
On Parity based Divide and Conquer Recursive
Functions

Sung-Hyuk Cha ∗†

Abstract—The parity based divide and conquer re-

cursion trees are introduced where the sizes of the

tree do not grow monotonically as n grows. These

non-monotonic recursive functions called fogk(n) and

f̃ogk(n) are strictly less than linear, o(n) but greater

than logarithm, Ω(logn). Properties of fogk(n) such as

non-monotonicity, upper and lower bounds, etc. are

examined and proven. These functions are useful to

analyze computational complexities of certain algo-

rithms, especially problems of finding various proper-

ties of k-ary divide and conquer trees or size balanced

k-ary trees. Several integer sequences based on the

divide and conquer recursive relations are newly dis-

covered as well. Keywords: divide and conquer, Non-

monotonic growth function, Analysis of Algorithms

1 Introduction

In the analysis of algorithms, the computational time
complexity functions, T (n), are often limited to mono-
tonically increasing [1] or eventually non-decreasing [2]
growth functions, i.e., T (n1) ≤ T (n2) if there exist n0

such that n0 < n1 < n2. Linear and logarithm functions
are examples of monotonically increasing functions where
their asymptotic relationships can be discussed. Here
some non-monotonic functions are introduced to analyze
computational complexities of certain algorithms.

The divide and conquer technique, which solves problems
by breaking them into two or more smaller subproblems,
is one of most popular algorithm design techniques [1].
This technique produces the implicit size balanced k-ary
tree [3] whose sizes of its children trees are the same or
differ by only one. This divide and conquer k-ary tree
gives intriguing integer sequences with regard to its input
size n [3]. Neil Sloane’s Online Encyclopedia of Integer
Sequences [4] contains a zoo of divide and conquer integer
sequences. Yet, several new divide and conquer integer
sequences generated from the non-monotonic recursive
functions are discovered in this article.

Most classical recursive divide and conquer algorithms
have their computational time complexities in a standard

∗Manuscript received June 25, 2012; revised Auguest 1, 2012.
†S.-H. Cha is with the Computer Science Department, Pace Uni-

versity, New York, NY, 10038 USA Tel/Fax: 212-346-1253/1863
e-mail: scha@pace.edu (see http://csis.pace.edu/∼scha).

recursive form given in (1) where a is the number of sub-
problems and n/b is the size of the sub-problems.

T (n) = aT (
n

b
) + f(n) (1)

These typical recursive divide and conquer algorithms
form a full a-ary recursion tree and the asymptotically
equivalent growth function can be determined by the
Master theorem [1].

For example, consider the problem of finding the value of
the nth power of c, cn where n is a positive integer. Two
different divide and conquer recursive algorithms given
in (2) and (3) can solve the problem.

pow(c, n) =

{
c, if n = 1

pow(c, ⌈n
2 ⌉)× pow(c, ⌊n

2 ⌋), if n > 1
(2)

pow(c, n) =


c, if n = 1

pow(c, n
2)

2, if n is even

pow(c, ⌊n
2 ⌋)

2 × c, if n is odd

(3)

The former algorithm in (2) always call two half sized
subproblems which result in the full binary divide and
conquer recursion tree as shown in Figure 1 (a). The
latter algorithm in (3) always call only one subproblem
of the half size which results in the unary divide and
conquer recursion tree as shown in Figure 1 (b). The
algorithm in (3) is called the “binary method” which
appeared before 200 B.C. [5, 6]. Assuming that mul-
tiplication operation takes a constant time, the compu-
tational time complexities for algorithms in (2) and (3)
have the standard recursive forms, T (n) = 2T (n/2) + 1
and T (n) = T (n/2) + 1, respectively. They are asymp-
totically linear Θ(n) and logarithm Θ(log n), respectively,
which can be trivially shown by the Master Theorem [1].

Consider an algorithm in (4) which calls one subproblem
if n is even but calls twice if n is odd.

pow(c, n) =


c, if n = 1

pow(c, n/2)2, if even

pow(c, ⌈n
2 ⌉)× pow(c, ⌊n

2 ⌋), if odd

(4)

The computational time complexity of the algorithm in
(4) is strictly less than linear, o(n) but greater than log-
arithm, Ω(log n) intuitively as shown in Fig. 1 (c). Un-
fortunately, the Master theorem does not help to find the

(a) full binary (b) Unary (c) Binary
Θ(n) Θ(log(n)) Θ(fog(n))

Figure 1: Three kinds of divide and conquer recursion
tree.

exact asymptotic closed formula for this recursive relation
in (4). Even more general divide and conquer recurrence
solving theorem, such as the Akra-Bazzi method [7], can-
not handle this simple and rather elementary divide and
conquer relation, either.

