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Preface

We are very pleased to have the opportunity to organize Graph Theory Day 70. This conference
is sponsored by the Metropolitan New York Section of The Mathematical Association of America
and hosted by the Seidenberg School of Computer Science and Information Systems at Pace Uni-
versity. Graph Theory Day is a biannual New York based conference, in its 35th year. It occupies
a unique place among conferences, presenting both new research and exceptional student papers,
providing opportunities for both faculty and student participation. The purpose of the Graph The-
ory Day is to provide a learning and sharing experience on recent developments in Graph Theory.
The conference is welcoming to a range of participants, open to both researchers in the field and
students. While experts give talks, they are targeted at audiences in general discrete mathematics
and computer science with an eye dedicated towards students.

Two eminent invited speakers, Professor Christina Zamfirescu of Hunter College and the Grad-
uate Center, CUNY and Ms. Liana Brancati of the Montefiore Medical Center, have contributed
to the conference. We are grateful to them.

For the first time, the GTD committee has compiled submitted abstracts into the Proceedings
of Graph Theory Day 70. We received 14 abstracts and had 30 participants by the preregistration
deadline. We have strived to publish well-written abtracts that present important original research
results and/or open problems relevant to Graph Theory. We would like to express our gratitude to
all the contributors and participants. Finally, we hope that you will benefit from this conference
and its proceedings.

S.-H. Cha, E. G. DuCasse, and L.V. Quintas
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Digraphs: Intersection, Transformations and Applications to

Questionnaire Design

C. Zamfirescu
Hunter College and Graduate Center, City University of New York, NY, USA

zamfichris@gmail.com

A great deal of research has been done in the area of transformations on graphs and digraphs,
found in connection with work done in groups on graphs. We will deal with 4 transformations of
a digraph, namely the line digraph, total digraph, middle digraph, and subdivision digraph. On
the other hand, using intersections of sets belonging to a family of sets, in order to define the edge
connections in a graph is so natural that it arose independently in a number of areas in connection
with both pure and applied mathematics, and has been studied for over 7 decades.

While a lot of research has been done on various types of intersection graphs, the study of
similar concepts for digraphs has just started. Beineke and Zamfirescu [1] in 1982 and Sen, Das,
Roy, West in 1989 introduced and studied independently a natural analogue of the intersection
graph model for digraphs. Beineke and Zamfirescu [1] made for the first time a connection between
these new intersection digraphs and transformations on digraphs.

The intersection number of a digraph D is the minimum size of a set U, such that D is the
intersection digraph of ordered pairs of subsets of U. The paper describes much of the work done
in the area of intersection graphs and digraphs [2], and proves two main results:
Theorem 1 The intersection number of the line digraph of D equals the number of vertices of D
that are neither sources nor sinks.
Theorem 2 If D contains no loops, the intersection numbers of total digraph, middle digraph and
subdivision digraph of D are all equal to the number of vertices of D that are not sources, added
to the number of vertices of D that are not sinks.

In the second part of this paper we introduce as in [3] a special type of graph, the survey
chart, a directed acyclic graph with additional properties, which we use as a tool for designing and
improving survey questionnaires, in order to turn a complex questionnaire into a questionnaire that
is easier to visualize, test and analyze. We define and perform a series of transformations which
bring an initial structure closer to a structure we prefer, for it is more more amenable to analysis,
verification of the coverage of questions, and readability of the flows of questions.

References

[1] L.W. Beineke and C. M. Zamfirescu, Connection digraphs and second order line digraphs,
Discrete Math 39, 237-254, 1982.

[2] C. Zamfirescu, Transformations of digraphs viewed as intersection digraphs, to appear in Con-
vexity and Discrete Geometry Including Graph Theory eds: K. Adiprasito, I. Bárány, and C.
Vilcu, Springer, 2016.

