sk(n,r). Be aware that S2(10, 333) and S3(10, 211) are greater than the googolplex = 

S(10, googol). Note that Pk(n, r) ≤ Sk(n, r). Also, while 1 ≤ r ≤ n in Pk(n, r), there is no upper bound, 

i.e., r ≥ 1 in Sk(n, r). 

 

Table 8. binary tree r-sequences 

r n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

2 8 27 64 125 216 343 512 729 1000 

3 128 2187 16384 78125 279936 823543 2097152 4782969 10000000 

4 32728 14348907 1.07e+009 3.05e+010 4.70e+011 4.75e+012 3.52e+013 2.06e+014 1.0e+0015 

5 2.15e+009 6.18e+014 4.61e+018 4.66e+021 1.33e+024 1.58e+026 9.90e+027 3.82e+029 1.0e+0031 

6 9.22e+018 1.15e+030 8.51e+037 1.08e+044 1.06e+049 1.74e+053 7.85e+056 1.31e+060 1.0e+0063 

7 1.70e+038 3.93e+060 2.90e+076 5.88e+088 6.69e+098 2.13e+107 4.93e+114 1.54e+121 1.0e+0127 

8 5.79e+076 4.63e+121 3.35e+153 1.73e+178 2.68e+198 3.16e+215 1.94e+230 2.15e+243 1.0e+0255 

9 6.70e+153 6.44e+243 4.49e+307 1.49e+357 4.32e+397 7.00e+431 3.01e+461 4.15e+487 1.0e+0511 

10 8.99e+307 1.24e+488 8.08e+615 1.11e+715 1.12e+796 3.43e+864 7.26e+923 1.55e+976 1.0e+1023 



5 Conclusion 

This article has naturally extended the elementary combinatorial concepts for lists to embrace the 

k-ary tree structure. Three combinatorial formulae, namely k-ary tree factorial, r-permutation, and r-

sequence were introduced. Using the exclamation marks and subscription, simple notations and for-

mulae were provided in both product notation and recursive forms. Albeit prohibitive due to their 

enormously huge values in the past, it is time to make concise formulae and notations easily available 

since the k-ary tree structure prevails in computer science and pattern recognition. 

 

Dealing with the k-ary tree combinatorics encounters functions that grow extremely fast. Assum-

ing the multiplication between two integers takes constant time, the computational complexity 

Θ(rlogk). The complexity of the operation to multiply two big integers, however, grows quadratic to 

the length of big integer; it not only consumes quite a big memory space, but also takes a while to 

compute the exact value.  

 

From the k-ary tree structure point of view, the travelling salesman problem (TSP) [8,13,14] is on-

ly an unary tree search problem. As the search space of possible k-ary tree is enormously big, the 

exhaustive search for optimal trees is seemingly impossible. Yet, studying their mathematical struc-

tures presented in this paper should provide good insights for designing better heuristic algorithms.  
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Table 5. k-ary tree r-permutation sequences. 
n r P(n, r) P2(n, r) P3(n, r) P4(n, r) P5(n, r) 