Albeit the algorithms in (2) and (4) should not be used
for the problem of evaluating integer powers, it is a good
example to realize that there exists a recursive func-
tion that is strictly less than linear and greater than or
equals to the logarithm as figuratively explained in Fig 1.
This mysterious parity based divide and conquer recur-
sive function shall be called fogk(n). In [3], the problem
of finding the sum of heights of a size balanced k-ary tree
or a divide and conquer recursion tree was considered.
This article shall prove that the computational complex-
ity of solving this problem in [3] is Θ(fog(n)) and investi-
gate other problems whose computation complexities are
Θ(fog(n)).

The subsequent sections are constructed as follows. The
section 2 formally defines the fogk(n) and its properties
are examined and proven. Another similar leave-one-out
divide and conquer recursive function called f̃ogk(n) is
introduced as well. In section 3, various problem exam-
ples whose computational running time complexities are
either Θ(fogk(n)) or Θ(f̃ogk(n)) are given. Finally, the
section 4 concludes this work.

2 Divide and conquer recursive function

2.1 Definition fogk(n)

Computational running time complexity of the algo-
rithm (4) can be represented as a recursion tree where
the node has one or two children depending on its parity
Fig. 2 (a) enumerates the first 16 recursion trees. Let the
size of this binary recursion tree be fog2(n) as defined
in (5).

fog2(n) =


1, if n = 1

fog2(
n
2) + 1, if n%2 = 0

fog2(⌈n
2 ⌉) + fog2(⌊n

2 ⌋) + 1, if n%2 ̸= 0

(5)
fog2(n) is not monotonically growing function but fluc-
tuates as shown in Fig 2 (b).

(a) fog2(n) recursion trees

0 20 40 60 80 100
0

10

20

30

40

50

60

fog
2
(n)

log
2
(n)

2n

(b) fog2(n) graph in comparison to n and log n.

Figure 2: fog2(n) recursion trees and graph.

The concept in (5) can be generalized for the k-ary divide
and conquer cases where each node has up to k children.
The sizes of k-sub trees follow the integer partition into
k balanced parts defined in (6).

BIP(n, k) =
(k︷ ︸︸ ︷⌈n

k

⌉
, . . . ,

⌈n
k

⌉
︸ ︷︷ ︸

k̃=n%k

,
⌊n
k

⌋
, . . . ,

⌊n
k

⌋)
(6)

For examples, BIP(17, 3) = (6, 6, 5) and BIP(22, 4) =
(6, 6, 5, 5) . If n is divisible by k, all children have the
unique size n

k . If n is not divisible by k, there are exactly
two kinds of children, i.e., ⌈n

k ⌉ and ⌊n
k ⌋ as defined in (6).

The binary divide and conquer algorithms in (2) and (3)
can be generalized to k-divide and conquer algorithms
which have Θ(logk n) unary recursion tree and Θ(n) k-
ary recursion tree, respectively. The algorithm in (4) can
be also generalized to k-divide and conquer where it only
calls one sub-problem if the size n is divisible by k or calls
two sub-problems if not. This algorithm has a binary
recursion tree regardless of k. The computational time

(a) first 21 fog3(n)

(b) best (c) typical (d) worst case
- unary - binary - full binary

Figure 3: fog3(n) recursion trees.

complexity of this algorithm can be defined as in (7).

fogk(n) =


1, if n = 1

2, if n ≤ k

fogk(
n
k) + 1, if n%k = 0

fogk(⌈n
k ⌉) + fogk(⌊n

k ⌋) + 1, if n%k ̸= 0

(7)
For the example of ternary (k = 3) case, Fig 3 (a) shows
the first 21 recursion trees. In the worst case, it has a
full binary tree as shown in Fig 3 (d) while it has a unary
tree in the base case as given in Fig 3 (b). The Table 1
lists first 100 integer sequences for fog2(n), fog3(n), and
fog4(n).

2.2 Properties of fogk(n)

The function in (7) is named as fog for two reasons. The
first one is to be consistant with logarithm function in-
troduced by Napier and the second reason is depicted in
Fig 4 where fogk(n) integer values are ploted as dots in-
stead of lines. This non-monotonic function looks like
fogs.