[3] I. Schiopu-Kratina, C. Zamfirescu, K Trépanier, and L Marques, Survey questionnaires and
graphs, Electronic J. of Statistics Vol. 9, 2202-2254, 2015
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Graphs whose vertices are the positive divisors of a given integer

Liana Brancati
Montefiore Medical Center, New York, NY, USA

lianabrancati@gmail.com

This presentation seeks to give an overview of the properties of the graph Div(N) whose vertex
set is the set of all positive divisors of a given integer N , and whose edges connect two divisors a, b
with b < a if and only if a = pb for some prime p. The structure of this graph depends entirely on
the exponents in the prime factorization of N = pe11 pe22 · · · pekk where 0 < ei. We note that:

Div(N) has order
k∏
1

(ei + 1), size
k∏
1

(ei + 1)
k∑
1

ei
ei+1 , and is the Cartesian product of paths.

Specifically, Div(N) is a multi-dimensional-grid.
By introducing a relation on the vertices of Div(N), the graph is put in the context of posets.

Here Div(N) is isomorphic to the Hasse diagram of the divisors of N .
Depending on the factorization of N , Div(N) is a Boolean algebra, a Post algebra, or in general

a P-algebra. Since Div(N) is a grid there are a number of known properties concerning its distance
parameters, traceability, and Hamiltoncity.

Div(N) is planar when k ≤ 2 or when k = 3 and at most one of the e1, e2, e3 is greater than 1.
Div(N) is non-planar in all other cases.

There are many properties of Div(N) that remain to be investigated [1].
Current research involves various algorithms concerning computation of graph parameters of

Div(N). Progress is also being made on extensions of Div(N) to digraphs with various transition
probabilities.

References

[1] E.G. DuCasse, L.V. Quintas, and L. Brancati, A graph whose vertices are all the divisors of a
positive integer: Fundamentalss, Bulletin of the Institute of Combinatorics and its Applications
73, (47-62) 2015.
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Addressing a Graph

A. Delgado1 and M. Lewinter2
1City College of NY, NY, USA

2ADU Services, White Plains, NY, USA
anthony.delgado12@gmail.com, marty1729@hotmail.com

The hypercube,Qn, has the vertex set {(x1, x2, · · · , xn)|xi = 1 or 0}. Furthermore, the (Ham-

ming) distance between vertices x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) is given by
n∑

i=1
|xi−yi|.

In particular, x and y are adjacent when
n∑

i=1
|xi − yi| = 1, that is, when their addresses differ in

exactly one place [1].
Graham and Pollack [2], tried to address graphs other than hypercubes using binary labels.

This did not work for non-bipartite graphs. So they modified the addresses to include a third
element, *, which permitted agreement with 0 or 1. As an example, the vertices of K3 can be
labeled 00, 10, and *1.

Given a graph G, let f(G) be the minimum number of places in a valid addressing of G. Thus,
f(K3) = 2. In citeWinkler1983, Winkler shows that if G is a connected graph on n vertices, then
f(G) ≤ n1. The inequality becomes equality if G is a tree or Kn.

Various properties are shown and several problems are presented. See [4] for more information.

References

[1] F. Buckley, M. Lewinter, A Friendly Introduction to Graph Theory, Prentice-Hall, 2003.

[2] R. L. Graham and H. O. Pollak, On the addressing problem for loop switching, Bell System
Tech J., 50, 2495-2519, 1971

[3] P. Winkler, Proof of the squashed cube conjecture, Combinatorica, 3, 135-139, 1983

[4] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press 1992

[5] D. Wells, Prime Numbers, John Wiley & Sons, 2005.
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The Unreliability of Paths and Related Graphs in the Neighbor

Component Order Edge Connectivity Network Model

M. Yatauro
Department of Mathematics, Penn State Brandywine, Media, PA, USA

mry3@psu.edu

Let G be a finite simple graph. Consider a model in which edges of G fail independently, and
when an edge fails we remove it from G along with the incident vertices. We say that a set of
edges F is a failure set of G if after all edges of F fail, the components of the induced subgraph all
contain at most k− 1 vertices, for some prescribed k > 0. If the edges fail with probability ρ, then
the unreliability of G, denoted Uk(G, ρ), is the probability that a randomly selected set of edges is
a failure set. Let Pn be the path on n vertices. We will prove a general recursive formula on n for
Uk(Pn, ρ) that holds for any fixed k and ρ. We then solve this recursion when k = 1 to get a closed
form expression for U1(Pn, ρ). Finally, we use this result to derive closed forms for U1(Cn, ρ) and
U1(Mn,m, ρ), where Cn is a cycle on n vertices and Mn,m is a unicycle that consists of a cycle on
m vertices with a path on n −m + 1 vertices extending from one of the cycle vertices (see figure
below).