2 1 2 2 2 2 2 

3 
1 3 3 3 3 3 

2 6 12 24 48 96 

4 

1 4 4 4 4 4 

2 12 36 108 324 972 

3 24 576 55296 21233664 32614907904 

5 

1 5 5 5 5 5 

2 20 80 320 1280 5120 

3 60 6480 6298560 55099802880 4338117680348160 

4 120 1658880 845378412871680 1.0164119622e+30 1.845e+53 

6 

1 6 6 6 6 6 

2 30 150 750 3750 18750 

3 120 38400 196608000 16106127360000 2.111062325330e+019 

4 360 251942400 1.4992534703e+21 5.530334892e+043 9.218449803981e+078 

5 720 16511297126400 3.6249724609e+45 6.403690314e+120 1.283527521277e+267 

7 

1 7 7 7 7 7 

2 42 252 1512 9072 54432 

3 210 157500 2953125000 1384277343750000 1.62220001221e+0022 

4 840 10321920000 5.319877060e+025 4.7104517101e+053 2.93496763397e+0097 

5 2520 4.443248104e+17 2.358974403e+064 6.5479260221e+175 4.66001716196e+0395 

6 5040 1.908360530e+27 3.334357599e+137 1.1771161658e+484 2.43850677226e+1336 

8 

1 8 8 8 8 8 

2 56 392 2744 19208 134456 

3 336 508032 27653197824 54187879102414848 3.82262280735e+0024 

4 1680 198450000000 2.060323792e+029 2.937530812e+0061 8.98694303073e+0111 

5 6720 8.523362599e+20 1.204466638e+078 3.938584892e+0215 1.74223433623e+0488 

6 20160 1.579396297e+36 1.050170155e+194 1.470635494e+0704 1.75803520468e+1979 

7 40320 2.913471929e+55 2.965695178e+413 1.535915359e+1937 6.89778760083e+6682 

9 

1 9 9 9 9 9 

2 72 576 4608 36864 294912 

3 504 1382976 185949421056 1.225098753e+0018 3.9549722876e+00026 

4 3024 2322868617216 1.90317442e+0032 7.759810618e+0067 7.3459800186e+00123 

5 15120 3.54441623e+023 7.87134490e+0088 6.701503245e+0246 5.2759716438e+00560 

6 60480 6.53829390e+042 1.57263101e+0235 2.165725211e+0863 1.4446922818e+02442 

7 181440 2.24504340e+073 1.04236909e+0583 4.209811826e+2817 1.5114032346e+09897 

8 362880 7.63948681e+111 2.34758887e+1241 5.008545719e+7749 1.4053729684e+33415 

10 

1 10 10 10 10 10 

2 90 810 7290 65610 590490 

3 720 3317760 978447237120 1.84675732e+00019 2.2308081476e+000028 

4 5040 19126226165760 6.42960794e+0034 2.25260161e+00073 9.6764759996e+000133 

5 30240 5.39571861e+025 6.89343639e+0097 3.62580538e+00272 2.1391868171e+000620 

6 151200 1.25628864e+048 4.87693342e+0267 2.01692119e+00988 4.0880129568e+002804 

7 604800 4.27492871e+086 3.88938114e+0706 2.19995303e+03454 6.2932757725e+012211 

8 1814400 5.04021986e+147 1.13256876e+1750 3.14087560e+11271 7.8868165054e+049486 

9 3628800 5.83617587e+224 1.29379696e+3725 6.29283826e+30999 5.4822391828e+167076 

11 

1 11 11 11 11 11 

2 110 1100 11000 110000 1100000 

3 990 7217100 4261625379000 2.0383222e+000020 2.2308081476e+000029 

4 7920 121082845593600 1.0303978e+00037 1.2794756e+000078 9.6764759996e+000142 

5 55440 4.02393780e+027 2.9237899e+00105 2.8322413e+000294 2.1391868171e+000670 

6 332640 3.20251573e+052 3.6032965e+00294 1.9011249e+001091 4.0880129568e+003102 

7 1663200 1.73608726e+097 1.2759486e+00804 1.8203228e+003954 6.2932757725e+014024 

8 6652800 2.01025170e+174 6.4719358e+02120 2.5765959e+013818 7.8868165054e+061060 

9 19958400 2.79441978e+296 1.5980355e+05251 1.0705221e+045088 5.4822391828e+247436 

10 39916800 3.74670437e+450 2.3822705e+11176 1.7249597e+124001 2.2308081476e+835385 



Table 9. k-ary tree r-sequence sequences 
n r S(n, r) S2(n, r) S3(n, r) S4(n, r) S5(n, r) 