Property 1 Non-monotonicity: fogk(n1) ̸≤ fogk(n2) if
n1 < n2.

The first property of fogk(n) is straightforward as shown
in Figs 2∼4.

Another obvious property of fogk(n) is its lower bound.

Property 2 The lower bound: fogk(n) = Ω(logk(n)).

In the best case, the input size n is divisible by k and
its sub-problem’s size is also divisible by k all the way
to the base case. This case is Θ(logk n). This best case
scenario occurs at n = km where m is a positive integer
as depicted in Fig. 4.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

fog
2
(n)

log
2
(n)

n

(a) fog2(n)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

fog
3
(n)

log
3
(n)

n

(b) fog3(n)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

fog

4
(n)

log
4
(n)

n

(c) fog4(n)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

fog

4
(n)

log
4
(n)

n

(d) fog5(n)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

(e) fog10(n)

Figure 4: various fogk(n) plots.

The worst case or the upper bound of fogk(n) can be
derived using the Master theorem.

Theorem 1 The upper bound: fogk(n) = O(N logk 2) .

Proof: In the worst case, the input size n and its all
sub-children’s sizes are not divisible by k. As depicted
in Fig 3 (d), it forms a full binary tree and thus T (n) =
2T (n/k) + 1. Using the Master theorem case 2, T (n) =
Θ(nlogk 2)

Table 1: Θ(fogk(n)) Integer Sequences.
k Integer sequence for n = 1, · · · , 100
2 1, 2, 4, 3, 7, 5, 8, 4, 11, 8, 13, 6, 14, 9, 13, 5, 16, 12, 20, 9, 22, 14, 20, 7, 21, 15, 24, 10, 23, 14, 19, 6, 22, 17, 29, 13, 33,

21, 30, 10, 32, 23, 37, 15, 35, 21, 28, 8, 29, 22, 37, 16, 40, 25, 35, 11, 34, 24, 38, 15, 34, 20, 26, 7, 29, 23, 40, 18, 47, 30,
43, 14, 47, 34, 55, 22, 52, 31, 41, 11, 43, 33, 56, 24, 61, 38, 53, 16, 51, 36, 57, 22, 50, 29, 37, 9, 38, 30, 52, 23, · · ·

3 1, 2, 2, 4, 4, 3, 5, 5, 3, 7, 7, 5, 9, 9, 5, 8, 8, 4, 9, 9, 6, 11, 11, 6, 9, 9, 4, 11, 11, 8, 15, 15, 8, 13, 13, 6, 15, 15, 10, 19, 19,
10, 15, 15, 6, 14, 14, 9, 17, 17, 9, 13, 13, 5, 14, 14, 10, 19, 19, 10, 16, 16, 7, 18, 18, 12, 23, 23, 12, 18, 18, 7, 16, 16, 10,
19, 19, 10, 14, 14, 5, 16, 16, 12, 23, 23, 12, 20, 20, 9, 24, 24, 16, 31, 31, 16, 24, 24, 9, 22, · · ·

4 1 ,2 ,2 ,2 ,4 ,4 ,4 ,3 ,5 ,5 ,5 ,3 ,5 ,5 ,5 ,3 ,7 ,7 ,7 ,5 ,9 ,9 ,9 ,5 ,9 ,9 ,9 ,5 ,8 ,8 ,8 ,4 ,9 ,9 ,9 ,6 ,11 ,11 ,11 ,6 ,11 ,11 ,11 ,6
,9 ,9 ,9 ,4 ,9 ,9 ,9 ,6 ,11 ,11 ,11 ,6 ,11 ,11 ,11 ,6 ,9 ,9 ,9 ,4 ,11 ,11 ,11 ,8 ,15 ,15 ,15 ,8 ,15 ,15 ,15 ,8 ,13 ,13 ,13 ,6 ,15 ,15
,15 ,10 ,19 ,19 ,19 ,10 ,19 ,19 ,19 ,10 ,15 ,15 ,15 ,6 ,15 ,15 ,15 ,10, · · ·

For k = 3 and k = 4, nlog3 2 = n0.6309 and nlog4 2 = n0.5,
respectively. The tigher upper bound for the binary case
is given as follows.

Theorem 2 The upper bound for k = 2: fog2(n) =
O(N log2(φ)) .

Proof: An odd number n is always divided into odd and
even parts. An even number n is either a sum of two
smaller even numbers in the best case or two smaller odd
numbers in the worst case. In the worst case, we have a
Fibonacci tree as shown in Fig 5. In the standard divide
and conquer form, a = 1fh+2fh+1

fh+fh+1
= 1+ fh+1

fh+2
= 1+ 1

φ = φ.