n-m+1

m

Figure 1: The graph Mn,m
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On Extended Vertex Cover, Clique, and Independent Set Problems

Sung-Hyuk Cha
Computer Science Department, Pace University, New York, NY, USA

scha@pace.edu

A vertex cover of a graph is a subset of vertices such that each edge of the graph is incident
to at least one vertex of the set. Finding a minimum vertex cover is one of the classic NP-hard
problems [1]. Here the vertex cover is extended from direct incident to path length, d and the
problem of V Cd(G) is formally defined as follows.

Input: G = (V,E), a positive integer d, and an integer 0 < k < |V |
Output: Vc = {vx ∈ V |∀(a, b) ∈ E,∃vx ∈ Vc(sp(vx, a) < d ∪ sp(vx, b) < d)} and |Vc| = k

where sp(x,y) is the shortest path length between x and y

When d = 1, V C1(G) is the same as the original vertex cover problem and |V C1(G) = 7| in the
example of Fig. 1 (a). Optimal solutions for |V C2(G)| and |V C3(G)| are 4| and 3 as shown in
Fig. 1 (c) and (d), respectively. A simple greedy algorithm which takes the vertex with the highest

(a) |VC1(G)| = 7 (b) |VC2(G)| = 5 (c) |VC2(G)| = 4 (d) |VC3(G)| = 3

Figure 1: Deletable prime graph in Octal representation.

degree into the vertex cover finds the optimal solution in the particular case in Fig 1 (a), however,
|V C2(G)| = 5 is found when d = 2 because deg2(c) = 8 for the center vertex c as shown in Fig 1 (b).
Note that degd(v) is the number of edges that are reachable within length d as defined in eqn (1).

degd(v) = |Ed(v)| where Ed(v) = {(a, b) ∈ E|sp(v, a) < d ∪ sp(v, b) < d)} (1)

This work shows the proof that V Cd(G) problem is NP hard. This extended path concept is applied
to define Cliqued and Independent Setd problems which are also proven to be NP hard. Several
open problems regarding these problems are addressed.

References

[1] R.M. Karp, “Reducibility Among Combinatorial Problems” , Complexity of Computer Compu-
tations, R. E. Miller and J. W. Thatcher (editors), New York: Plenum. pp. 85103, 1972
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Graph meets Ontology at Morgan Stanley

Matthias Autrata
Enterprise Infrastructure, Morgan Stanley, New York City, NY, USA

matthias.autrata@morganstanley.com

Effective control of a large enterprise infrastructure requires accurate inventories as well as an
understanding of the relationships between hard, soft, and conceptual resources.

The structure and extent of the IT infrastructure can relatively easily be described in a graph
database. However, in order to make effective use of the data, we require a semantic overlay that
supports effective queries and analytics over the graph.

Figure 1: A small example of inventory and relationships

We discuss the approach being taken at Morgan Stanley. We touch on the use of semantic web
standards to build the solution and discuss its merits by outlining use-cases and examples.

Further reading:

• http://developer.marklogic.com/learn/semantics-exercises

• http://www.linkeddatatoiols.com/introducing-rdf

• http://www.cambridgesemantics.com/semantic-university/sparql-by-example

• http://www.w3.org/TR/rdf-sparql-query
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An Infinite Class of k-long Graphs

M. Abe1 and M. Lewinter2
1Scarsdale HS, Scarsdale, NY, USA

2ADU Services, White Plains, NY, USA
mahiro.abe@outlook.com, marty1729@hotmail.com

Let n and k be nonnegative integers such that n ≥ 1. The n-th k-long number is n(n + k) and
is denoted Ok

n [1]. Thus O4
2 = 2(2 + 4) = 12, for example. Many interesting properties of k-long

numbers are presented in [1].
A graph, G, is k-long if (1) its vertices are labeled with distinct k-long numbers, (2) the weight of

each edge is the product of the labels of its endvertices, and (3) the edge weights are distinct k-long
numbers [2, 3]. Infinite classes of k-long graphs are presented and their properties are examined.
It is shown that the complete graph K3 is k-long for every k ≥ 0.