2 

1 2 2 2 2 2 

2 4 8 16 32 64 

3 8 128 8192 2097152 2147483648 

4 16 32768 1.09951 e+012 3.86856262277e+0025 9.13438523331814324e+00046 

5 32 2147483648 2.65846e+036 4.47948948436e+0102 1.27182282121274076e+00235 

6 64 9.22337e+018 3.75767e+109 8.05274749371e+0410 6.65522991622385277e+01175 

7 128 1.70141e+038 1.06117e+329 8.41019994726e+1643 2.61123112179775877e+05879 

3 

1 3 3 3 3 3 

2 9 27 81 243 729 

3 27 2187 1594323 10460353203 617673396283947 

4 81 14348907 1.21577e+019 3.59175455477e+0040 2.69721605590607563e+00074 

5 243 6.17673e+014 5.39103e+057 4.99284241977e+0162 4.28252528734869621e+00372 

6 729 1.14456e+030 4.70042e+173 1.86428666159e+0651 4.32136484944284141e+01863 

7 2187 3.93006e+060 3.11553e+521 3.62386511316e+2605 4.52091071122319240e+09318 

4 

1 4 4 4 4 4 

2 16 64 256 1024 4096 

3 64 16384 67108864 4398046511104 4611686018427387904 

4 256 1073741824 1.20893e+024 1.49657767663e+0051 8.34369935906605501e+00093 

5 1024 4.61169e+018 7.06739e+072 2.00658260405e+0205 1.61753328855753515e+00470 

6 4096 8.50706e+037 1.41201e+219 6.48467421975e+0821 4.42920852378009504e+02351 

7 16384 2.89480e+076 1.12608e+658 7.07314631529e+3287 6.81852797144518169e+11758 

5 

1 5 5 5 5 5 

2 25 125 625 3125 15625 

3 125 78125 1220703125 476837158203125 4656612873077392578125 

4 625 30517578125 9.09495e+027 2.58493941423e+0059 1.09476442525376334e+00109 

5 3125 4.65661e+021 3.76158e+084 2.23239724860e+0238 7.86273043163712562e+00545 

6 15625 1.08420e+044 2.66122e+254 1.24181218991e+0954 1.50257769091078293e+02730 

7 78125 5.87747e+088 9.42355e+763 1.18903237292e+3817 3.82961121921497429e+13651 

6 

1 6 6 6 6 6 

2 36 216 1296 7776 46656 

3 216 279936 13060694016 21936950640377856 1326443518324400147398656 

4 1296 470184984576 1.33675e+031 1.38949274207e+0066 2.46374105121370607e+00121 

5 7776 1.32644e+024 1.43318e+094 2.23653851164e+0265 5.44661339287072210e+00607 

6 46656 1.05567e+049 1.76626e+283 1.50126297417e+1062 2.87596766249301836e+03039 

7 279936 6.68665e+098 3.30611e+850 3.04774301836e+4249 1.18051427480148401e+15198 

7 

1 7 7 7 7 7 

2 49 343 2401 16807 117649 

3 343 823543 96889010407 558545864083284007 1.57775382034845807e+00026 

4 2401 4.74756e+012 6.36681e+033 6.81292175541e+0071 6.84375166571500149e+00131 

5 16807 1.57775e+026 1.80660e+102 1.50810522587e+0288 1.05091901751082068e+00660 

6 117649 1.74251e+053 4.12750e+307 3.62096743861e+1153 8.97313694147133065e+03300 

7 823543 2.12545e+107 4.92218e+923 1.20336262266e+4615 4.07211016273917031e+16505 

8 

1 8 8 8 8 8 

2 64 512 4096 32768 262144 

3 512 2097152 549755813888 9223372036854775808 9.90352031428304220e+00027 

4 4096 3.51844e+013 1.32923e+036 5.78960446187e+0076 7.62145642166990291e+00140 

5 32768 9.90352e+027 1.87883e+109 8.98846567431e+0307 2.05721575045876663e+00705 

6 262144 7.84638e+056 5.30585e+328 5.22194440707e+1232 2.94774010726549765e+03527 

7 2097152 4.92525e+114 1.19497e+987 5.94865747679e+4931 1.78047524438861983e+17638 

9 

1 9 9 9 9 9 

2 81 729 6561 59049 531441 

3 729 4782969 2541865828329 1.09418989132e+0020 3.81520424476945832e+00029 

4 6561 2.05891e+014 1.47809e+0038 1.29007007817e+0081 7.27497445223752651e+00148 

5 59049 3.81520e+029 2.90632e+0115 2.49284754286e+0325 1.83400228367810330e+00745 

6 531441 1.31002e+060 2.20940e+0347 3.47556475658e+1302 1.86741941620001514e+03727 

7 4782969 1.54454e+121 9.70650e+1042 1.31323983584e+5211 2.04386336588525913e+18637 

 