Since T (n) = φT (n/2) + 1 belongs to the case 1 in the
Master Theorem, T (n) = Θ(N log2(φ)) ≈ Θ(N0.6942)

Figure 5: Worst case Fibonacci tree.

The following obvious inequality for the logarithm func-
tion, i.e., logk1

(n) ≤ logk2
(n) for k1 > k2, does not apply

to the fog functions.

Fallacy 1 fogk1(n) ≤ fogk2(n) for k1 > k2.

Proof: While there are cases that the claim is true, e.g.,
(fog3(64) = 18) < (fog2(64) = 7), there are also numer-
ous counter examples like (fog3(96) = 16) ̸≤ (fog2(96) =
9), (fog4(63) = 9) ̸≤ (fog3(63) = 7), etc. Hence,
fogk1(n) ̸≤ fogk2(n) for k1 > k2.

Despite the Fallacy 1, fog is getting lower and fading as
k increases, i.e., the lower and upper bounds of fogk1

(n)
are lower than those of fogk2(n) for k1 > k2 as shown in
Fig 4. The following corollary 1 is an exceptional case of
Fallacy 1.

(a) f̃og2(n) recursion trees.

(b) f̃og3(n) recursion trees.

Figure 6: f̃ogk(n) recursion trees.

Corollary 1 fogkp(n) ≤ fogk(n) for a positive integer,
p.

Proof omitted.

2.3 Leave-one-out divide and conquer,
f̃ogk(n)

There are two kinds of divide and conquer recursion trees.
One is the standard one where n is the number of leaf
nodes. The other is the leave-one-out divide and conquer
where n is the total number of both internal and leaf
nodes. In the leave-one-out divide and conquer tree, k
number of subtrees have their sizes of either ⌈(n− 1)/k⌉
or ⌊(n− 1)/k⌋. The median split tree [8] is an example of
the binary leave-one-out divide and conquer tree. In [3],
k-ary leave-one-out divide and conquer are categorized as
simply k-ary size-balanced tree.

The parity based divide and conquer function defined
in (7) can be altered to analyze the leave-one-out divide
and conquer algorithms. Let’s denote this altered func-

Table 2: f̃ogk(n) Integer Sequences.
k Integer sequence for n = 1, · · · , 100
2 1, 2, 2, 4, 3, 5, 3, 7, 5, 8, 4, 9, 6, 9, 4, 11, 8, 13, 6, 14, 9, 13, 5, 14, 10, 16, 7, 16, 10, 14, 5, 16, 12, 20, 9, 22, 14, 20, 7,

21, 15, 24, 10, 23, 14, 19, 6, 20, 15, 25, 11, 27, 17, 24, 8, 24, 17, 27, 11, 25, 15, 20, 6, 22, 17, 29, 13, 33, 21, 30, 10, 32,
23, 37, 15, 35, 21, 28, 8, 29, 22, 37, 16, 40, 25, 35, 11, 34, 24, 38, 15, 34, 20, 26, 7, 27, 21, 36, 16, 41, · · ·

3 1, 2, 2, 2, 4, 4, 3, 5, 5, 3, 5, 5, 3, 7, 7, 5, 9, 9, 5, 8, 8, 4, 9, 9, 6, 11, 11, 6, 9, 9, 4, 9, 9, 6, 11, 11, 6, 9, 9, 4, 11, 11, 8, 15,
15, 8, 13, 13, 6, 15, 15, 10, 19, 19, 10, 15, 15, 6, 14, 14, 9, 17, 17, 9, 13, 13, 5, 14, 14, 10, 19, 19, 10, 16, 16, 7, 18, 18,
12, 23, 23, 12, 18, 18, 7, 16, 16, 10, 19, 19, 10, 14, 14, 5, 14, 14, 10, 19, 19, 10, · · ·

4 1, 2, 2, 2, 2, 4, 4, 4, 3, 5, 5, 5, 3, 5, 5, 5, 3, 5, 5, 5, 3, 7, 7, 7, 5, 9, 9, 9, 5, 9, 9, 9, 5, 8, 8, 8, 4, 9, 9, 9, 6, 11, 11, 11, 6,
11, 11, 11, 6, 9, 9, 9, 4, 9, 9, 9, 6, 11, 11, 11, 6, 11, 11, 11, 6, 9, 9, 9, 4, 9, 9, 9, 6, 11, 11, 11, 6, 11, 11, 11, 6, 9, 9, 9, 4,
11, 11, 11, 8, 15, 15, 15, 8, 15, 15, 15, 8, 13, 13, 13, · · ·

tion as f̃ogk(n).