References

[1] A.Delgado, M.Gargano, M.Lewinter, and J.Malerba, Introducing k-long numbers, Cong. Num.
189, (15-23) 2008.

[2] A.Delgado, M.Lewinter, and L.V.Quintas, k-long graphs, Cong. Num. 196, (95-106) 2009.

[3] A.Delgado, M.Lewinter, and B.Phillips, k-long graphs II, Graph Theory Notes of New York
LXVI (29-34) 2014.
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Probability on a Digraph whose Nodes are the Positive Divisors of

a Given Integer

E. G. DuCasse and L.V. Quintas
Pace University, NY, NY, USA
{educasse,lquintas}@pace.edu

The transition digraph
−−→
Div(n) defined below is studied with respect to its probabilistic prop-

erties and for its potential as a graph game.

Definition: Div(n) with n = pn1
1 pn2

2 · · · p
nk
k 0 < ni for i = 1, 2, · · · , k, is the graph whose vertices

are the positive divisors of n and whose edges connect two divisors a and b of n, b < a if and only
if a = pb for some prime p [1].

Definition:
−−→
Div(n) is the digraph with transition probabilities obtained as follows.

(A) Replace each edge of Div(n) with a directed 2-cycle.
(B) Let v = pv11 pv22 · · · p

vk
k 0 ≤ vi ≤ ni.

For each i such that 1 ≤ i ≤ k:
If s is adjacent to v with s > v, then assign ni−vi

2|S| to the arc v → s = piv, where

S is the multiset consisting of (ni − vi) copies of pi and
If t is adjacent to v and v > t, then assign vi

2|T | to the arc v → t = v
pi

, where
T is the multiset consisting of vi copies of pi.

This assignment defines the transition probabilities on the out-going arcs at each node v in
−−→
Div(n).

s = 2v = 213274
s = 3v = 203374

v = 203274

t = v/3 = 203174 t = v/7 = 203273

3/8 1/8

1/6 1/3

Figure 1: Drawing of node v = 203274 with its out-going arcs in
−−→
Div(233374).

Open Problems: Determine probabilistic properties of
−−→
Div(n) and create games on

−−→
Div(n).

References

[1] E.G. DuCasse, L.V. Quintas, and L. Brancati, A graph whose vertices are all the divisors of a
positive integer: Fundamentalss, Bulletin of the Institute of Combinatorics and its Applications
73, 47-62, 2015.
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Car Service Transportation Network Scheduling Optimization

Algorithm

R. Gavornik, E. Paz, P. Shen, K. Zhao
Pace University, NY, NY, USA

{rg98685n, ep91901n, ps10210n, kz23501n}@pace.edu

The Uber Scheduling Optimization Algorithm takes a pick up request made from a mobile device
and finds a list cars that will be the most efficient candidates for servicing the pick up request from
an array of all the possible vehicles, with and without passengers (taking into consideration the
route of the car with the passenger) optimizing not only the shortest wait time, increasing customer
satisfaction and driver profits, but also reducing the CO2 emissions factor associated with vehicle
services.

Here we review various approaches to the optimal algorithm such as in [1, 2]. While this is a
classic bipartite graph matching problem and numerous algorithms have been suggested, we found
that using merge sort and shortest path with memorization algorithms to be the most efficient in
solving the complexity of the problem with most optimal complexity from O(n3) to O(n log n) in
computational time complexity with the shortest path algorithm. We also built an application to
illustrate the results of the algorithm.