f̃ogk(n) =
1, if n = 1

2, if n ≤ k + 1

f̃ogk(
n−1
k) + 1, if (n− 1)%k = 0

f̃ogk(⌈n−1
k ⌉) + f̃ogk(⌊n−1

k ⌋) + 1, if (n− 1)%k ̸= 0

(8)
Figure 6 shows the first 14 f̃og2(n) and 25 f̃og3(n) re-
cursion trees and the the table 2 lists first 100 integer
sequences for f̃og2(n), f̃og3(n), and f̃og4(n).

3 Applications

In [3], the problem of finding the sum of heights of a
size balanced k-ary tree, Z ′

k(n) or a leave-one-out divide
and conquer recursion tree was considered. Although
the value can be computed in linear time by traversing
the tree in the depth first order manner, it can be com-
puted faster in Θ(f̃ogk(n)) because we need to traverse
only one sub-tree if all k sub-trees’ sizes are the same or
only two sub-trees otherwise. Here some other problems
whose computational complexities are either Θ(fogk(n))
or Θ(f̃ogk(n)) are examined.

Let Zk(n) be a standard divide and conquer recursion
tree. Let H(Zk(n)) be the sum of each node’s height in
Zk(n) and it is defined recursively as in (9).

H(Zk(n)) =


0, if n ≤ 1

⌈logk n⌉+ k̃ ×H
(
Zk(

⌈
n
k

⌉
)
)

+(k − k̃)×H
(
Zk(

⌊
n
k

⌋
)
) otherwise

(9)
Note that k̃ = n%k as defined in (6). Table 3 shows the
first 100 integer sequences of H(Z2(n)) and H(Z3(n)).
The direct definition based recursive algorthm in (9)
would take Θ(nlogk 2). However, if the following condi-
tion in (10) is added to (9), the value can be computed
in Θ(fogk(n)).

H(Zk(n)) = ⌈logk n⌉+k×H
(
Zk(

n

k
)
)

if n%k = 0 (10)

In Neil Sloane’s Online Encyclopedia of Integer Se-
quences [4], the sum of inclusive heights [3] of various ex-

(a) binary

(b) ternary

Figure 7: inclusive heights of standard divide and conquer
tree.

plicit tree data structures are more popular than the sum
of exclusive heights or simply heights. Hence, Fig 7 enu-
merates the first eight standard binary and ternary divide
and conquer trees with each node containing the inclusive
height. With a little modification to (9) and (10), the sum
of the inclusive heights can be computed in Θ(fogk(n))
as well. Table 4 shows the first one hundred integer se-
quences of the sum of inclusive heights of binary and
ternary trees.

Similarly, computing the several other properties of stan-
dard or leave-one-out divide and conquer trees would
have their computational complexities of Θ(fogk(n)) or
Θ(f̃ogk(n)) naturally. For example, the path length of a
rooted tree [9], P (T) is another important property and
P (Zk(n)) and P (Z ′

k(n)) can be computed in Θ(fog2(n))

and Θ(f̃og2(n)), respectively.

Strahler numbering of a binary tree, T , S(T) is another
important property of a binary tree. S(T) in (11) can be
computed in linear time if one uses the postorder traver-
sal [10].

S(T) =


0, if T is empty

max(S(TL), S(TR)), if S(TL) ̸= S(TR)

S(TL) + 1, if S(TL) = S(TR)

(11)

Yet, S(Z2(n)) and S(Z ′
2(n)) can be computed much faster

Table 3: Sum of heights of standard divide and conquer tree integer sequences.
k Integer sequence for n = 1, · · · , 100
2 0, 1, 3, 4, 7, 9, 10, 11, 15, 18, 20, 22, 23, 24, 25, 26, 31, 35, 38, 41, 43, 45, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 63, 68,

72, 76, 79, 82, 85, 88, 90, 92, 94, 96, 98, 100, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 127, 133, 138, 143, 147, 151, 155, 159, 162, 165, 168, 171, 174, 177, 180, 183, 185, 187, 189, 191, 193,
195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 216, 217, 218, 219, · · ·

3 0, 1, 1, 3, 4, 5, 5, 5, 5, 8, 10, 12, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 22, 25, 28, 30, 32, 34, 36, 38,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 63, 67, 71, 74, 77, 80, 83, 86, 89, 91, 93, 95, 97, 99, 101, 103, 105,
107, 109, · · ·

Table 4: Sum of inclusive heights of standard divide and conquer tree integer sequences.
k Integer sequence for n = 1, · · · , 100
2 1, 4, 8, 11, 16, 20, 23, 26, 32, 37, 41, 45, 48, 51, 54, 57, 64, 70, 75, 80, 84, 88, 92, 96, 99, 102, 105, 108, 111, 114, 117,

120, 128, 135, 141, 147, 152, 157, 162, 167, 171, 175, 179, 183, 187, 191, 195, 199, 202, 205, 208, 211, 214, 217, 220,
223, 226, 229, 232, 235, 238, 241, 244, 247, 256, 264, 271, 278, 284, 290, 296, 302, 307, 312, 317, 322, 327, 332, 337,
342, 346, 350, 354, 358, 362, 366, 370, 374, 378, 382, 386, 390, 394, 398, 402, 406, 409, 412, 415, 418, · · ·

3 1, 4, 5, 9, 12, 15, 16, 17, 18, 23, 27, 31, 34, 37, 40, 43, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 64, 69, 74, 78, 82, 86,
90, 94, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 186,
192, 198, 203, 208, 213, 218, 223, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, · · ·

using (12) in Θ(fog2(n)) and Θ(f̃og2(n)), respectively.

S(Z(n)) =


0, if Z(n) is empty

max(S(Z(⌈n
2 ⌉)), S(Z(⌊n

2 ⌋))), if n%2 ̸= 0

S(Z(n2)) + 1, if n%2 = 0

(12)

4 Conclusions

Both standard and leave-one-out divide-and-conquer re-
cursion trees are pervasive in computer science. This arti-
cle introduced the parity based divide and conquer recur-
sion trees. The functions of sizes of standard and leave-
one-out divide and conquer trees were denoted as fogk(n)
and f̃ogk(n), respectively. Properties and some applica-
tions of these functions were discussed. We strongly be-
lieve that there are a plethora of applications of these
functions in various problems which use the divide and
conquer algorithms.

Another contribution of this article is discovering new in-
teger sequences. All integer sequences in Tables 1∼4 are
surprisingly not currently in Neil Sloane’s Online Ency-
clopedia of Integer Sequences [4]. These are important
and pervasive integer sequences which involve divide and
conquer algorithms.

The divide and conquer recursion is one of the widely
studied areas and Master theorem and Akra-Bazzi
method attempt to generalize these recursive formulae.
However, they cannot handle fogk(n) and f̃ogk(n) func-
tions. Studying the more generalized parity based recur-
sive forms is one of the future works.

References

[1] T.–H. Cormen, C.–E. Leiserson, and R.–L. Rivest,
Algorithm, MIT Press, Cambridge, Massachusetts,
1993

[2] D.–S. Malik and M.–K. Sen, Discrete Mathematic
Structures: Theory and Applications, Thomson
Course Technology, 2004

[3] S.-H. Cha, “On Integer Sequences Derived from Bal-
anced k-ary trees,” in Proceedings of American Con-
ference on Applied Mathematics, Cambridge, MA,
pp. 377-381, Jan 2012.

[4] N. J. A. Sloane. The On-Line Encyclopedia of Inte-
ger Sequences. http://oeis.org/

[5] D.–E. Knuth, The Art of Computer Programming,
vol 2: Seminumerical Algorithms, 2nd ed. Addison-
Wesley, 1981

[6] B. Datta and A.–N. Singh, History of Hindu Math-
ematics, vol 1, Bombay, 1935

[7] M. Akra and L. Bazzi,“On the solution of linear
recurrence equations,” Computational Optimization
and Applications, vol. 10(2), pp. 195–210, 1998.

[8] B.–A. Sheil, “Median Split Trees: A Fast Lookup
Technique for Frequently Occurring Keys,” Comm.
ACM, vol. 21, n. 11, pp. 947–958, 1978.

[9] T.–C. Hu and K.–C. Tan, “Path Length of Binary
Search Trees,” SIAM Journal on Applied Mathemat-
ics, vol. 22, n. 2, pp. 225234, 1972.

[10] P. Kruszewski, “A note on the Horton-Strahler num-
ber for random binary search trees,” Information
Processing Letters, vol. 69, n. 1, pp. 4751, 1999.