References

[1] M. Reza Soltan Aghaei, Z. A. Zukarnain, A. Mamat, and H. Zainuddin, A Hybrid Algorithm
for the Shortest-path Problem in the Graph. in Proceedings of the International Conference on
Advanced Computer Theory and Engineering 251-255, 2008

[2] G. Nannicini and L. Liberti, Shortest Paths on Dynamic Graphs, International Transactions in
Operational Research, Wiley vol.15, 551-563, 2008
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k-Rooted Deletable Prime Graphs of Depth j

A. Delgado1, M. Lewinter2, and K. Phillips3
1CCNY, NY, USA

2ADU Services, White Plains, NY, USA
3Greeley HS, Chappaqua, NY

anthony.delgado12@gmail.com, marty1729@hotmail.com, kmecpp@gmail.com

A k-rooted deletable prime graph of depth j is defined as follows. Let k be a single digit prime
number, that is, let k = 2, 3, 5, or 7, and let it be the label of a vertex. Now find all two digit
primes formed by putting a single digit either before or after k and let these be the labels of vertices
adjacent to vertex k. These vertices form the distance set D1, as they are adjacent to k. If k = 2,
for example, then D1 consists of two vertices labeled 23 and 29.

For each vertex, x, in D1, add vertices whose labels are three digit primes that result by adding
putting one digit into the (prime) label of x, in any position. These new vertices form D2. If 23 and
29 are in D2, as in our previous example, then 223 and 239 are among the vertices in D3 because
they are adjacent to 23. Note also, that 239 is also adjacent to 29, resulting in a 4-cycle. This
illustrates that a k-rooted deletable prime graph of depth j need not be a tree.

Continue this process until we obtain Dj and we are done.
The labels of the endvertices of the graph will be so-called deletable primes [1], that is, primes

that remain prime when the digits are removed, one at a time, in any chosen order. See [2] for an
example and a discussion of the special cases, left and right-truncatable primes. We obtain various
properties of k-rooted deletable prime graphs of depth j.

References

[1] C. Caldwell, Truncatable primes, J. Recreational Math., 19:1 p30-33., 1987

[2] D. Wells, Prime Numbers, John Wiley & Sons, 2005.
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Deletable Prime Graphs in Different Radix Number Systems

S. Raami. and S.-H. Cha
Computer Science Department, Pace University, New York, NY, USA

rs62828n@pace.edu, scha@pace.edu

Deletable primes are primes such that removing some digit leaves either empty or another
deletable prime. It was conjected in [1] that there are infinitely many of deletable primes with im-
plilcit definition of deletable primes. Here this conjecture is generalized with different radix number
systems not just in decimal number system. Deletable primes in radix r are primes represented by
the radix r such that deleting some digit leaves another deletable primes in radix r recursively with
base single digit prime numbers as defined in eqn (1) with relatively large r ≥ 8.

DP(pr) =

{
∃p′r ∈ DS(pr)(DP(p′r)) ∧ pr ∈ P if pr ≥ r

pr ∈ P if pr < r
(1)

where DS(pr) = {p′r|∀k ∈ Z(0 ≤ k ≤ blogr(pr)c ∧ ((p′r = div(pr, r
k+1) + mod(pr, r

k)) ∈ P ))} (2)

For example, 11012 in binary is a deletable prime since 1012 and 1112 are also primes where 112 and
102 are base primes in binary. Are there infinately many binary,octal and hexadecimal deletable
primes?

Let G(pr) be a deletable prime graph of a prime pr of n digit long represented in radix r. The
root vertex is pr and other vertices are other deletable prime numbers < pr that can be edited
from pr by deleting certain digits from pr. Terminal nodes are either single digit primges or base
prime numbers as defined depending on the radix. Each arc represents a signle deletion opertation
from one prime number to a smaller prime number. The deletion relationships in (2038, 38) and
(6058, 58) as shown in Fig. 1 were unclear or implicit in [1] while the recursive explicit definition
in (2) clearly includes them in the arc set. 2258 is a prime but not a deletable prime in Octal.

13

2 3 5 7

15 21 23 27 35 37 45 51 53 57 65 73 75

565 573 577 605213 225 227211203

Figure 1: Deletable prime graph in Octal representation.

References

[1] C. Caldwell, Truncatable primes, J. Recreational Math., 19:1 p30-33., 1987
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Merging Domain Ontologies using Graph Algorithms

Y. An and N. Wilson
Essex County College, Newark, NJ, USA

yan@essex.edu, nwilson@essex.edu

A Domain Ontology is a directed graph that represents a certain domain specific knowledge
where concepts (terms) and their relationships are represented as vertices and arcs, respectively.
Successful implementation of a domain ontology enables to retrieve information with better au-
tomatic or semiautomatic reasoning [1]. While the term, ‘edge’ in Graph Theory domain means
a link between two vertices, its meaning varies depending on domains such as computer vision,
architecture, etc. For example, the term ‘edge’ in ‘water’s edge election’ means completely different
in corporatae tax domain. Also, the term, ‘graph’ means usually either bar or line chart in many
domains of the world whereas it is specifically a set of vertices and a set of their relations in Graph
Theory domain. Fig. 1 shows components in a Tax domain ontology.

Figure 1: An Example of Components in a Tax Domain Ontology

Merging domain ontologies into a more general ontology is a challenging problem. While time con-
suming and subjective manual process to merge domain ontolgies have been practiced, an objective
automatic algorithm is of great interest. Here the domain ontology merging problem is viewed as
graph theory problems such as finding mismatches betwen graphs and similarity between graphs.

References

[1] Y. J. An, K.-C. Huang, and J. Geller, J. A Formal Approach to Evaluating Medical Ontology
Systems using Naturalness. The International Journal of Computational Models and Algorithms
in Medicine, 1(1), 1-18. 2010
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Partially Ordered Bounded Integer Partition and Computing its

Properties with Memoization Technique

A. C. Martini, J. I. Lee, and B. Simnica
Pace University, NY, NY, USA

{am78365p, jl89582p, bs87507p}@pace.edu

Partitioning a positive integer n into k parts is an important combinatorial problem, i.e., dis-
tributing n unlabeled balls into k unlabeled urns [1]. The bounded integer partition problem is
counting the number of partitions where the capacity of each urn is limited to b. The partially
ordered relation on integer partition is a level graph where kth level has pb(n, k) number of nodes.
Edges from k to k + 1 level indicate splitting an urn to two and those from k + 1 to k level mean
merging two urns into one as indicated in Fig. 1.

Figure 1: Partially ordered upper bounded Integer Partiion relations

Let Pl,u(n, k) be the partition of an integer n into k smaller integer part where each part has lower
and upper bounds. Let pl,u(n, k) be the number of nodes in k level in the partially ordered relation
and its formula is given in (1).

pa,b(n, k) =


0 if u > l, k < 1, k > n, n < lk, or n > uk

1 if n = lk or n = uk

pa,b(n− 1, k) + pl,u−1(n− k, k) if 1 < k < n and lk < n < uk

(1)

This bound does not in essence change in the computational time complexity of most näıve algo-
rithms. We found that a memoization technique makes the computation faster with the addition of
this extra bound, i.e., memoization pulls even farther ahead of dynamic programming. This extra
bound causes more nodes to terminate meaning memoization has even less work to do to complete
the problem whereas dynamic programming would still approach the problem in the same way, not
saving much time at all [1].

References

[1] D. E. Knuth, History of combinatorial generation, Pre-fascicle 4B of The Art of Computer
Programming, A draft of section 7.2.1.7. 2004
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Graphs Whose Vertices are Forests with Doubly Bounded Degree:

Fundamentals

J. P. Shor, E. G. DuCasse, and L. V. Quintas
Pace University, NY, NY, USA

jpshor@gmail.com, educasse@pace.edu, lvquintas@gmail.com

A graph G is said to be an f -graph if G has no vertex of degree greater than f and its properties
had been studied in [1, 2, 3, 4]. A vertex in a graph of degree greater than 1 is called internal. An
f -tree with each internal vertex having degree at least L is called an (L, f)-tree. Define F (n,L, f)
to be the graph with the vertex set the unlabeled (L, f)-forests of order n and two vertices in
F (n,L, f) adjacent if and only if they differ by exactly one edge. Note that if v and u are adjacent
vertices, then either v is a one-edge deleted subforest of u or v is a one-edge extended super f -forest
of u.

Current research on this class of graphs involves investigation of fundamental properties of
F (n,L, f). This presentation will serve as a brief examination into basic properties of F (n,L, f),
including the construction of these graphs and basic invariants. In addition, a special case of these
graphs where L = f = k to form F (n, k, k) will be presented.
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